django cms Documentation
Release 4.1.1

django CMS Association and contributors

May 01, 2024






CONTENTS

1 Philosophy

2  Overview

2.1 Tutorials . . . .. e e e e e e e
2.2 How-toguides . . . . . . . o i i i e e e e e e e e
23  Explanation . . . . ... e e
2.4 Reference . . . . . . .. e

3 Join us online
3.1 Discord . . .. e e e
3.2 StackOverflow . . . . . . . e e

4 Why django CMS?

5 Software version requirements and release notes

5.1 Long-term support (LTS) . . . . . . . o e e e e e
5.2 Django/Python compatibility table . . . . . . . ... ... L
Python Module Index
Index

D D D

2







django cms Documentation, Release 4.1.1

django [(d¥)

CONTENTS 1



django cms Documentation, Release 4.1.1

2 CONTENTS



CHAPTER
ONE

PHILOSOPHY

The design philosophy of django CMS is to solve something complex with many simple things.

The core of django CMS is designed to be simple and integrate with simple packages to create complex applications.
For example, you may add djangocms-versioning to manage versions of your content, djangocms-moderation
to define workflows for how content moves from authoring to being published.




django cms Documentation, Release 4.1.1

4 Chapter 1. Philosophy



CHAPTER
TWO

OVERVIEW

django CMS is a modern web publishing platform built with Django, the web application framework “for perfectionists
with deadlines”.

django CMS offers out-of-the-box support for the common features you’d expect from a CMS, but can also be easily
customised and extended by developers to create a site that is tailored to their precise needs.

This is the developer documentation. To get an overview on how to use django CMS, see the django CMS User Guide.

2.1 Tutorials

Start here as a new django CMS developer:
* installation
* using additional packages

* creating your own addon applications.

2.2 How-to guides

Practical step-by-step guides for the more experienced developer, covering several important topics.

2.3 Explanation

Explanation and analysis of some key concepts in django CMS.

2.4 Reference

Technical reference material, for
¢ classes,
* methods,
e APIs,

e commands.



https://www.djangoproject.com
https://user-guide.django-cms.org/

django cms Documentation, Release 4.1.1

6 Chapter 2. Overview



CHAPTER
THREE

JOIN US ONLINE

The django CMS Association is a non-profit organisation that exists to support the development of django CMS and
its community.

3.1 Discord

Join our friendly Discord server for support and to share ideas and discuss technical questions with other members
of the community.

3.2 StackOverflow

StackOverflow is also a good place for questions around django CMS and its plugin ecosystem.



https://www.django-cms.org/en/about-us/
https://www.django-cms.org/discord
https://stackoverflow.com/questions/tagged/django-cms

django cms Documentation, Release 4.1.1

8 Chapter 3. Join us online



CHAPTER
FOUR

WHY DJANGO CMS?

django CMS is a well-tested CMS platform that powers sites both large and small. Here are a few of the key features:
* robust internationalisation (i18n) support for creating multilingual sites
* front-end editing, providing rapid access to the content management interface
* support for a variety of editors with advanced text editing features.

« aflexible plugin system that lets developers put powerful tools at the fingertips of editors, without overwhelming
them with a difficult interface

e ...and much more
There are other capable Django-based CMS platforms, but here’s why you should consider django CMS:
e thorough documentation
* easy and comprehensive integration into existing projects - django CMS isn’t a monolithic application
* a healthy, active and supportive developer community

* astrong culture of good code, including an emphasis on automated testing




django cms Documentation, Release 4.1.1

10 Chapter 4. Why django CMS?



CHAPTER
FIVE

SOFTWARE VERSION REQUIREMENTS AND RELEASE NOTES

This document refers to version 4.1.1.

5.1 Long-term support (LTS)

Django has a long-term support (LTS) policy which django CMS adapts.

Designated django CMS versions receive support for use with official Django LTS versions:

5.1.1 Current LTS table

django CMS | Feature freeze | Django | End of long-term support
4.1x tbd 4.2 April 2026

32 April 2024
3.11x September 2023 | 4.2 April 2026

32 April 2024

After feature freeze, new features go into the next major version of django CMS.

5.1.2 Unsupported LTS versions

The following LTS versions do not receive any support any more:

django CMS | Feature freeze | Django | End of long-term support
3.8x June 2020 2.2 April 2022
3.7.x October 2020 2.2 March 2022

1.11 March 2020

11


https://www.djangoproject.com/download/#supported-versions

django cms Documentation, Release 4.1.1

5.2 Django/Python compatibility table

LTS in the table indicates a combination of Django and django CMS both covered by a long-term support policy.

v indicates that the version has been tested and works. x indicates that it has not been tested, or is known to be
incompatible.

django Python Django
CMS

312|311, 31013938 |37 |36 |50|42 (41|40 |32 |31]3.0)|22
4.1.x v v v v x x x v LTS | v v LTS | x x x
3.11.3+ x v v v v v x x LTS | v v LTS | x x x
3.11.1 x v v v v v x x v v v x x x x
3.11.0 x v v v v v x x x x v v x x x
3.10.x x x v v v v x x x x x v v v v
3.9.x x x x v v v v x x x x v v v N
3.8.x x x x v v v v X x x X x v v LTS
3.7x x x x v v v N x x x x x x v LTS

See the repository’s setup . cfg for details of dependencies, or the Release notes & upgrade information for information
about what is required or has changed in particular versions of the CMS.

The Commonly Used Plugin section provides an overview of other packages required in a django CMS project.

5.2.1 Tutorials

The pages in this section of the documentation are aimed at the newcomer to django CMS. They’re designed to help
you get started quickly, and show how easy it is to work with django CMS as a developer who wants to customise it
and get it working according to their own requirements.

These tutorials take you step-by-step through some key aspects of this work. They’re not intended to explain the fopics
in depth, or provide reference material, but they will leave you with a good idea of what is possible to achieve in just a
few steps, and how to go about it.

Once you’re familiar with the basics presented in these tutorials, you’ll find the more in-depth coverage of the same
topics in the How-to section.

The tutorials follow a logical progression, starting from installation of django CMS and the creation of a brand new
project, and build on each other, so it’s recommended to work through them in the order presented here.

Installing django CMS

The setup is incredibly simple, and in this django CMS tutorial, we’ll take you through the first five steps to help get
you started.

12 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

What you need to get started

First of all, you don’t need to be a senior developer or have prior experience as a developer with Django or Python to
create your first django CMS demo website. In fact, one of the added benefits of django CMS is that it offers a powerful
yet easy to use interface for most common tasks of setting up a web site. You can focus on any specific needs of your
project.

Before we begin the django CMS tutorial, you will need to know that there are several ways to install django CMS for
free.

1. You can either set up a project on Divio Cloud, which is fast and useful for people without a technical background
and a good starting point to experience the CMS User Interface.

2. As another option, you can set up the project using docker. It is a good way for a developer locally without an
external vendor and we use this option in this django CMS demo.

3. The last option is to install is creating a django CMS project manually into a local virtual environment by running
the djangocms command. This will create a new Django project set up for running django CMS based on a
django CMS-specific project template. See Installing django CMS by hand for details. This option is a good
way for developers that want to install everything by hand to understand better, have full control, or want to add
to an existing Django project.

In this tutorial we will cover both options 2 and 3, including the explanation what exactly needs to happen when you
add django CMS to a Django project.

Production-ready: django CMS quickstart

The django CMS quickstart project is a template for a Docker-based production-ready setup. Especially if you know
your way around Docker, you will be able to quickly set up a project that is ready for deployment.

If you just want to test a project locally without Docker, you can install django CMS by hand in a few steps.

Setup Docker (Step 1)

Install docker from here. If you have not used docker in the past, please read this introduction on docker.

Run the demo project in docker (Step 2)

Info: The demo project is a minimal Django project with some additional requirements in the requirements. txt.

For more details see its Open the terminal application on your computer and go to a safe folder (i.e. cd ~/Projects),
then

git clone git@github.com:django-cms/django-cms-quickstart.git

cd django-cms-quickstart

docker compose build web

docker compose up -d database_default

docker compose run web python manage.py migrate

docker compose run web python manage.py createsuperuser
docker compose up -d

During the installation process, you will be prompted to enter your email address and set a username and password.
Open your browser and insert http://localhost:8000/admin there you should be invited to login and continue
with Step 3: create your first page

5.2. Django/Python compatibility table 13



https://www.divio.com
https://www.django-cms.org/en/blog/2021/01/19/how-you-spin-up-a-django-cms-project-in-less-than-5-minutes/
https://docs.docker.com/get-docker/
https://docs.docker.com/get-started/
https://github.com/django-cms/django-cms-quickstart/tree/support/cms-4.1.x

django cms Documentation, Release 4.1.1

Create your first page (Step 3)

* Once you login you can press Create on the top right.
* Then you will see a pop-up window where the “New page” is marked blue.

* Press New Page and select Next.

% @ mogo

django[@ example.com Page Language Creste | Edit
Brand Home ¥

This page has no content yet. Make sure you are in Edit mode (hit the Edit page button if required). Then switch to Structure mode.

Create Create New page - o x

TITLE

o a5 oa
CONTENT
o Fom Styies A- @ @ %
BIUS ¥ I =2 =8 £ = - :::} 8 Sourc
Back Cancol

django@ example.com Page Language cous [0

Brand Home ~

This page has no content yet. Make sure you are in Edit mode (hit the Edit page button if required). Then switch to Structure mode.

Create -ox
New page New sub page
Greate a new page next to the current page. Create a page below the current page.
New Article

Create a new Article in Blog

Here is your newly created page.

Publish your first page (Step 4)

The page we just created is just a draft and needs to be published once you finish. As an editor, only you can see and
edit your drafts, other visitors to your site will only see your published pages.

Press “Publish”

14 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

® @ ® Q HowtosartwithdiangoCMs X  +

e S % @ homnio
django @ example.com Page Language Create Publish page now =
Brand Home ~ How tostart with django CMS How to start with django CMS

Lorem ipsum dlolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Scelerisque viverra mauris in
aliquam sem. Donec ultrices tincidunt arcu non sodales neque. Non nisi est sit amet facilisis. At consectetur lorem donec massa sapien faucibus et
molestie ac. Dictumst vestibulum rhoncus est I que massa placerat duis ultricies lacus sed turpis tincidunt. Integer
feugiat scelerisque varius morbi. Dictum sit amet justo donec. Mi proin sed libera enim sed faucibus turpis. Vitae sapien pellentesque habitant morbi.
Feugiat nis! pretium fusce id.

Justo laoreet sit amet cursus sit. Mauris pellentesque pulvinar pellentesque habitant morbi tristique. Netus et malesuada fames ac turpis egestas.
Pharetra pharetra massa massa ultricies. Mi proin sed libero enim sed. Mattis rhancus urna neque viverra justo nec ultrices dui sapien. Congue mauris
thoncus aenean vel elit. Leo integer malesuada nunc vel risus commaodo viverra maecenas accumsan. Pharetra diam sit amet nis| suscipit adipiscing
Vestibulum rhoncus est pellentesque elit ullamcorper. Arcu bibendum at varius vel pharetra vel. Adipiscing commodo elit at imperdiet dui accumsan.
Nullam non nisi est sit amet facilisis.

Vestibulur mattis ullamcorper velit sed. Dictumst quisaue sagittis purus sit amet. Sit amet volutpat consequat mauris nunc congue. Pharetra vel turpis
nunc eget lorem. At varius vel pharetra vel turpis nunc eget lorem dolor. Sem et tortor consequat id porta nibh. Arcu bibendum at varius vel pharetra vel
turpis. Scelerisque eleifend donec pretium vulputate. Pellentesque adipiscing commodo elit at imperdiet dui accumsan sit amet. Tortor aliquam nulla
facilisi cras fermentum odio eu. Tempus urna et pharetra pharetra massa. Condimentum vitae sapien pellentesque habitant. Nascetur ridiculus mus
mauris vitae. Morbi tristique senectus et netus et malesuada fames ac. Justo nec ultrices dui sapien eget mi proin. Fringilla ut morbi tincidunt augue
interdum velit euismod. Eget gravida cum sociis natoque penatibus. Vel fringilla est ullamcorper eget nulla facilisi etiam. Sit amet volutpat consequat
mauris nunc. Congue eu consequat ac felis donec et odio pellentesque diam.

Venenatis a condimentum vitae sapien pellentesque habitant. Id semper risus in hendrerit gravida rutrum quisque. Quis hendrerit dolor magna eget est
lorem ipsum. Massa eget egestas purus viverra accumsan i nis! nisi. Facilisi nullam vehicula ipsum a arcu cursus vitae congue mauris. Risus in hendrerit
gravida rutrum quisque. Et tortor consequat id porta nibh. A erat nam at lectus. Ultrices tincidunt arcu non sodales neque sodales. Velutpat commodo
sed egestas egestas fringilla phasellus faucibus. Adipiscing elit duis tristique sollicitudin nibh. Elementum pulvinar etiam non quam lacus suspendisse
faucibus interdum. Eget gravida cum sociis natoque penatibus et. Et malesuada fames ac turpis egestas integer eget aliquet. Nisi lacus sed viverra tellus
in hac habitasse platea.

To edit the page, you can switch back into editing mode using the “Edit” button, and return to the published version of
the page using the “view published” button.

In the editing mode, you can double-click on the paragraph of the text to change it, add formatting, and save it again.
Any changes that are made after publishing are saved to a draft and will not be visible until you re-publish.

Congratulations, you now have installed django CMS and created your first page.

If you need to log in at any time, append ?toolbar_on to the URL and hit Return. This will enable the toolbar, from
where you can log in and manage your website.

Installing django CMS by hand

If you are looking for a typical installation using Docker look at the quickstarter section of this documentation.

If you prefer to do things manually, this how-to guide will take you through the process. It is simple, quick, and
transparent. If you know Django, you will recognize how django CMS is set up like a typical Django project.

Note: You can also use this guide to help you install django CMS as part of an existing project. However, the guide
assumes that you are starting with a blank project, so you will need to adapt the steps below appropriately as required.
You

This document assumes you have some basic familiarity with Python and Django. After you’ve integrated django CMS
into your project, you should be able to follow the Tuftorials for an introduction to developing with django CMS.

Install the django CMS package (Step 1)

Check the Python/Django requirements for this version of django CMS.

django CMS also has other requirements, which it lists as dependencies in its setup.py.

Important: We strongly recommend doing all of the following steps in a virtual environment. You ought to know
how to create, activate and dispose of virtual environments. If you don’t, you can use the steps below to get started, but
you are advised to take a few minutes to learn the basics of using virtual environments before proceeding further.

python3 -m venv .venv # create a virtualenv
source .venv/bin/activate # activate it
pip install --upgrade pip # Upgrade pip

5.2. Django/Python compatibility table 15



https://docs.python.org/3/library/venv.html

django cms Documentation, Release 4.1.1

Then:

pip

install django-cms

to install the release candidate version of django CMS. It will also install its dependencies including Django.

Create a new django CMS project (Step 2)

Create a new django CMS project:

djangocms myproject

This is a shortcut command for creating a new Django project with the right project template. It performs the following
five steps in one simple go:

1.

It creates a new Django project:

django-admin startproject myproject --template https://github.com/django-cms/cms-
—template/archive/4.1.tar.gz

If django-admin startproject is new to you, you ought to read the official Django tutorial, which covers
starting a new project.

It installs additional optional packages which are used in the template project. Those are
* djangocms-text-ckeditor for rich text input.
* djangocms-frontend for Bootstrap5 support.
¢ django-filer for managing media files like images.
* djangocms-versioning for publishing and version management,
» djangocms-alias for managing common content parts such as footers.
* djangocms_admin_style for a consistent user experience with django CMS and Django admin.

It changes into the project directory and runs the migrate command to create the database:

python -m manage migrate

It prompts for crating a superuser by invoking:

python -m manage createsuperuser

. It runs the django CMS check command to verify the installation is consistent:

python -m manage cms check

Your new project will look like this:

myproject/
LICENSE
README . md
db.sqlite3
myproject/
(continues on next page)
16 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/dev/intro/tutorial01/
https://github.com/django-cms/djangocms-text-ckeditor
https://github.com/django-cms/djangocms-frontend
https://getbootstrap.com
https://github.com/django-cms/django-filer
https://github.com/django-cms/djangocms-versioning
https://github.com/django-cms/djangocms-alias
https://github.com/django-cms/djangocms-admin-style

django cms Documentation, Release 4.1.1

(continued from previous page)

static/
templates/
base.html
__init__.py
asgi.py
settings.py
urls.py
wsgi.py
manage.py

requirements.in

The LICENSE and README .md files are not needed and can be deleted or replaced by appropriate files for your project.

requirements. in contains dependencies for the project. Add your dependencies here. We suggest to use pip-compile
to freeze your requirements as, for example, discussed in this blog post.

Spin up your Django development server (Step 3)

Now you are ready to spin up Django’s development server by first changing directory into the project folder and then
spinning up the development server:

cd myproject
python -m manage runserver

You can visit your project’s web site by pointing your browser to localhost : 8000.

Use the newly created superuser’s credentials to authenticate and create your first page!

Adding django CMS to an existing Django project

django CMS is nothing more than a powerful set of Django apps. Hence you can add django CMS to any Django
project. It will require some settings to be modified, however.

Minimally-required applications and settings

To run djanog CMS you will only need to modify the settings.py and urls.py files.

Open the new project’s settings.py file in your text editor.

INSTALLED_APPS

You will need to add the following to its list of INSTALLED_APPS:

"django.contrib.sites",
"ems”,
"menus",

"treebeard",

* django CMS needs to use Django’s django.contrib.sites framework. You’ll need to set a SITE_ID in the
settings - SITE_ID = 1 will suffice.

5.2. Django/Python compatibility table 17



https://blog.typodrive.com/2020/02/04/always-freeze-requirements-with-pip-compile-to-avoid-unpleasant-surprises/
https://docs.djangoproject.com/en/4.2/ref/contrib/sites/#module-django.contrib.sites

django cms Documentation, Release 4.1.1

* cms and menus are the core django CMS modules.
* django-treebeard is used to manage django CMS’s page tree structures.

django CMS also installs django CMS admin style. This provides some styling that helps make django CMS admin-
istration components easier to work with. Technically it’s an optional component and does not need to be enabled in
your project, but it’s strongly recommended for a more consistent user experience.

In the INSTALLED_APPS, before django.contrib.admin, add:

"djangocms_admin_style",

Language settings

django CMS requires you to set the LANGUAGES setting. This should list all the languages you want your project to
serve, and must include the language in LANGUAGE_CODE.

For example:

LANGUAGES = [
("en", "English"™),
("de", "German"),
("it", "Italian"),
]
LANGUAGE_CODE = "en"

(For simplicity’s sake, at this stage it is worth changing the default en-us in that you’ll find in the LANGUAGE_CODE
setting to en.)

Database

django CMS like most Django projects requires a relational database backend. Each django CMS installation should
have its own database.

You can use SQLite, which is included in Python and doesn’t need to be installed separately or configured further. You
are unlikely to be using that for a project in production, but it’s ideal for development and exploration, especially as it
is configured by default in a new Django project’s DATABASES.

Note: For deployment, you’ll need to use a production-ready database with Django. We recommend using PostgreSQL
or MySQL.

Installing and maintaining database systems is far beyond the scope of this documentation, but is very well documented
on the systems’ respective websites.

Whichever database you use, it will also require the appropriate Python adaptor to be installed:

pip install psycopg?2 # for Postgres
pip install mysqlclient # for MySQL

Refer to Django's DATABASES setting documentation for the appropriate configuration for your chosen
database backend.

18 Chapter 5. Software version requirements and release notes



http://django-treebeard.readthedocs.io
https://github.com/django-cms/djangocms-admin-style
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGE_CODE
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-DATABASES
https://docs.djangoproject.com/en/4.2/ref/databases/
http://www.postgresql.org/
http://www.mysql.com
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-DATABASES

django cms Documentation, Release 4.1.1

Confirming that you are not migrating a version 3 project

Add to settings.py:

CMS_CONFIRM_VERSION4 = True

This is to ensure that you do not accidentally run migrations on a django CMS version 3 database. This can lead to
corruption since the data structures for the CMSP1lugin models are different.

Warning: Do not add CMS_CONFIRM_VERSION4 = True to your django CMS version 3 project unless you know
what you are doing. Just running migrations can lead to data loss.

Warning: To migrate a django CMS version 3 project to version 4 you can have a look at django CMS 4 migration.
This is a third party project supposed to assist the migration from v3 to v4. It is not (yet) officially supported.

Database tables

Now run migrations to create database tables for the new applications:

python manage.py migrate

Sekizai

Django Sekizai is required by the CMS for static files management. You need to have:

"sekizai"

listed in INSTALLED_APPS, and:

"sekizai.context_processors.sekizai"

in the TEMPLATES[ 'OPTIONS'] ['context_processors']:

TEMPLATES = [

{
"OPTIONS": {

"context_processors": [
"django.template.context_processors.il8n",
"sekizai.context_processors.sekizai",

1,

}s
1

5.2. Django/Python compatibility table 19



https://github.com/Aiky30/djangocms-4-migration
https://github.com/ojii/django-sekizai

django cms Documentation, Release 4.1.1

Middleware

in your MIDDLEWARE you’ll need django.middleware.locale.LocalelMiddleware - it’s not installed in Django
projects by default.

Also add:

"django:django.middleware.locale.LocaleMiddleware", # not installed by default

"cms.middleware.user.CurrentUserMiddleware",
"cms.middleware.page.CurrentPageMiddleware",
"cms.middleware.toolbar.ToolbarMiddleware",
"cms.middleware.language.LanguageCookieMiddleware",

to the list.

You can also add 'cms.middleware.utils.ApphookReloadMiddleware
useful. If included, should be at the start of the list.

. It’s not absolutely necessary, but it’s

add the following configuration to your settings.py:

X_FRAME_OPTIONS = "SAMEORIGIN"

Context processors

Add "cms.context_processors.cms_settings" to TEMPLATES[ 'OPTIONS']['context_processors'].
Also add 'django.template.context_processors.il8n' if it’s not already present.

cms check should now be unable to identify any further issues with your project. Some additional configuration is
required however.

Further required configuration
URLs

In the project’s urls.py, add path("", include("cms.urls")) to the urlpatterns list, preferably as
il8patterns. It should come after other patterns, so that specific URLs for other applications can be detected first.

You’ll also need to have an import for django.urls.include. For example:

from django.conf.urls.il8n import il8n_patterns
from django.urls import include, path

urlpatterns = il8patterns(
path("admin/", admin.site.urls),
path("", include("cms.urls™)),

The django CMS project will now run, as you’ll see if you launch it with python manage.py runserver. You'll be
able to reach it at http://localhost:8000/, and the admin at http://localhost:8000/admin/. You won’t yet actually be able
to do anything very useful with it though.

20 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MIDDLEWARE
https://docs.djangoproject.com/en/4.2/ref/middleware/#django.middleware.locale.LocaleMiddleware
http://localhost:8000/
http://localhost:8000/admin/

django cms Documentation, Release 4.1.1

Versioning and Aliases

Compared to previous versions of django CMS, the core django CMS since version 4 has been stripped of some func-
tionality to allow for better implementations. The two most important examples are the now separate apps django CMS
versioning and django CMS alias. We highly recommend installing them both:

pip install djangocms-versioning
pip install djangocms-alias

Also add them to INSTALLED_APPS:

"djangocms_versioning",
"djangocms_alias",

Templates

django CMS requires at least one template for its pages, so you’ll need to add CMS_TEMPLATES to your settings. The
first template in the CMS_TEMPLATES list will be the project’s default template.

CMS_TEMPLATES = [
('home.html', 'Home page template'),

]

In the root of the project, create a templates directory, and in that, home .html, a minimal django CMS template:

{% load cms_tags sekizai_tags %}

<html>
<head>
<title>{% page_attribute "page_title" %}</title>
{% render_block "css" %}
</head>
<body>
{% cms_toolbar %}
{% placeholder "content" %}
{% render_block "js" %}
</body>
</html>

This is worth explaining in a little detail:
e {% load cms_tags sekizai_tags %} loads the template tag libraries we use in the template.
e {% page_attribute "page_title" %} extracts the page’s page_title attribute.

e {% render_block "css" %} and {% render_block "js" %} are Sekizai template tags that load blocks of
HTML defined by Django applications. django CMS defines blocks for CSS and JavaScript, and requires these
two tags. We recommended placing {% render_block "css" %} just before the </head> tag, and and {%
render_block "js" %} tag just before the </body>.

e {% cms_toolbar %} renders the django CMS toolbar.

e {% placeholder "content" %} defines a placeholder, where plugins can be inserted. A template needs
at least one {% placeholder %} template tag to be useful for django CMS. The name of the placeholder is
simply a descriptive one, for your reference.

Django needs to be know where to look for its templates, so add templates to the TEMPLATES[ 'DIRS'] list:

5.2. Django/Python compatibility table 21




django cms Documentation, Release 4.1.1

TEMPLATES = [
{

'DIRS': ['templates'],

3,

Note: The way we have set up the template here is just for illustration. In a real project, we’d recommend creating a
base.html template, shared by all the applications in the project, that your django CMS templates can extend.

See Django’s template language documentation for more on how template inheritance works.

Media and static file handling

A django CMS site will need to handle:
* static files, that are a core part of an application or project, such as its necessary images, CSS or JavaScript
* media files, that are uploaded by the site’s users or applications.

STATIC_URL is defined (as "/static/") in a new project’s settings by default. STATIC_ROOT, the location that static
files will be copied to and served from, is not required for development - only for production.

For now, using the runserver and with DEBUG = True in your settings, you don’t need to worry about either of these.

However, MEDIA_URL (where media files will be served) and MEDIA_ROOT (where they will be stored) need to be added
to your settings:

MEDIA_URL = "/media/"
MEDIA_ROOT = os.path.join(BASE_DIR, "media")

For deployment, you need to configure suitable media file serving. For development purposes only, the following
will work in your urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [...] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

(See the Django documentation for guidance on serving media files in production.)

Using cms check for configuration

Once you have completed the minimum required set-up described above, you can use django CMS’s built-in cms
check command to help you identify and install other components. Run:

python manage.py cms check

This will check your configuration, your applications and your database, and report on any problems.

22 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/ref/templates/language/#template-inheritance
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-STATIC_URL
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-STATIC_ROOT
https://docs.djangoproject.com/en/4.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MEDIA_URL
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MEDIA_ROOT
https://docs.djangoproject.com/en/4.2/howto/static-files/

django cms Documentation, Release 4.1.1

Note: If key components are be missing, django CMS will be unable to run the cms check command and will simply
raise an error instead.

After each of the steps below run cms check to verify that you have resolved that item in its checklist.

Adding content-handling functionality

You now have the basics set up for a django CMS site, which is able to manage and serve up pages. However the project
so far has no plugins installed, which means it has no way of handling content in those pages. All content in django
CMS is managed via plugins. So, we now need to install some additional addon applications to provide plugins and
other functionality.

You don’t actually need to install any of these. django CMS doesn’t commit you to any particular applications for
content handling. The ones listed here however provide key functionality and are strongly recommended.

Django Filer

Django Filer provides file and image management. Many other applications also rely on Django Filer - it’s very unusual
to have a django CMS site that does not run Django Filer. The configuration in this section will get you started, but
you should refer to the Django Filer documentation for more comprehensive configuration information.

To install:

pip install django-filer\>=3.0

A number of applications will be installed as dependencies. Easy Thumbnails is required to create new versions of
images in different sizes; Django MPTT manages the tree structure of the folders in Django Filer.

Pillow, the Python imaging library, will be installed. Pillow needs some system-level libraries - the Pillow documenta-
tion describes in detail what is required to get this running on various operating systems.

Add:

"filer',
'easy_thumbnails"',

to INSTALLED_APPS.

You also need to add:

THUMBNAIL_HIGH_RESOLUTION = True

THUMBNAIL_PROCESSORS = (
'easy_thumbnails.processors.colorspace’,
'easy_thumbnails.processors.autocrop',
'filer.thumbnail_processors.scale_and_crop_with_subject_location',
'easy_thumbnails.processors.filters'

New database tables will need to be created for Django Filer and Easy Thumbnails, so run migrations:

python manage.py migrate filer
python manage.py migrate easy_thumbnails

5.2. Django/Python compatibility table 23



https://github.com/django-cms/django-filer
https://django-filer.readthedocs.io
https://github.com/SmileyChris/easy-thumbnails
https://github.com/django-mptt/django-mptt/
https://github.com/python-pillow/Pillow
https://pillow.readthedocs.io
https://pillow.readthedocs.io

django cms Documentation, Release 4.1.1

(or simply, python manage.py migrate).

Django CMS CKEditor

Django CMS CKEditor is the default rich text editor for django CMS.
Install: pip install djangocms-text-ckeditor.
Add djangocms_text_ckeditor to your INSTALLED_APPS.

Run migrations:

python manage.py migrate djangocms_text_ckeditor

Django CMS Frontend

Djangto CMS Frontend adds support for css frameworks to django CMS. By default, it comes with support of the
Bootstrap 5 framework. However, you can use it to create your own theme using your own framework.

Install: pip install djangocms-frontend and it and its subpackages to INSTALLED_APPS:

INSTALLED_APPS = [
"easy_thumbnails',
"djangocms_frontend',
"djangocms_frontend.contrib.accordion",
"djangocms_frontend.contrib.alert",
"djangocms_frontend.contrib.badge",
"djangocms_frontend.contrib.card",
"djangocms_frontend.contrib.carousel”,
"djangocms_frontend.contrib.collapse”,
"djangocms_frontend.contrib.content",
"djangocms_frontend.contrib.grid",
"djangocms_frontend.contrib.image",
"djangocms_frontend.contrib. jumbotron",
"djangocms_frontend.contrib.link",
"djangocms_frontend.contrib.listgroup",
"djangocms_frontend.contrib.media",
"djangocms_frontend.contrib.tabs",
"djangocms_frontend.contrib.utilities",

Miscellaneous plugins

There are plugins for django CMS that cover a vast range of functionality. To get started, it’s useful to be able to rely
on a set of well-maintained plugins that cover some general content management needs.

* djangocms-file
* djangocms-picture

* djangocms-video

24 Chapter 5. Software version requirements and release notes



https://github.com/django-cms/djangocms-text-ckeditor
https://github.com/django-cms/djangocms-frontend
https://github.com/django-cms/djangocms-file
https://github.com/django-cms/djangocms-picture
https://github.com/django-cms/djangocms-video

django cms Documentation, Release 4.1.1

* djangocms-googlemap
* djangocms-snippet
* djangocms-style

To install:

pip install djangocms-file djangocms-picture djangocms-video djangocms-googlemap..
—.djangocms-snippet djangocms-style

and add:

"djangocms_file",
"djangocms_picture",
"djangocms_video",
"djangocms_googlemap",
"djangocms_snippet",
"djangocms_style",

to INSTALLED_APPS.

Then run migrations:

python manage.py migrate

These and other plugins are described in more detail in Some commonly-used plugins.

o

django ({3

Add your first page

Welcome to django CMS version 4.1.0rc4.

to the system to continue.

5.2. Django/Python compatibility table

25



https://github.com/django-cms/djangocms-googlemap
https://github.com/django-cms/djangocms-snippet
https://github.com/django-cms/djangocms-style

django cms Documentation, Release 4.1.1

Next steps

If this is your first django CMS project, read through the user guide for a walk-through of some basics.

The tutorials for developers will help you understand how to approach django CMS as a developer. Note that the
tutorials assume you have installed the CMS using the django CMS quickstart project, but with a little adaptation
you’ll be able to use it as a basis.

To deploy your django CMS project on a production web server, please refer to the Django deployment documentation.

Templates & Placeholders

In this tutorial we’ll introduce Placeholders, and we’re also going to show how you can make your own HTML templates
CMS-ready.

Templates

You can use HTML templates to customise the look of your website, define Placeholders to mark sections for managed
content and use special tags to generate menus and more.

You can define multiple templates, with different layouts or built-in components, and choose them for each page as
required. A page’s template can be switched for another at any time.

You’ll find the site’s templates in django-cms-quickstart/backend/templates.

By default, pages in your site will use the fullwidth.html template, the first one listed in the project’s settings.py
CMS_TEMPLATES tuple:

CMS_TEMPLATES = [
# a minimal template to get started with
('minimal.html', 'Minimal template'),

# optional templates that extend base.html, to be used with Bootstrap 5
('bootstrap5.html', 'Bootstrap 5 Demo'),

('whitenoise-static-files-demo.html', 'Static File Demo'),

Placeholders

Placeholders are an easy way to define sections in an HTML template that will be filled with content from the database
when the page is rendered. This content is edited using django CMS’s frontend editing mechanism, using Django
template tags.

fullwidth.html contains a single placeholder, {% placeholder "content" %}.
You’ll also see {% load cms_tags %} in that file - cms_tags is the required template tag library.
If you’re not already familiar with Django template tags, you can find out more in the Django documentation.

Add a couple of new placeholders to fullwidth.html, {¥ placeholder "feature" %} and {% placeholder
"splashbox" %} inside the {% block content %} section. For example:

26 Chapter 5. Software version requirements and release notes



https://user-guide.django-cms.org
https://docs.djangoproject.com/en/4.2/howto/deployment/
https://docs.djangoproject.com/en/dev/topics/templates/

django cms Documentation, Release 4.1.1

{% block content %}
{% placeholder "feature" %}
{% placeholder "content" %}
{% placeholder "splashbox" %}
{% endblock content %}

If you switch to Structure mode (button in the upper-right corner of the page), you’ll see the new placeholders available
for use.

Feature + =
Text Welcome to django... Va =
Content + | =
» Multi Columns 3 columns S+ =
Splashbox + =

Drop a plugin here

Static Aliases

The content of the placeholders we’ve encountered so far is different for every page. Sometimes though you’ll want to
have a section on your website which should be the same on every single page, such as a footer block.

You could hard-code your footer into the template, but it would be nicer to be able to manage it through the CMS. This
is what static aliases are for. You need to install the django CMS alias package to use static aliases:

pip install djangocms-alias

Do not forget to add djangocms_alias to your INSTALLED_APPS in settings.py.

Static aliases are an easy way to display the same content on multiple locations on your website. Static placeholders
act almost like normal placeholders, except for the fact that once a static placeholder is created and you added content
to it, it will be saved globally. Even when you remove the static placeholders from a template, you can reuse them later.

So let’s add a footer to all our pages. Since we want our footer on every single page, we should add it to our base
template (mysite/templates/base.html). Place it near the end of the HTML <body> element:

{% load djangocms_alias_tags %}

<footer>
{% static_alias 'footer' %}
</footer>

{% render_block "js" %}
</body>

5.2. Django/Python compatibility table 27




django cms Documentation, Release 4.1.1

Save the template and return to your browser. Refresh any page in Structure mode, then go to the “Aliases..” entry in
the site menu and you’ll see the new static alias listed in its category “Static alias”.

introduction/images/static-alias.png

Note: Like editing of pages and aliases publishing is independent.

If you add some content to the new static placeholder in the usual way, you’ll see that it appears on your site’s other
pages too.

Rendering Menus

In order to render the CMS’s menu in your template you can use the show_menu tag.

Any template that uses show_menu must load the CMS’s menu_tags library first:

{% load menu_tags %}

The menu we use in mysite/templates/base.html is:

<ul class="nav'">
{% show_menu 0 100 100 100 %}
</ul>

The options control the levels of the site hierarchy that are displayed in the menu tree - but you don’t need to worry
about exactly what they do at this stage.

Next we’ll look at Integrating applications.

Integrating applications
All the following sections of this tutorial are concerned with different ways of integrating other applications into django
CMS. The ease with which other applications can be built into django CMS sites is an important feature of the system.

Integrating applications doesn’t merely mean installing them alongside django CMS, so that they peacefully co-exist.
It means using django CMS’s features to build them into a single coherent web project that speeds up the work of
managing the site, and makes possible richer and more automated publishing.

It’s key to the way that django CMS integration works that it doesn’t require you to modify your other applications
unless you want to. This is particularly important when you’re using third-party applications and don’t want to have to
maintain your own forked versions of them. (The only exception to this is if you decide to build django CMS features
directly into the applications themselves, for example when using placeholders in other applications.)

For this tutorial, we’re going to take a basic Django opinion poll application and integrate it into the CMS.
So we will:

* incorporate the Polls application into the project

* create a second, independent, Polls/CMS Integration application to manage the integration

This way we can integrate the Polls application without having to change anything in it.

28 Chapter 5. Software version requirements and release notes



https://github.com/divio/django-polls

django cms Documentation, Release 4.1.1

Incorporate the polls application
Install polls

Install the application from its GitHub repository using pip:

pip install git+http://git@github.com/divio/django-polls.git#egg=polls

Let’s add this application to our project. Add 'polls’ to the end of INSTALLED_APPS in your project’s settings.py
(see the note on The INSTALLED_APPS setting about ordering ).

Add the poll URL configuration to urlpatterns in the project’s urls.py:

urlpatterns += il8n_patterns(
re_path(r'*admin/', include(admin.site.urls)),
re_path(r'*polls/"', include('polls.urls')),
re_path(r'~A', include('cms.urls")),

)

Note that it must be included before the line for the django CMS URLs. django CMS’s URL pattern needs to be last,
because it “swallows up” anything that hasn’t already been matched by a previous pattern.

Now run the application’s migrations:

python manage.py migrate polls

At this point you should be able to log in to the Django admin - http://localhost:8000/admin/ - and find the
Polls application.

Polls
Choices + Add # Change
Polls + Add # Change

Create a new Poll, for example:
e Question: Which browser do you prefer?
Choices:
— Safari
— Firefox
— Chrome

Now if you visit http://localhost:8000/en/polls/, you should be able to see the poll and submit a response.

Which browser do you prefer?

O Safari
O Firefox
O Chrome
| vote |

5.2. Django/Python compatibility table 29




django cms Documentation, Release 4.1.1

Improve the templates for Polls

You’ll have noticed that in the Polls application we only have minimal templates, and no navigation or styling.

Our django CMS pages on the other hand have access to a number of default templates in the project, all of which
extend one called base.html. So, let’s improve this by overriding the polls application’s base template.

We'll do this in the project directory.

Inmysite/templates, add polls/base.html, containing:

{% extends 'base.html' %}

{% block content %}
{% block polls_content %}
{% endblock %}

{% endblock %}

Refresh the /polls/ page again, which should now be properly integrated into the site.

Project name

Which browser do you prefer?

() Safari
() Firefox
O Ghrome

[Vote |

Set up a hew polls_cms_integration application

So far, however, the Polls application has been integrated into the project, but not into django CMS itself. The two
applications are completely independent. They cannot make use of each other’s data or functionality.

Let’s create the new Polls/CMS Integration application where we will bring them together.

Create the application

Create a new package at the project root called polls_cms_integration:

python manage.py startapp polls_cms_integration

Our workspace now looks like this:

tutorial-project/

media/

mysite/

polls_cms_integration/ # the newly-created application
__init__.py
admin.py
models.py
migrations.py
tests.py
views.py

(continues on next page)

30 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

static/
manage . py
project.db
requirements.txt

Add it to INSTALLED_APPS

Next is to integrate the polls_cms_integration application into the project.

Add polls_cms_integration to INSTALLED_APPS in settings.py - and now we’re ready to use it to begin inte-
grating Polls with django CMS. We’ll start by developing a Polls plugin.

Note: Adding templates to the project or to the application?

Earlier, we added new templates to the project. We could equally well have have added templates/polls/base.
html inside polls_cms_integration. After all, that’s where we’re going to be doing all the other integration work.

However, we’d now have an application that makes assumptions about the name of the template it should extend (see
the first line of the base.html template we created) which might not be correct for a different project.

Also, we’d have to make sure that polls_cms_integration came before polls in INSTALLED_APPS, otherwise the
templates in polls_cms_integration would not in fact override the ones in polls. Putting them in the project
guarantees that they will override those in all applications.

Either way of doing it is reasonable, as long as you understand their implications.

Plugins

In this tutorial we’re going to take a basic Django opinion poll application and integrate it into the CMS.

Create a plugin model

In the models.py of polls_cms_integration add the following:

from django.db import models
from cms.models import CMSPlugin
from polls.models import Poll

class PollPluginModel (CMSPlugin):
poll = models.ForeignKey(Poll, on_delete-=models.CASCADE)

def __str__(self):

return self.poll.question

This creates a plugin model class; these all inherit from the cms.models.pluginmodel.CMSPlugin base class.

Note: django CMS plugins inherit from cms.models.pluginmodel.CMSPlugin (or a sub-class thereof) and not
models.Model.

5.2. Django/Python compatibility table 31



https://docs.djangoproject.com/en/4.2/ref/models/instances/#django.db.models.Model

django cms Documentation, Release 4.1.1

Create and run migrations:

python manage.py makemigrations polls_cms_integration
python manage.py migrate polls_cms_integration

The Plugin Class

Now create a new file cms_plugins.py in the same folder your models.py is in. The plugin class is responsible for
providing django CMS with the necessary information to render your plugin.

For our poll plugin, we’re going to write the following plugin class:

from cms.plugin_base import CMSPluginBase

from cms.plugin_pool import plugin_pool

from polls_cms_integration.models import PollPluginModel
from django.utils.translation import gettext as _

@plugin_pool.register_plugin # register the plugin

class PollPluginPublisher (CMSPluginBase):
model = PollPluginModel # model where plugin data are saved
module = _("Polls™)
name = _("Poll Plugin") # name of the plugin in the interface
render_template = "polls_cms_integration/poll_plugin.html"

def render(self, context, instance, placeholder):
context.update({"instance": instance})
return context

Note: All plugin classes must inherit from cms.plugin_base.CMSPluginBase and must register themselves with
the plugin_pool.

A reasonable convention for plugin naming is:
e PollPluginModel: the model class
e PollPluginPublisher: the plugin class
A second convention is also countered quite frequently:
* Poll: the model class
e PollPlugin: the plugin class

You don’t need to follow either of those convention, but choose one that makes sense and stick to it.

32 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

The template

The render_template attribute in the plugin class is required, and tells the plugin which render_template to use
when rendering.

In this case the template needs to be at polls_cms_integration/templates/polls_cms_integration/
poll_plugin.html and should look something like this:

<h1>{{ instance.poll.question }}</hl>

<form action="{% url 'polls:vote' instance.poll.id %}" method="post">
{% csrf_token %}
<div class="form-group'">
{% for choice in instance.poll.choice_set.all %}
<div class="radio">
<label>
<input type="radio" name="choice" value="{{ choice.id }}">
{{ choice.choice_text }}
</label>
</div>
{% endfor %}
</div>
<input type="submit" value="Vote" />
</form>

Test the plugin
Now you can restart the runserver (required because you added the new cms_plugins. py file, and visit http://localhost:
8000/.

You can now drop the Poll Plugin into any placeholder on any page, just as you would any other plugin.

Add plugin to placeholder "Feature" - 0O %
Generic

Google Map

Inherit Plugins from Page

Link

Style

Text

Multi Columns

Multi Columns

Polls

Poll Plugin

Next we’ll integrate the Polls application more fully into our django CMS project.

5.2. Django/Python compatibility table 33



http://localhost:8000/
http://localhost:8000/

django cms Documentation, Release 4.1.1

Apphooks

Right now, our Django Polls application is statically hooked into the project’s urls.py. This is all right, but we can
do more, by attaching applications to django CMS pages.

Create an apphook

We do this with an apphook, created using a CMSApp sub-class, which tells the CMS how to include that application.

Create the apphook class

Apphooks live in a file called cms_apps.py, so create one in your PollssfCMS Integration application, i.e. in
polls_cms_integration.

This is a very basic example of an apphook for a django CMS application:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

@apphook_pool.register # register the application
class PollsApphook (CMSApp):

app_name = "polls"
name = "Polls Application"
def get_urls(self, page=None, language=None, **kwargs):

return ["polls.urls"]

Alternatively, you can also specify the URL patterns directly, for instance:

from django.urls import path
from polls import views

class PollsApphook (CMSApp):

def get_urls(self, page=None, language=None, **kwargs):
return [
path("<int:pk>/results/", views.ResultsView.as_view(), name=
< '"results"),
path("<int:pk>/vote/", views.vote, name="vote"),
path("<int:pk>/", views.DetailView.as_view(), name="detail"),
path("", views.IndexView.as_view(), name="index"),

In this Pol1sApphook class, we have done several key things:

* app_name this optional attribute gives the system a unique way to refer to the apphook. It is used the create a
reverse mapping for the URL’s namespace.

34 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

* name is a human-readable name, and will be displayed to the user in the Advanced settings of the CMS pages
attaching to this apphook.

* get_urls() method is what actually hooks the application in, returning a list of URL configurations that will
be made active wherever the apphook is used - in this case, it will either use the urls. py from polls, or declare
its own list of URL patterns.

Remove the old polls entry from the project’s urls.py

You must now remove the entry for the Polls application:

path('polls/', include('polls.urls', namespace='polls'))

from your project’s urls.py.

Not only is it not required there, because we reach the polls via the apphook instead, but if you leave it there, it will
conflict with the apphook’s URL handling. You’ll receive a warning in the logs:

URL namespace 'polls' isn't unique. You may not be able to reverse all URLs in this.
—snamespace.

Restart the runserver

Restart the runserver. This is necessary because we have created a new file containing Python code that won’t be
loaded until the server restarts. You have to restart the server each time you want to apply a modification made to this
file or any views attached to thereof.

Restarting the server after a change can be prevented, if the cms.middleware.utils.ApphookReloadMiddleware has been
added to the MIDDLEWARE in your settings.py.

Apply the apphook to a page

Now we need to create a new page, and attach the Polls application to it through this apphook.

Create and save a new page.

Note: Your apphook only will work for languages you have created a page content object.

In its Advanced settings (from the toolbar, select Page > Advanced settings...) choose “Polls Application” from the
Application pop-up menu, and save once more.

APPLICATION:

Polls Application L 4

Hook application to this page.

APPLICATION INSTANCE NAME:

polls

Refresh the page, and you’ll find that the Polls application is now available directly from the new django CMS page.

Important: Don’t add child pages to a page with an apphook.

5.2. Django/Python compatibility table 35




django cms Documentation, Release 4.1.1

The apphook “swallows” all URLs below that of the page, handing them over to the attached application. If you have
any child pages of the apphooked page, django CMS will not be able to serve them reliably.

Extending the toolbar

django CMS allows you to control what appears in the toolbar. This allows you to integrate your application in the
frontend editing mode of django CMS and provide your users with a streamlined editing experience.

In this section of the tutorial, we will add a new Polls menu to the toolbar.

Add a basic PollToolbar class

We’ll add various controls to the toolbar, using a cms . toolbar_base.CMSToolbar sub-class.

Add a menu to the toolbar

Start by adding a new file, cms_toolbars.py, to your Polls/CMS Integration application, and create the CMSToolbar
class:

from cms.toolbar_base import CMSToolbar
from cms.toolbar_pool import toolbar_pool
from polls.models import Poll

class PollToolbar(CMSToolbar):

def populate(self):
self.toolbar.get_or_create_menu(
'polls_cms_integration-polls', # a unique key for this menu
'Polls’, # the text that should appear in the menu
)

# register the toolbar
toolbar_pool.register(PollToolbar)

Note: Don’t forget to restart the runserver to have your new cms_toolbars.py file recognised.

You will now find, in every page of the site, a new item in the toolbar:

django example.com Page F’glls Language Create m

The populate () method is what gets called when the toolbar is built. In it, we’re using get_or_create_menu() to
add a Polls item to the toolbar.

36 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Add nodes to the Polls menu

So far, the Polls menu is empty. We can extend populate() to add some items. get_or_create_menu returns a
menu that we can manipulate, so let’s change the populate() method to add an item that allows us to see the full list
of polls in the sideframe, with add_sideframe_item().

from cms.utils.urlutils import admin_reverse

[...]

class PollToolbar(CMSToolbar):

def populate(self):
menu = self.toolbar.get_or_create_menu('polls_cms_integration-polls', 'Polls')

menu.add_sideframe_item(
name="'Poll list', # name of the new menu item
url=admin_reverse('polls_poll_changelist'), # the URL it should open with
)

After refreshing the page to load the changes, you can now see the list of polls directly from the menu.

Also useful would be an option to create new polls. We'll use a modal window for this, invoked with
add_modal_item(). Add the new code to the end of the populate() method:

class PollToolbar(CMSToolbar):

def populate(self):
[...]

menu.add_modal_item(
name='Add a new poll', # name of the new menu item
url=admin_reverse('polls_poll_add'), # the URL it should open with

Add buttons to the toolbar

As well as menus, you can add buttons to the toolbar in a very similar way. Rewrite the populate () method, noting
how closely the structure of this code matches that for adding menus.

def populate(self):
buttonlist = self.toolbar.add_button_list()

buttonlist.add_sideframe_button(
name='Poll list',
url=admin_reverse('polls_poll_ changelist'),

)

buttonlist.add_modal_button(
name="'Add a new poll',
url=admin_reverse('polls_poll_add"),

5.2. Django/Python compatibility table 37




django cms Documentation, Release 4.1.1

Further refinements

The buttons and menu for Polls appear in the toolbar everywhere in the site. It would be useful to restrict this to pages
that are actually relevant.

The first thing to add is a test right at the start of the populate () method:

def populate(self):

if not self.is_current_app:
return

The is_current_app flag tells us if the function handling this view (e.g. the list of polls) belongs to the same appli-
cation as the one responsible for this toolbar menu.

Often, this can be detected automatically, but in this case, the view belongs to the polls application, whereas the
toolbar menu belongs to polls_cms_integration. So, we need to tell the Pol1Toolbar class explicitly that it’s
actually associated with the polls application:

class PollToolbar(CMSToolbar):

supported_apps = ['polls']

Now, the buttons/menu will only appear in relevant pages.

The complete cms_toolbars.py

For completeness, here is the full example:

from cms.utils.urlutils import admin_reverse
from cms.toolbar_base import CMSToolbar
from cms.toolbar_pool import toolbar_pool
from polls.models import Poll

class PollToolbar(CMSToolbar):
supported_apps = ['polls']
def populate(self):

if not self.is_current_app:
return

menu = self.toolbar.get_or_create_menu('polls_cms_integration-polls', 'Polls')
menu.add_sideframe_item(

name="'Poll list',

url=admin_reverse('polls_poll_changelist'),

)

menu.add_modal_item(

(continues on next page)

38 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

name=("'Add a new poll'),
url=admin_reverse('polls_poll_add'),
)

buttonlist = self.toolbar.add_button_list()

buttonlist.add_sideframe_button(
name="'Poll list',
url=admin_reverse('polls_poll_changelist'),

)

buttonlist.add_modal_button(
name="Add a new poll',
url=admin_reverse('polls_poll_add"),
)

toolbar_pool.register(PollToolbar) # register the toolbar

This is just a basic example, and there’s a lot more to django CMS toolbar classes than this - see How fo extend the
Toolbar for more.

Extending the navigation menu

You may have noticed that while our Polls application has been integrated into the CMS, with plugins, toolbar menu
items and so on, the site’s navigation menu is still only determined by django CMS Pages.

We can hook into the django CMS menu system to add our own nodes to that navigation menu.

Create the navigation menu

We create the menu using a CMSAttachMenu sub-class, and use the get_nodes () method to add the nodes.

For this we need a file called cms_menus. py in our application. Add cms_menus.py in polls_cms_integration/:

from django.urls import reverse
from django.utils.translation import gettext_lazy as _

from cms.menu_bases import CMSAttachMenu
from menus.base import NavigationNode
from menus.menu_pool import menu_pool

from polls.models import Poll

class PollsMenu(CMSAttachMenu) :
name = _("Polls Menu") # give the menu a name this is required.

def get_nodes(self, request):

This method is used to build the menu tree.

i

(continues on next page)

5.2. Django/Python compatibility table 39




django cms Documentation, Release 4.1.1

(continued from previous page)

nodes = []
for poll in Poll.objects.all():
node = NavigationNode(
title=poll.question,
url=reverse(''polls:detail", args=(poll.pk,)),
id=poll.pk, # unique id for this node within the menu
)
nodes. append(node)
return nodes

menu_pool.register_menu(PollsMenu)

What’s happening here:
* we define a Pol1lsMenu class, and register it
* we give the class a name attribute (will be displayed in admin)
¢ inits get_nodes () method, we build and return a list of nodes, where:
* first we get all the Poll objects
e ... and then create a NavigationNode object from each one
e ... and return a list of these NavigationNodes

This menu class won’t actually do anything until attached to a page. In the Advanced settings of the page to which you
attached the apphook earlier, select “Polls Menu” from the list of Attached menu options, and save once more. (You
could add the menu to any page, but it makes most sense to add it to this page.)

ATTACHED MENU:

Polls Menu

You can force the menu to be added automatically to the page by the apphook if you consider this appropriate. See
Adding menus to apphooks for information on how to do that.

Note: The point here is to illustrate the basic principles. In this actual case, note that:
* If you're going to use sub-pages, you’ll need to improve the menu styling to make it work a bit better.

* Since the Polls page lists all the Polls in it anyway, this isn’t really the most practical addition to the menu.

Content creation wizards

Content creation wizards allow you to make use of the toolbar’s Create button in your own applications. It opens up a
simple dialog box with the basic fields required to create a new item.

django CMS uses it for creating Pages, but you can add your own models to it.

In the polls_cms_integration application, add a forms. py file:

from django import forms

from polls.models import Poll

(continues on next page)

40 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

class PollWizardForm(forms.ModelForm) :
class Meta:
model = Poll
exclude = []

Then add a cms_wizards.py file, containing:

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

from polls_cms_integration.forms import PollWizardForm

class PollWizard(Wizard):
pass

poll_wizard = PollWizard(
title="Poll",
weight=200, # determines the ordering of wizards in the Create dialog
form=PollWizardForm,
description="Create a new Poll",

)

wizard_pool.register(poll_wizard)

Refresh the Polls page, hit the Create button in the toolbar - and the wizard dialog will open, offering you a new wizard
for creating Polls.

Note: Once again, this particular example is for illustration only. In the case of a Poll, with its multiple Questions
associated with it via foreign keys, we really want to be able to edit those questions at the same time too.

That would require a much more sophisticated form and processing than is possible within the scope of this tutorial.

If you want to install django CMS into an existing project, or prefer to configure django CMS by hand, rather than using
the django CMS quistart project, see Installing django CMS and then follow the rest of the tutorials.

Either way, you’ll be able to find support and help from the numerous friendly members of the django CMS community
on our Discord server.

5.2.2 Explanation

This section explains and analyses some key concepts in django CMS. It’s less concerned with explaining how fo do
things than with helping you understand how it works.

5.2. Django/Python compatibility table 41



https://www.django-cms.org/discord

django cms Documentation, Release 4.1.1

Plugins

See also:
* Plugins how-to guide

CMS Plugins are reusable content publishers that can be inserted into django CMS pages (or indeed into any content that
uses django CMS placeholders). They enable the publishing of information automatically, without further intervention.

This means that your published web content, whatever it is, is kept up-to-date at all times.
It’s like magic, but quicker.

Unless you’re lucky enough to discover that your needs can be met by the built-in plugins, or by the many available
third-party plugins, you’ll have to write your own custom CMS Plugin.

Why would you need to write a plugin?

A plugin is the most convenient way to integrate content from another Django application into a django CMS page.

For example, suppose you're developing a site for a record company in django CMS. You might like to have a “Latest
releases” box on your site’s home page.

Of course, you could every so often edit that page and update the information. However, a sensible record company
will manage its catalogue in Django too, which means Django already knows what this week’s new releases are.

This is an excellent opportunity to make use of that information to make your life easier - all you need to do is create
a django CMS plugin that you can insert into your home page, and leave it to do the work of publishing information
about the latest releases for you.

Plugins are reusable. Perhaps your record company is producing a series of reissues of seminal Swiss punk records;
on your site’s page about the series, you could insert the same plugin, configured a little differently, that will publish
information about recent new releases in that series.

Components of a plugin

A django CMS plugin is fundamentally composed of three components, that correspond to Django’s familiar Model-
View-Template scheme:

What Function Subclass of
model (if required) | plugin instance configuration | CMSPlugin
view display logic CMSPluginBase
template rendering -

CMSPlugin

The plugin model, the sub-class of cms.models.pluginmodel.CMSPlugin, is optional.
You could have a plugin that doesn’t need to be configured, because it only ever does one thing.

For example, you could have a plugin that only publishes information about the top-selling record of the past seven
days. Obviously, this wouldn’t be very flexible - you wouldn’t be able to use the same plugin for the best-selling release
of the last month instead.

Usually, you find that it is useful to be able to configure your plugin, and this will require a model.

42 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

CMSPluginBase

cms.plugin_base.CMSPluginBase is actually a sub-class of django.contrib.admin.ModelAdmin.

Because CMSPluginBase sub-classes ModelAdmin several important ModelAdmin options are also available to CMS
plugin developers. These options are often used:

e exclude

e fields

e fieldsets

e form

» formfield_ overrides
e inlines

e radio_fields

e raw_id_fields

e readonly_fields

Please note, however, that not all ModelAdmin options are effective in a CMS plugin. In particular, any options that
are used exclusively by the ModelAdmin’s changelist will have no effect. These and other notable options that are
ignored by the CMS are:

* actions

* actions_on_top

e actions_on_bottom

* actions_selection_counter
e date_hierarchy

e list_display

e list_display_links

e list_editable

e list_filter

e list_max_show_all

e list_per_page

ordering

* paginator

prepopulated_fields

preserve_fields
* save_as
* save_on_top

e search_fields

show_full_result_count

* view_on_site

5.2. Django/Python compatibility table 43


https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin

django cms Documentation, Release 4.1.1

Application hooks (“apphooks”)
An Application Hook, usually simply referred to as an apphook, is a way of attaching the functionality of some other
application to a django CMS page. It’s a convenient way of integrating other applications into a django CMS site.

For example, suppose you have an application that maintains and publishes information about Olympic records. You
could add this application to your site’s urls.py (before the django CMS URLSs pattern), so that users will find it at
/records.

However, although it would thus be integrated into your project, it would not be fully integrated into django CMS, for
example:

¢ django CMS would not be aware of it, and - for example - would allow your users to create a CMS page with the
same /records slug, that could never be reached.

» The application’s pages won’t automatically appear in your site’s menus.

* The application’s pages won’t be able to take advantage of the CMS’s publishing workflow, permissions or other
functionality.

Apphooks offer a more complete way of integrating other applications, by attaching them to a CMS page. In this case,
the attached application takes over the page and its URL (and all the URLSs below it, such as /records/1984).

The application can be served at a URL defined by the content managers, and easily moved around in the site structure.

The Advanced settings of a CMS page provides an Application field. Adding an apphook class to the application will
allow it to be selected in this field.

Multiple apphooks per application

It’s possible for an application to be added multiple times, to different pages. See Attaching an application multiple
times for more.

Also possible to provide multiple apphook configurations:

Apphook configurations

You may require the same application to behave differently in different locations on your site. For example, the Olympic
Records application may be required to publish athletics results at one location, but cycling results at another, and so
on.

An apphook configuration class allows the site editors to create multiple configuration instances that specify the be-
haviour. The kind of configuration available is presented in an admin form, and determined by the application developer.

Important: It’s important to understand that an apphook (and therefore also an apphook configuration) serves no
function until it is attached to a page - and until the page is published, the application will be unable to fulfil any
publishing function.

Also note that the apphook “swallows” all URLs below that of the page, handing them over to the attached application.
If you have any child pages of the apphooked page, django CMS will not be able to serve them reliably.

44 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Publishing

Without an additional package installed that supports versioning all django CMS pages are published by default. This
means they are visible to the public the moment you save them. Accordingly, all changes you make are visible imme-
diately.

djangocms-versioning is a general purpose package that manages versions within different categories, like published,
draft, unpublished, or archived. django CMS, however, is not restricted to work with djangocms-versioning. You
can use other versioning packages or come up with your own either from scratch or by forking djangocms-versioning.

This section gives a short introduction on how to work with djangocms-versioning. For details please consult the
djangocms-versioning documentation.

Also, while this section focuses on pages, djangocms-versioning can lend its versioning capabilities to other objects,
too, e.g., aliases as defined in djangocms-alias.

Version states

Each Page object can have many PageContent objects assigned actually containing the page’s content (hence the
name) in a specific language. Djangocms-versioning extends this relationship by allowing more PageContent objects
to carry a version number and version state. The states are:

e draft: This is the version which currently can be edited. Only draft versions can be edited and only one draft
version per language is allowed. Changes made to draft pages are not visible to the public.

* published: This is the version currently visible on the website to the public. Only one version per language can
be public. It cannot be changed. If it needs to be changed a new draft is created based on a published page and
the published page stays unchanged.

* unpublished: This is a version which was published at one time but now is not visible to the public any more.
There can be many unpublished versions.

« archived: This is a version which has not been published and therefore has never been visible to the public. It
represents a state which is intended to be used for later work (by reverting it to a draft state).

Each new draft version will generate a new version number.

Version states and transitions

edit publish archive
— revert

unpublish

5.2. Django/Python compatibility table 45


https://github.com/django-cms/djangocms-versioning
https://django-cms-docs.readthedocs.io/

django cms Documentation, Release 4.1.1

When a page is published, it is publicly visible even if its parent pages are not published.

Code and PageContent

When handling PageContent in code, you’ll generally only “see” published pages:

PageContent.objects.filter(language="en'") # get all published English page contents

will only give published pages. This is to ensure that no draft or unpublished versions leaks or become visible to the
public.

Since often draft page contents are the ones you interact with in the admin interface, or in draft mode in the CMS
frontend, djangocms-versioning introduces an additional model manager for the PageContents which may only be
used on admin sites and admin forms:

PageContent.admin_manager.filter(page=my_page, language="en")

will retrieve page content objects of all versions. Alternatively, to get the current draft version you can to filter the
Version object:

from djangocms_versioning.constants import DRAFT
from djangocms_versioning.models import Version

version = Version.objects.get(content__page=my_page, content__language="en",.
—.status=DRAFT)
draft_content = Version.content

Finally, there are instance where you want to access the “current” version of a page. This is either the current draft
version or - there is no draft - the published version. You can easily achieve this by using:

for content in PageContent.admin_manager.filter(page=my_page).current_content():
# iterates over the current (draft or published) version of all languages of my page
if content.versions.first().state == DRAFT:
# do something

For more details see the documentation of djangocms-versioning!

Serving content in multiple languages

Basic concepts

django CMS has a sophisticated multilingual capability. It is able to serve content in multiple languages, with fallbacks
into other languages where translations have not been provided. It also has the facility for the user to set the preferred
language and so on.

46 Chapter 5. Software version requirements and release notes



https://djangocms-versioning.readthedocs.io

django cms Documentation, Release 4.1.1

How django CMS determines the user’s preferred language

django CMS determines the user’s language the same way Django does it.
* the language code prefix in the URL
* the language set in the session
* the language in the language cookie
* the language that the browser says its user prefers
It uses the django built in capabilities for this.

By default no session and cookie are set. If you want to enable this wuse the
cms.middleware.language.Language CookieMiddleware to set the cookie on every request.

How django CMS determines what language to serve

Once it has identified a user’s language, it will try to accommodate it using the languages set in CMS_LANGUAGES.

If fallbacks is set, and if the user’s preferred language is not available for that content, it will use the fallbacks
specified for the language in CMS_LANGUAGES.

What django CMS shows in your menus

If hide_untranslated is True (the default) then pages that aren’t translated into the desired language will not appear
in the menu.

Internationalisation

django CMS excels in its multilingual support, and can be configured to handle a vast range of different requirements.
Its behaviour is flexible and can be controlled at a granular level in CMS_LANGUAGES. Other Internationalisation and
localisation (I18N and LI0ON) settings offer further control.

See How to serve multiple languages on how to set up a multilingual django CMS project.

URLs

Multilingual URLSs require the use of 118n_patterns(). For more information about this see the official Django
documentation on the subject. Multilingual URLs describes what you need to do in a django CMS project.

How django CMS determines which language to serve

django CMS uses a number of standard Django mechanisms to choose the language for the user, in the following order
of preference:

* language code in the URL - for example, http://example.com/de (when multilingual URLs are enabled)
* language stored in the browsing session
* language stored in a cookie from a previous session

* language requested by the browser in the Accept-Language header

5.2. Django/Python compatibility table 47


https://docs.djangoproject.com/en/4.2/topics/i18n/translation/#django.conf.urls.i18n.i18n_patterns
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns

django cms Documentation, Release 4.1.1

* the default LANGUAGE_CODE in the site’s settings

More in-depth documentation about this is available at https://docs.djangoproject.com/en/dev/topics/il 8n/translation/
#how-django-discovers-language-preference

Permissions

The django CMS permissions system is flexible, granular and multi-layered.

Permission modes

Permissions operate in two different modes, depending on the CMS_PERMISSION setting.

* Simple permissions mode (CMS_PERMISSION = False): only the standard Django Users and Groups permis-
sions will apply. This is the default.

» Page permissions mode (CMS_PERMISSION = True): as well as standard Django permissions, django CMS
provides row-level permissions on pages, allowing you to control the access of users to different sections of a
site, and sites within a multi-site project.

Key user permissions

You can find the permissions you can set for a user or groups in the Django admin, in the Authentication and Autho-
rization section. These apply equally in Simple permissions mode and Page permissions mode.

Filtering by cms will show the ones that belong to the CMS application. Permissions that a CMS editor will need are
likely to include:

e cms | cms plugin

e cms | page

e cms | placeholder

e cms | placeholder reference
e cms | static placeholder

e cms | placeholder reference
e cms | title

Most of these offer the usual add/change/delete options, though there are some exceptions, such as cms |
placeholder | Can use Structure mode.

See Use permissions on Groups, not on Users below on applying permissions to groups rather than users.

Permissions in Page permissions mode

In Page permissions mode, you also need to give users permission to the right pages and sub-sites.

48 Chapter 5. Software version requirements and release notes


https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference

django cms Documentation, Release 4.1.1

Global and per-page permissions

This can be done in two ways, globally or per-page.

Global page permissions apply to all pages (or all pages on a sub-site in a multi-site project). Global page permissions
are managed in the admin at django CMS > Pages global permissions.

Per-page permissions apply to a specific page and/or its children and/or its descendants. Per-page permissions are
managed via the toolbar (Page > Permissions) when on the page in question, in edit mode.

Your users (unless they are Django superusers) will need at least one of global page permissions or per-page permissions
granted to them in order to be able to edit any pages at all.

They will also need appropriate user permissions, otherwise they will have no edit rights to pages.

Page permission options

Both global page permissions and per-page permissions can be assigned to users or groups of users. They include:
e Can add
* Can edit
* Can delete
* Can publish
e Can change advanced settings
* Can change permissions
* Can move

Even though a user may have Can edit permissions on a page, that doesn’t give them permissions to add
or change plugins within that page. In order to be able to add/change/delete plugins on any page, you will
need to go through the standard Django permissions to provide users with the actions they can perform,
for example:

e cms | page | Can publish page to publish it

e cms | cms plugins | Can edit cms plugin to edit plugins on the page

Per-page permissions

Per-page permissions are controlled by selecting Permissions from the Page menu in the toolbar when on the page (this
options is only available when CMS_PERMISSION mode is on).

Login required determines whether anonymous visitors will be able to see the page at all.

Menu visibility determines who’ll be able to see the page in navigation menus - everyone, or logged in or anonymous
users only.

View restrictions determine which groups and users will be able to see the page when it is published. Adding a view
restriction will allow you to set this. Note that this doesn’t apply any restrictions to users who are also editors with
appropriate permissions.

Page permissions determine what editors can do to a page (or hierarchy of pages). They are described above in Page
permission options.

5.2. Django/Python compatibility table 49



django cms Documentation, Release 4.1.1

New admin models

When CMS_PERMISSION is enabled, as well as Pages global permissions you will find two new models available in the
CMS admin:

* User groups (page)
* Users (page)

You will find that the latter two simply reflect the Django Groups and User permissions that already exist in the system,
and can be ignored.

Permission strategies

For a simple site with only a few users you may not need to be concerned about this, but with thousands of pages
belonging to different departments and users with greatly differing levels of authority and expertise, it is important to
understand who is able to do what on your site.

Use permissions on Groups, not on Users

Avoid applying permissions to individual users unless strictly necessary. It’s far better to apply them to Groups, and
add Users to Groups. Otherwise, you risk ending up with large numbers of Users with unknown or inappropriate
permissions.

Use Groups to build up permissions

Different users may require different subsets of permissions. For example, you could define a Basic content editor
group, who can edit and publish pages and content, but who don’t have permission to create new ones; that permission
would be granted to a Lead content editor Group. Another Group could have permissions to use the weblog.

Then, when managing a user, place the user into the appropriate groups.

Two dimensions of permissions

You can divide your users’ permissions across two dimensions:

¢ what sort of things this user or group of user should be allowed to do (e.g. publish pages, add new plugins, create
new users, etc)

» which sections of the site the user should be allowed to do them on (the home page, a limited set of departmental
pages, etc)

Groups are very useful for managing this. For example, you can create a Europe group for editors who are allowed to
edit the Europe page hierarchy or sub-site. The group can then be added to a global or per-page permission.

50 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Using touch-screen devices with django CMS

Important: These notes about touch interface support apply only to the django CMS admin and editing interfaces.
The visitor-facing published site is wholly independent of this, and the responsibility of the site developer.

General

django CMS has made extensive use of double-click functionality, which lacks an exact equivalent in touch-screen
interfaces. The touch interface will interpret taps and touches in an intelligent way.

Depending on the context, a tap will be interpreted to mean open for editing (that is, the equivalent of a double-click),
or to mean select (the equivalent of a single click), according to what makes sense in that context.

Similarly, in some contexts similar interactions may drag objects, or may scroll them, depending on what makes most
sense. Sometimes, the two behaviours will be present in the same view, for example in the page list, where certain areas
are draggable (for page re-ordering) while other parts of the page can be used for scrolling.

In general, the chosen behaviour is reasonable for a particular object, context or portion of the screen, and in practice
is quicker and easier to apprehend simply by using it than it is to explain.

Pop-up help text will refer to clicking or tapping depending on the device being used.

Be aware that some hover-related user hints are simply not available to touch interface users.

Device support

Smaller devices such as most phones are too small to be adequately usable. For example, your Apple Watch is sadly
unlikely to provide a very good django CMS editing experience.

Older devices will often lack the performance to support a usefully responsive frontend editing/administration interface.
The following devices are known to work well, so newer devices and more powerful models should also be suitable:

* i0S: Apple iPad Air 1, Mini 4

* Android: Sony Xperia Z2 Tablet, Samsung Galaxy Tab 4

* Windows 10: Microsoft Surface

We welcome feedback about specific devices.

Your site’s frontend

django CMS’s toolbar and frontend editing architecture rely on good practices in your own frontend code. To work well
with django CMS’s responsive management framework, your own site should be friendly towards multiple devices.

Whether you use your own frontend code or a framework such as Bootstrap 3 or Foundation, be aware that problems
in your CSS or markup can affect django CMS editing modes, and this will become especially apparent to users of
mobile/hand-held devices.

5.2. Django/Python compatibility table 51



django cms Documentation, Release 4.1.1

Known issues
General issues

 Editing links that lack sufficient padding is currently difficult or impossible using touch-screens.

 Similarly, other areas of a page where the visible content is composed entirely of links with minimal padding
around them can be difficult or impossible to open for editing by tapping. This can affect the navigation menu
(double-clicking on the navigation menu opens the page list).

* Adding links is known to be problematic on some Android devices, because of the behaviour of the keyboard.

* On some devices, managing django CMS in the browser’s private (also known as incognito) mode can have
significant performance implications.

This is because local storage is not available in this mode, and user state must be stored in a Django session,
which is much less efficient.

This is an unusual use case, and should not affect many users.

CKEditor issues

* Scrolling on narrow devices, especially when opening the keyboard inside the CKEditor, does not always work
ideally - sometimes the keyboard can appear in the wrong place on-screen.

* Sometimes the CKEditor moves unexpectedly on-screen in use.

* Sometimes in Safari on iOS devices, a rendering bug will apparently truncate or reposition portions of the toolbar
when the CKEditor is opened - even though sections may appear to missing or moved, they can still be activated
by touching the part of the screen where they should have been found.

Django Admin issues

* In the page tree, the first touch on the page opens the keyboard which may be undesirable. This happens because
Django automatically focuses the search form input.

Color schemes (light/dark) with django CMS

Important: These notes about the color scheme apply only to the django CMS admin and editing interfaces. The
visitor-facing published site is wholly independent of this, and the responsibility of the site developer.

The admin interfaces will only reflect the described behavior if the package djangocms-admin-style is installed
(version 3.2 or later). If it is not installed, the admin interface is managed by your underlying Django installation,
which usually uses the browser’s color scheme.

52 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Setting the color scheme

Django CMS’ default color scheme is "1ight". To change the color scheme use the CMS_COLOR_SCHEME setting in
your project’s setting.py:
CMS_COLOR_SCHEME = "light"

This is the default appearance and shows the interface with dark text on a white background.

CMS_COLOR_SCHEME = "dark"
This so-called dark mode shows light text on a dark background.

CMS_COLOR_SCHEME = "auto"
The auto mode chooses either light or dark color scheme based on the browser or operating system setting of the
user.

Hint: If you plan to fix the color scheme to either light or dark, add a corresponding data-theme attribute to the
html tag in your base template, e.g.

<html data-theme="light">

This will pin the color scheme early when loading pages and avoid potential flickering if the browser preference differs
from the CMS_COLOR_SCHEME setting.

Changed in version 3.11.4: Before version 3.11.4 the color scheme was set by data-color-scheme. Since version
3.11.4 django CMS uses data-theme just as Django since version 4.2.

Important: Not all plugin admin interfaces might support a dark color scheme, especially if plugin forms contain
custom widgets.

Toggle button for the color scheme

The setting CMS_COLOR_SCHEME_TOGGLE in the project’s settings.py determines if a toggle icon (sun/moon/auto)
is shown in the toolbar. It allows a user to switch their color scheme for their session.

By default, CMS_COLOR_SCHEME_TOGGLE is set to True.

Make your own admin CSS color scheme aware

Plugin forms or any admin forms use Django’s admin app which itself supports light and dark color schemes.
djangocms-admin-style introduces django CMS’ color scheme to the admin app. Just as Django does, djangocms-
admin-style defines CSS variables for frequent colors.

We recommend writing at least your reusable apps in a way which allows them to respect the color scheme with
djangocms-admin-style and with Django’s admin style.

Here are some recommendations for making your app work as seamlessly as possible:
* Try avoiding using color, background-color, or other color styles where possible and meaningful.

¢ Ifnecessary, use as few as possible standard django CMS colors (preferably from the list below with plain Django
fallback colors)

5.2. Django/Python compatibility table 53




django cms Documentation, Release 4.1.1

e Use the following pattern: var(--dca-color-var, var(--fallback-color-var, #xxxxxx)) where
#xxxxxx represents the light version of the color. This tries django CMS color scheme first and falls back
to Django color scheme if djangocms-admin-style is not available.

* Avoid media queries like @media (prefers-color-scheme: dark) since they would ignore forced settings
to light or dark.

The admin frontend pulls the style from django admin styles and - if present - from djangocms-admin-style. Django
itself also uses CSS variables to implement admin mode, these can be used as dark mode-aware fall-back colors.

Here’s a table of django CMS’ CSS color variables and their Django fallbacks:

Variable name Color Fallback Color
--dca-white #ffffff | --body-bg #Ifffff
--dca-gray #666 --body-quiet-color | #666
--dca-gray-lightest #£2£2£2 | --darkened-bg #18£818
--dca-gray-lighter #ddd --border-color #ccc
--dca-gray-light #999 --close-button-bg #888
--dca-gray-darker #454545

--dca-gray-darkest #333

--dca-gray-super-lightest | #£f7£f7£7

--dca-primary #00bbff | --primary #79aec8
--dca-black #000 --body-fg #303030

This leaves these recommendations for color scheme dependent colors:

white: var(--dca-white, var(--body-bg, #fff))

gray: var(--dca-gray, var(--body-quiet-color, #666))
gray-lightest: var(--dca-gray-lightest, var(--darkened-bg, #f2f2f2))
gray-lighter var(--dca-gray-lighter, var(--border-color, #ddd))

gray-light: var(--dca-gray-lightest, var(--darkened-bg, #f2f2f2))
gray-primary: var(--dca-primary, var(--primary, #0bf))
black: var(--dca-black, var(--body-£fg), #000))

How the menu system works

Basic concepts
Soft Roots

A soft root is a page that acts as the root for a menu navigation tree.
Typically, this will be a page that is the root of a significant new section on your site.

When the soft root feature is enabled, the navigation menu for any page will start at the nearest soft root, rather than at
the real root of the site’s page hierarchy.

This feature is useful when your site has deep page hierarchies (and therefore multiple levels in its navigation trees). In
such a case, you usually don’t want to present site visitors with deep menus of nested items.

For example, you’re on the page “Introduction to Bleeding”, so the menu might look like this:

School of Medicine
Medical Education

(continues on next page)

54 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

Departments
Department of Lorem Ipsum
Department of Donec Imperdiet
Department of Cras Eros
Department of Mediaeval Surgery
Theory
Cures
Bleeding
* Introduction to Bleeding <current page>
Bleeding - the scientific evidence
Cleaning up the mess
Cupping
Leaches
Maggots
Techniques
Instruments
Department of Curabitur a Purus
Department of Sed Accumsan
Department of Etiam
Research
Administration
Contact us
Impressum

which is frankly overwhelming.

By making “Department of Mediaeval Surgery” a soft root, the menu becomes much more manageable:

Department of Mediaeval Surgery
Theory
Cures
Bleeding
* Introduction to Bleeding <current page>
Bleeding - the scientific evidence
Cleaning up the mess
Cupping
Leaches
Maggots
Techniques
Instruments

Registration

The menu system isn’t monolithic. Rather, it is composed of numerous active parts, many of which can operate inde-
pendently of each other.

What they operate on is a list of menu nodes, that gets passed around the menu system, until it emerges at the other
end.

The main active parts of the menu system are menu generators and modifiers.

Some of these parts are supplied with the "menus" application. Some come from other applications (from the "cms"
application in django CMS, for example, or some other application entirely).

5.2. Django/Python compatibility table 55




django cms Documentation, Release 4.1.1

All these active parts need to be registered within the menu system.

Then, when the time comes to build a menu, the system will ask all the registered menu generators and modifiers to
get to work on it.

Generators and Modifiers

Menu generators and modifiers are classes.

Generators

To add nodes to a menu a generator is required.
There is one in cms for example, which examines the Pages in the database and adds them as nodes.
These classes are sub-classes of menus. base.Menu. The one in cms is cms.menu.CMSMenu.

In order to use a generator, its get_nodes () method must be called.

Modifiers

A modifier examines the nodes that have been assembled, and modifies them according to its requirements (adding or
removing them, or manipulating their attributes, as it sees fit).

An important one in cms (cms.menu.SoftRootCutter) removes the nodes that are no longer required when a soft
root is encountered.

These classes are sub-classes of menus.base.Modifier. Examples are cms.menu.NavExtender and cms.menu.
SoftRootCutter.

In order to use a modifier, its modi fy () method must be called.
Note that each Modifier’s modify () method can be called twice, before and after the menu has been trimmed.
For example when using the {% show_menu %} template tag, it’s called:

e first, by menus.menu_pool.MenuPool.get_nodes (), with the argument post_cut = False

* later, by the template tag, with the argument post_cut = True

This corresponds to the state of the nodes list before and after menus. templatetags.menu_tags.cut_levels(),
which removes nodes from the menu according to the arguments provided by the template tag.

This is because some modification might be required on all nodes, and some might only be required on the subset of
nodes left after cutting.

Nodes

Nodes are assembled in a tree. Each node is an instance of the menus.base.NavigationNode class.
A NavigationNode has attributes such as URL, title, parent and children - as one would expect in a navigation tree.

It also has an attr attribute, a dictionary that’s provided for you to add arbitrary attributes to, rather than placing them
directly on the node itself, where they might clash with something.

56 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Warning: You can’t assume that a menus.base.NavigationNode represents a django CMS Page. Firstly,
some nodes may represent objects from other applications. Secondly, you can’t expect to be able to access Page
objects via NavigationNodes. To check if node represents a CMS Page, check for is_page in menus.base.
NavigationNode.attr and that it is True.

Menu system logic

Let’s look at an example using the {% show_menu %} template tag. It will be different for other template tags, and
your applications might have their own menu classes. But this should help explain what’s going on and what the menu
system is doing.

One thing to understand is that the system passes around a list of nodes, doing various things to it.

Many of the methods below pass this list of nodes to the ones it calls, and return them to the ones that they were in turn
called by.

The ShowMenu.get_context() method

When the Django template engine encounters the {% show_menu %} template tag, it calls the get_context () of the
ShowMenu class. get_context():

e calls menus.menu_pool.MenuPool.get_nodes() (see The MenuPool.get_nodes() method below)
e cuts any nodes other than its descendants (if a root_id has been provided)

e calls menus. templatetags.menu_tags.cut_Ilevels() to remove unwanted levels

e calls menus.menu_pool.MenuPool.apply_modifiers() with post_cut = True

e return the nodes to the context in the variable children

The MenuPool .get_nodes() method

menus .menu_pool . MenuPool .get_nodes () calls three other methods of MenuPool in turn:
e menus.menu_pool.MenuPool.discover_menus()
Checks every application’s cms_menus . py, and registers:
— Menu classes, placing them in the self.menus dict
— Modifier classes, placing them in the self.modifiers list
e menus.menu_pool.MenuPool._build_nodes()
— checks the cache to see if it should return cached nodes
— loops over the Menus in self.menus (note: by default the only generator is cms .menu. CMSMenu); for each:
% calls its menus. base.Menu. get_nodes () - the menu generator
* menus.menu_pool._build nodes_inner_for_one_menu()
% adds all nodes into a big list
e menus.menu_pool.MenuPool.apply_modifiers()
— menus.menu_pool .MenuPool._mark_selected()

— loops over each node, comparing its URL with the request.path_info, and marks the best match as selected

5.2. Django/Python compatibility table 57



django cms Documentation, Release 4.1.1

— loops over the Modifiers (see Menu Modifiers below) in self.modifiers calling each one’s modify ()
with post_cut=False.

Menu Modifiers

Each Modifier manipulates menu nodes and their attributes.
The default Modifiers, in the order they are called, are:
* cms.cms_menus.NavExtender
e cms.cms_menus.SoftRootCutter
If post_cut is True, removes all nodes below the appropriate soft root; otherwise, returns immediately.
e menus.modifiers.Marker

If post_cut or breadcrumb is True, returns immediately; otherwise, loops over all nodes; finds selected, marks
its ancestors, siblings and children

e menus.modifiers.AuthVisibility
Removes nodes that require authorization to see
* menus.modifiers.Level
Loops over all nodes; for each one that is a root node (Level == 0) passes it to:

— mark_levels() recurses over a node’s descendants marking their levels

Some commonly-used plugins
Please note that dozens if not hundreds of different django CMS plugins have been made available under open-source
licences. Some, like the ones on this page, are likely to be of general interest, while others are highly specialised.

This page only lists those that fall under the responsibility of the django CMS project. Please see the Django Packages
site for some more, or just do a web search for the functionality you seek - you’ll be surprised at the range of plugins
that has been created.

django CMS Core Addons

We maintain a set of Core Addons for django CMS.

You don’t need to use them, and for many of them alternatives exist, but they represent a good way to get started with
a reliable project set-up. We recommend them for new users of django CMS in particular.

At this point in time not all are compatible with versions 4 of django CMS or above. Please see those two lists:

58 Chapter 5. Software version requirements and release notes


https://djangopackages.org/search/?q=django+cms

django cms Documentation, Release 4.1.1

Recommended with Version 4 of django CMS

Package Description Status
djangocms- Text Plugin for django CMS using CKEditor 4 supports  v4.1
text-ckeditor asof v5.1.2
djangocms- Adds versioning and publication management features to v4 v4.x only
versioning

djangocms- Implements moderation process to channel publications v4.x only
moderation

djangocms- Central management of recurring plugin sequences - replaces static placehold- | v4.x only

alias ers

djangocms-url- | Central place to manage all link urls for your project v4.x only
manager

djangocms- Plugin bundle for django CMS providing several components from the popular | supports v4.1
frontend Bootstrap 5 framework. Themable and extensible

django-filer Manager for assets like images supports v4.1
djangocms- An opinionated implementation to add attributes to any HTML element no issues
attributes-field known
djangocms- Adds support for Fontawesome icons attributes to any HTML element supports v4.1
icons

djangocms- Add images to your site no issues
picture known
djangocms- django CMS design for Django’s admin backend supports  v4.1
admin-style asof v3.2.1

We welcome feedback, documentation, patches and any other help to maintain and improve these valuable components.

Thrid-party opinionated packages

Package

Description

Status

djangocms-
version-locking

Allows locking draft versions to avoid conflicts

v4.x only

djangocms-page-
admin

New PageContent admin which doesn’t include tree functionality

supports v4.0, v4.1 sup-
port unclear

djangocms- (undocumented) supports v4.0, v4.1 sup-
navigation port unclear
djangocms- Retrieve objects that are related to a selected object and view to | supports v4.0, v4.1 sup-
references present that data to the end user port unclear

5.2. Django/Python compatibility table

59



django cms Documentation, Release 4.1.1

Packages not (yet) supporting version 4

Package Description Status
djangocms-link | Add links on your site not yet
supported
djangocms- django CMS blog application - Support for multilingual posts, placeholders, social | not yet
blog network meta tags and configurable apphooks supported
djangocms- Undo/redo functionality for django CMS operations not yet
history supported
djangocms- django CMS page extension to handle sitemap customization not yet
page-sitemap supported
djangocms- Add SEO meta data to django CMS pages not yet
page-meta supported
djangocms- Export and import plugins as JSON not yet
transfer supported

Contributors are needed to add django CMS v4 support to the following packages:

Deprecated addons

Some older plugins that you may have encountered are now deprecated and we advise against incorporating them into
new projects.

These are:
e cmsplugin-filer
e Aldryn Style
e Aldryn Locations
e Aldryn Snippet

e Django CMS Bootstrap4 (djangocms-frontend offers an automated migration)

Frontend integration
Generally speaking, django CMS is wholly frontend-agnostic. It doesn’t care what your site’s frontend is built on or
uses.

The exception to this is when editing your site, as the django CMS toolbar and editing controls use their own frontend
code, and this can sometimes affect or be affected by your site’s code.

The content reloading introduced in django CMS 3.5 for plugin operations (when moving/adding/deleting etc) pull
markup changes from the server. This may require a JS widget to be reinitialised, or additional CSS to be loaded,
depending on your own frontend set-up.

For example, if using Less.js, you may notice that content loads without expected CSS after plugin saves.

In such a case, you can use the cms-content-refresh event to take care of that, by adding something like:

{% if request.toolbar and request.toolbar.edit_mode_active %}
<script>
CMS. $(window) .on('cms-content-refresh', function () {
less.refresh();

(continues on next page)

60 Chapter 5. Software version requirements and release notes



https://github.com/divio/cmsplugin-filer
https://github.com/aldryn/aldryn-style
https://github.com/aldryn/aldryn-locations
https://github.com/aldryn/aldryn-snippet
https://github.com/django-cms/djangocms-bootstrap4

django cms Documentation, Release 4.1.1

(continued from previous page)

s
</script>
{% endif %}

after the toolbar JavaScript.

5.2.3 How-to guides

These guides presuppose some familiarity with django CMS. They cover some of the same territory as the Tutorials,
but in more detail.

Using core functionality

How to use placeholders outside the CMS

Placeholder fields are special model fields that django CMS uses to render user-editable content (plugins) in templates.
That is, it’s the place where a user can add text, video or any other plugin to a webpage, using the same frontend editing
as the CMS pages.

Changed in version 4.0: Since django CMS 4.0 the toolbar offers preview and edit endpoints for Django models which
contain Placeholders.

* This allows for models (such as django CMS Alias) which do not have a user-facing view to still contain place-
holders.

* However, it requires the registration of frontend-editable models with django CMS.
* Also, views need to tell the toolbar if they contain a frontend-editable model.

Placeholders can be viewed as containers for CMSPI1ugin instances, and can be used outside the CMS in custom appli-
cations using the P1aceholderRelationField.

By defining a PlaceholderRelationField on a custom model you can take advantage of the full power of
CMSPIugin in one or more placeholders.

Warning: Django CMS 3.x wused a different way of integrating placeholders. It’s
PlaceholderField("slot_name") needs to be changed into a PlaceholderRelationField (available
since django CMS 4.x).

Get started

You need to define a P1aceholderRelationField on the model you would like to use:

from django.db import models
from cms.models.fields import PlaceholderRelationField
from cms.utils.placeholder import get_placeholder_from_slot

class MyModel (models.Model):
# your fields
placeholders = PlaceholderRelationField()

(continues on next page)

5.2. Django/Python compatibility table 61




django cms Documentation, Release 4.1.1

(continued from previous page)

@cached_property
def my_placeholder(self):
return get_placeholder_from_slot(self.placeholders, "slot_name")

# your methods

The PlaceholderRelationField can reference more than one field. It is customary to add (cached) properties
to the model referring to specific placeholders. The utility function get_placeholder_from_slot() retrieves a
placeholder object based on its slot name.

The slot is used in templates, to determine where the placeholder’s plugins should appear in the page, and in the
placeholder configuration CMS_PLACEHOLDER_CONF, which determines which plugins may be inserted into this place-
holder.

Note: If you add a PlaceholderRelationField to an existing model, you’ll be able to see the placeholder in the frontend
editor only after saving the relevant instance.

Admin Integration

Changed in version 4.0.

Since django CMS version 4 PlaceholderAdminMixin is not required any more. For now, it still exists as an empty
mixin but will be removed in a future version.

118N Placeholders

Placeholders and plugins within them support multiple languages out of the box.

If you need other fields translated as well, django CMS has support for django-hvad. If you use a TranslatablelModel
model be sure to not include the placeholder fields amongst the translated fields:

class MultilingualExamplel(TranslatableModel):
translations = TranslatedFields(
title=models.CharField('title', max_length=255),
description=models.CharField('description', max_length=255),
)
placeholders = PlaceholderRelationField()

@cached_property
def my_placeholder(self):
return get_placeholder_from_slot(self.placeholders, "slot_name")

def __str__(self):

return self.title

62 Chapter 5. Software version requirements and release notes



https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 4.1.1

Templates

To render the placeholder in a template you use the render_placeholder tag from the cms_tags template tag library:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder "640" %}

The render_placeholder tag takes the following parameters:
* PlaceholderField instance
* width parameter for context sensitive plugins (optional)
* language keyword plus language-code string to render content in the specified language (optional)

The view in which you render your placeholder field must return the request object in the context. The frontend
editing and preview endpoints require a view to render an object. This method takes the request and the object as
parameter (see example below: render_my_model).

If the object has a user-facing view it typically is identical to the preview and editing endpoints, but has to get the object
from the URL (e.g., by its primary key). It also needs to set the toolbar object, so that the toolbar will have Edit
and Preview buttons:

from django.shortcuts import get_object_or_404, render

def render_my_model (request, obj):
return render(
request,
"my_model_detail .html",
{
"object": obj,
1,

def my_model_detail (request, id):
obj = get_object_or_404(MyModel, id=id) # Get the object (here by id)
request.toolbar.set_object(obj) # Announce the object to the toolbar
return render_my_model (request, obj) # Same as preview rendering

Note: If you want to render plugins from a specific language, you can use the tag like this:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder language 'en' %}

5.2. Django/Python compatibility table 63



https://docs.djangoproject.com/en/4.2/ref/request-response/#django.http.HttpRequest

django cms Documentation, Release 4.1.1

Adding the slots to the model

To let django CMS’ frontend editor know which placeholders the model contains, declare them in a second template,
only needed for rendering the structure mode, called, say, templtes/my_app/my_model_structure.html:

{% load cms_tags %}
{% placeholder "slot_name" %}

The important bit is to include all slot names for the model in the structure template. Other parts of the templte are not
necessary.

Add the structure mode template to the model

Let the model know about this template by declaring the get_template () method:

class MyModel (models.Model):

def get_template(self):
return "my_app/my_model_structure.html"

Registering the model for frontend editing

New in version 4.0.

The final step is to register the model for frontend editing. Since django CMS 4 this is done by adding a CMSAppConfig
class to the app’s cms_config.py file:

from cms.app_base import CMSAppConfig
from . import models, views

class MyAppConfig(CMSAppConfig):
cms_enabled = True
cms_toolbar_enabled_models = [(models.MyModel, views.render_my_model)]

Adding content to a placeholder

Placeholders can be edited from the frontend by visiting the page displaying your model (where you put the
render_placeholder tag), then appending ?toolbar_on to the page’s URL.

This will make the frontend editor top banner appear (and if necessary will require you to login).

Once in frontend editing mode, the interface for your application’s PlaceholderFields will work in much the same
way as it does for CMS Pages, with a switch for Structure and Content modes and so on.

64 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Permissions

To be able to edit a placeholder user must be a staff member and needs either edit permissions on the model that con-
tains the P1aceholderRelationField, or permissions for that specific instance of that model. Required permissions
for edit actions are:

* to add: require add or change permission on related Model or instance.
* to change: require add or change permission on related Model or instance.
* to delete: require add or change or delete permission on related Model or instance.

With this logic, an user who can change a Model’s instance but can not add a new Model’s instance will be able to
add some placeholders or plugins to existing Model’s instances.

Model permissions are usually added through the default Django auth application and its admin interface. Object-level
permission can be handled by writing a custom authentication backend as described in django docs

For example, if there is a UserProfile model that contains a PlaceholderRelationField then the custom back-
end can refer to a has_perm method (on the model) that grants all rights to current user only based on the user’s
UserProfile object:

def has_perm(self, user_obj, perm, obj=None):
if not user_obj.is_staff:
return False
if isinstance(obj, UserProfile):
if user_obj.get_profile()==obj:
return True
return False

How to serve multiple languages

If you used django CMS quickstart to start your project, you’ll find that it’s already set up for serving multilingual
content. Our installation guide also does the same.

This guide specifically describes the steps required to enable multilingual support, in case you need to it manually.

Multilingual URLs

If you use more than one language, django CMS urls, including the admin URLS, need to be referenced via
i18n_patterns(). For more information about this see the official Django documentation on the subject.

Here’s a full example of urls.py:

from django.conf.urls.il8n import il8n_patterns

from django.contrib import admin

from django.contrib.staticfiles.urls import staticfiles_urlpatterns
from django.urls import include, path

from django.views.il8n import JavaScriptCatalog

admin.autodiscover()

urlpatterns = il8n_patterns(
re_path('jsil8n/', JavaScriptCatalog.as_view(), name='javascript-catalog'),

(continues on next page)

5.2. Django/Python compatibility table 65



https://docs.djangoproject.com/en/stable/topics/auth/customizing/#handling-object-permissions
https://github.com/django-cms/django-cms-quickstart
https://docs.djangoproject.com/en/4.2/topics/i18n/translation/#django.conf.urls.i18n.i18n_patterns
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns

django cms Documentation, Release 4.1.1

(continued from previous page)

)

urlpatterns += staticfiles_urlpatterns()

# note the django CMS URLs included via il8n_patterns
urlpatterns += il8n_patterns(

path('admin/', include(admin.site.urls)),

path('', include('cms.urls"')),

Monolingual URLs

Of course, if you want only monolingual URLs, without a language code, simply don’t use 118n_patterns():

urlpatterns += [
path('admin', admin.site.urls),
path('', include('cms.urls")),

Store the user’s language preference

The user’s preferred language is maintained through a browsing session. So that django CMS remembers the user’s
preference in subsequent sessions, it must be stored in a cookie. To enable this, cms.middleware.language.
LanguageCookieMiddleware must be added to the project’s MIDDLEWARE setting.

See How django CMS determines which language to serve for more information about how this works.

Working in templates
Display a language chooser in the page

The language_chooser template tag will display a language chooser for the current page. You can modify the tem-
plate in menu/language_chooser.html or provide your own template if necessary.

Example:

{% load menu_tags %}
{% language_chooser "myapp/language_chooser.html" %}

If you are in an apphook and have a detail view of an object you can set an object to the toolbar in your view. The cms
will call get_absolute_url in the corresponding language for the language chooser:

Example:

class AnswerView(DetailView):
def get(self, *args, **kwargs):
self.object = self.get_object()
if hasattr(self.request, 'toolbar'):
self.request.toolbar.set_object(self.object)
response = super().get(*args, **kwargs)
return response

66 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/topics/i18n/translation/#django.conf.urls.i18n.i18n_patterns

django cms Documentation, Release 4.1.1

With this you can more easily control what url will be returned on the language chooser.

Note: If you have a multilingual objects be sure that you return the right url if you don’t have a translation for this
language in get_absolute_url

Get the URL of the current page for a different language

The page_language_url returns the URL of the current page in another language.

Example:

{% page_language_url "de" %}

Configuring language-handling behaviour

CMS_LANGUAGES describes the all options available for determining how django CMS serves content across multiple
languages.

Multi-Site Installation

For operating multiple websites using the same virtualenv you can use copies of manage.py, wsgi.py and different
versions of settings and the URL configuration for each site. You can use the same database for different websites or,
if you want a stricter separation, different databases. You can define settings for all sites in a file that is imported in
the site-specific settings, e. g. my_project/base_settings.py. At the end of these site-specific settings you can
import local settings, which are not under version control, with SECRET_KEY, DATABASES, ALLOWED_HOSTS
etc., which may be site-specific or not.

1. Copy and edit wsgi.py and manage.py e. g. to wsgi_second_site.py and manage_second_site.
py: Change the reference to the settings like os.environ.setdefault ("DJANGO_SETTINGS_MODULE",
"my_project.settings_second_site"), if the settings are inmy_project/settings_second_site.py.
Do this for each site.

2. In the site-specific settings import common base settings in the first line like from .base_settings import
* and define SITE_ID, ROOT_URLCONF, CMS_LANGUAGES and other settings that should be different on the sites.
This way all the items from the imported base settings can be overridden by later definitions:

settings.second_site.py:

from .base_settings import *
SITE_ID: int = 2
ROOT_URLCONF: str = 'my_project.urls_second_site'

# other site-specific settings...

from .settings_local import *

3. In the web server settings for a site you refer to the site-specific wsgi*.py like wsgi_second_site.py.

5.2. Django/Python compatibility table 67



django cms Documentation, Release 4.1.1

How to work with templates

Application can reuse cms templates by mixing cms template tags and normal django templating language.

static_alias

New in version 4.0.

Note: Using static_alias requires the installation of djangocms-alias to work.

Plain placeholder cannot be used in templates used by external applications, use static_alias instead.

CMS_TEMPLATE

CMS_TEMPLATE is a context variable available in the context; it contains the template path for CMS pages and application
using apphooks, and the default template (i.e.: the first template in CS_TEMPLATES) for non-CMS managed URLs.

This is mostly useful to use it in the extends template tag in the application templates to get the current page template.

Example: cms template

{% load cms_tags %}

<html>
<body>
{% cms_toolbar %}
{% block main %}
{% placeholder "main" %}
{% endblock main %}
</body>

</html>

Example: application template

{% extends CMS_TEMPLATE %}
{% load cms_tags %}
{% block main %}
{% for item in object_list %}
{{ item }}
{% endfor %}
{% static_placeholder "sidebar" %}
{% endblock main %}

CMS_TEMPLATE memorises the path of the cms template so the application template can dynamically import it.

68 Chapter 5. Software version requirements and release notes



https://github.com/django-cms/djangocms-alias

django cms Documentation, Release 4.1.1

render_model

render_model allows to edit the django models from the frontend by reusing the django CMS frontend editor.

How to manage caching
Set-up

To setup caching configure a caching backend in django.
Details for caching can be found here: https://docs.djangoproject.com/en/dev/topics/cache/

In your middleware settings be sure to add django.middleware.cache.UpdateCacheMiddleware at the first and
django.middleware.cache.FetchFromCacheMiddleware at the last position:

MIDDLEWARE=[
'django.middleware.cache.UpdateCacheMiddleware',

'cms.middleware.language.LanguageCookieMiddleware',
'cms.middleware.user.CurrentUserMiddleware',
'cms.middleware.page.CurrentPageMiddleware',
'cms.middleware.toolbar.ToolbarMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware',

1,

Plugins

Normally all plugins will be cached. If you have a plugin that is dynamic based on the current user or other dynamic
properties of the request set the cache=False attribute on the plugin class:

class MyPlugin(CMSPluginBase):
name = _("MyPlugin™)
cache = False

Warning: If you disable a plugin cache be sure to restart the server and clear the cache afterwards.

Content Cache Duration

Default: 60
This can be changed in CMS_CACHE_DURATIONS

5.2. Django/Python compatibility table 69



https://docs.djangoproject.com/en/dev/topics/cache/

django cms Documentation, Release 4.1.1

Settings

Caching is set default to true. Have a look at the following settings to enable/disable various caching behaviours:
¢ CMS_PAGE_CACHE
¢ CMS_PLACEHOLDER_CACHE
¢ CMS_PLUGIN_CACHE

How to enable frontend editing for Page and Django models

As well as PlaceholderFields, ‘ordinary’ Django model fields (both on CMS Pages and your own Django models)
can also be edited through django CMS’s frontend editing interface. This is very convenient for the user because it
saves having to switch between frontend and admin views.

Using this interface, model instance values that can be edited show the “Double-click to edit” hint on hover. Double-
clicking opens a pop-up window containing the change form for that model.

Warning: This feature is only partially compatible with django-hvad: using render_model with hvad-translated
fields (say {% render_model object 'translated_field' %} returns an error if the hvad-enabled object
does not exists in the current language. As a workaround render_model_icon can be used instead.

Template tags

This feature relies on five template tags sharing common code. All require that you {% load cms_tags %} in your
template:

» render_model (for editing a specific field)

e render_model_block (for editing any of the fields in a defined block)

» render_model_icon (for editing a field represented by another value, such as an image)
e render_model_add (for adding an instance of the specified model)

» render_model_add_block (for adding an instance of the specified model)

Look at the tag-specific page for more detailed reference and discussion of limitations and caveats.

Page titles edit

For CMS pages you can edit the titles from the frontend; according to the attribute specified a default field, which can
also be overridden, will be editable.

Main title:

{% render_model request.current_page "title" %}

Page title:

{% render_model request.current_page "'page_title" %}

Menu title:

70 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

{% render_model request.current_page "menu_title" %}

All three titles:

{% render_model request.current_page "titles" %}

You can always customise the editable fields by providing the edit_field parameter:

{% render_model request.current_page "title" "page_title,menu_title" %}

Page menu edit

By using the special keyword changelist as edit field the frontend editing will show the page tree; a common pattern
for this is to enable changes in the menu by wrapping the menu template tags:

{% render_model_block request.current_page "changelist" %}

<h3>Menu</h3>
<ul>

{% show_menu 1 100 0 1 "sidebar_submenu_root.html" %}
</ul>

{% endrender_model_block %}

Will render to:

<template class="cms-plugin cms-plugin-start cms-plugin-cms-page-changelist-1"></
—template>
<h3>Menu</h3>
<ul>
<li><a href="/">Home</a></1i>
<li><a href="/another">another</a></1i>
[...]

<template class="cms-plugin cms-plugin-end cms-plugin-cms-page-changelist-1"></template>

Editing ‘ordinary’ Django models

As noted above, your own Django models can also present their fields for editing in the frontend. This is achieved by
using the FrontendEditableAdminMixin base class.

Note that this is only required for fields other than PlaceholderFields. PlaceholderFields are automatically
made available for frontend editing.

Configure the model’s admin class

Configure your admin class by adding the FrontendEditableAdminMixin mixin to it (see Django admin
documentation for general Django admin information):

from cms.admin.placeholderadmin import FrontendEditableAdminMixin
from django.contrib import admin

(continues on next page)

5.2. Django/Python compatibility table 71



https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#module-django.contrib.admin
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#module-django.contrib.admin

django cms Documentation, Release 4.1.1

(continued from previous page)

class MyModelAdmin(FrontendEditableAdminMixin, admin.ModelAdmin):

The ordering is important: as usual, mixins must come first.

Then set up the templates where you want to expose the model for editing, adding a render_model template tag:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" %}</hl>
{% endblock content %}

See template tag reference for arguments documentation.

Selected fields edit

Frontend editing is also possible for a set of fields.

Set up the admin

You need to add to your model admin a tuple of fields editable from the frontend admin:

from cms.admin.placeholderadmin import FrontendEditableAdminMixin
from django.contrib import admin

class MyModelAdmin(FrontendEditableAdminMixin, admin.ModelAdmin):
frontend_editable_fields = ("foo", "bar")

Set up the template

Then add comma separated list of fields (or just the name of one field) to the template tag:

{% load cms_tags %}

{% block content %}

<h1>{% render_model instance "some_attribute" "some_field,other_field" %}</hl>

{% endblock content %}

72 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Special attributes

The attribute argument of the template tag is not required to be a model field, property or method can also be used
as target; in case of a method, it will be called with request as argument.

Custom views

You can link any field to a custom view (not necessarily an admin view) to handle model-specific editing workflow.

The custom view can be passed either as a named url (view_url parameter) or as name of a method (or property) on
the instance being edited (view_method parameter). In case you provide view_method it will be called whenever the
template tag is evaluated with request as parameter.

The custom view does not need to obey any specific interface; it will get edit_fields value as a GET parameter.
See template tag reference for arguments documentation.

Example view_url:

{% load cms_tags %}

{% block content %}

<h1>{% render_model instance "some_attribute" "some_field,other_field" ""
—"admin:exampleapp_examplel_some_view" %}</hl>

{% endblock content %}

Example view_method:

class MyModel (models.Model):
char = models.CharField(max_length=10)

def some_method(self, request):
return "/some/url”

{% load cms_tags %}

{% block content %}

<h1>{% render_model instance "some_attribute
<" %¥</h1>

{% endblock content %}

some_field,other_field" "" "" "some_method

Model changelist

By using the special keyword changelist as edit field the frontend editing will show the model changelist:

{% render_model instance "name changelist" %}

Will render to:

<div class="cms-plugin cms-plugin-myapp-mymodel-changelist-1">
My Model Instance Name
</div>

5.2. Django/Python compatibility table 73




django cms Documentation, Release 4.1.1

Filters

If you need to apply filters to the output value of the template tag, add quoted sequence of filters as in Django filter
template tag:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "attribute
{% endblock content %}

truncatechars:9" %}</hl1>

Context variable

The template tag output can be saved in a context variable for later use, using the standard as syntax:

{% load cms_tags %}

{% block content %}
{% render_model instance "attribute" as variable %}

<h1>{{ variable }}</h1l>

{% endblock content %}

How to create sitemaps
Sitemap

Sitemaps are XML files used by Google to index your website by using their Webmaster Tools and telling them the
location of your sitemap.

The cms. sitemaps.CMSSitemap will create a sitemap with all the published pages of your CMS.

Configuration

* add django.contrib.sitemaps to your project’s INSTALLED_APPS setting
e add from cms.sitemaps import CMSSitemap to the top of your main urls.py
¢ add from django.contrib.sitemaps.views import sitemap tourls.py’

* add url(r'Asitemap\.xml$', sitemap, {'sitemaps': {'cmspages': CMSSitemap}}), to your
urlpatterns

74 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/ref/templates/builtins/#std-templatetag-filter
https://docs.djangoproject.com/en/4.2/ref/contrib/sitemaps/#module-django.contrib.sitemaps
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-INSTALLED_APPS

django cms Documentation, Release 4.1.1

django.contrib.sitemaps

More information about django.contrib.sitemaps can be found in the official Django documentation.

New in version 3.0.

How to manage Page Types

Changed in version 4.0.
Currently, page types as know from django CMS 3.x are not available.
Creating new functionality

How to create Plugins
The simplest plugin

We'll start with an example of a very simple plugin.

You may use python -m manage startapp to set up the basic layout for your plugin app (remember to add your
plugin to INSTALLED_APPS). Alternatively, just add a file called cms_plugins.py to an existing Django application.

Place your plugins in cms_plugins.py. For our example, include the following code:

from cms.plugin_base import CMSPluginBase

from cms.plugin_pool import plugin_pool

from cms.models.pluginmodel import CMSPlugin

from django.utils.translation import gettext_lazy as _

@plugin_pool.register_plugin

class HelloPlugin(CMSPluginBase):
model = CMSPlugin
render_template = "hello_plugin.html"
cache = False

Now we’re almost done. All that’s left is to add the template. Add the following into the root template directory in a
file called hello_plugin.html:

<hl>Hello {% if request.user.is_authenticated %}{{ request.user.first_name }} {{ request.
—user.last_name}}{% else %}Guest{% endif %}</hl>

This plugin will now greet the users on your website either by their name if they’re logged in, or as Guest if they’re not.

Now let’s take a closer look at what we did there. The cms_plugins.py files are where you should define your sub-
classes of cms.plugin_base.CMSPluginBase, these classes define the different plugins.

There are two required attributes on those classes:

e model: The model you wish to use for storing information about this plugin. If you do not require any spe-
cial information, for example configuration, to be stored for your plugins, you can simply use cms.models.
pluginmodel.CMSPlugin (we’ll look at that model more closely in a bit). In a normal admin class, you don’t
need to supply this information because admin.site.register(Model, Admin) takes care of it, but a plugin
is not registered in that way.

5.2. Django/Python compatibility table 75



https://docs.djangoproject.com/en/4.2/ref/contrib/sitemaps/#module-django.contrib.sitemaps
http://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/

django cms Documentation, Release 4.1.1

e name: The name of your plugin as displayed in the admin. It is generally good practice to mark this string as
translatable using django.utils.translation.gettext_lazy(), however this is optional. By default the
name is a nicer version of the class name.

And one of the following must be defined if render_plugin attribute is True (the default):
* render_template: The template to render this plugin with.
or
* get_render_template: A method that returns a template path to render the plugin with.

In addition to those attributes, you can also override the render () method which determines the template context
variables that are used to render your plugin. By default, this method only adds instance and placeholder objects
to your context, but plugins can override this to include any context that is required.

A number of other methods are available for overriding on your CMSPluginBase sub-classes. See: CMSPluginBase
for further details.

Troubleshooting

Since plugin modules are found and loaded by django’s importlib, you might experience errors because the path envi-
ronment is different at runtime. If your cms_plugins isn’t loaded or accessible, try the following:

$ python -m manage shell

>>> from importlib import import_module

>>> m = import_module("myapp.cms_plugins')

>>> m.some_test_function() # from the myapp.cms_plugins module

Storing configuration

In many cases, you want to store configuration for your plugin instances. For example, if you have a plugin that shows
the latest blog posts, you might want to be able to choose the amount of entries shown. Another example would be a
gallery plugin where you want to choose the pictures to show for the plugin.

To do so, you create a Django model by sub-classing cms.models.pluginmodel.CMSPlugin in the models.py of
an installed application.

Let’s improve our HelloPlugin from above by making its fallback name for non-authenticated users configurable.

In our models.py we add the following:

from cms.models.pluginmodel import CMSPlugin
from django.db import models

class Hello(CMSPlugin):
guest_name = models.CharField(max_length=50, default='Guest')

If you followed the Django tutorial, this shouldn’t look too new to you. The only difference to normal models is that
you sub-class cms.models.pluginmodel.CMSPlugin rather than django.db.models.Model.

Now we need to change our plugin definition to use this model, so our new cms_plugins.py looks like this:

76 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/ref/utils/#django.utils.translation.gettext_lazy
https://docs.djangoproject.com/en/4.2/ref/models/instances/#django.db.models.Model

django cms Documentation, Release 4.1.1

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from django.utils.translation import gettext_lazy as _

from .models import Hello

@plugin_pool.register_plugin

class HelloPlugin(CMSPluginBase):
model = Hello
name = _("Hello Plugin")
render_template = "hello_plugin.html"
cache = False

def render(self, context, instance, placeholder):
context = super().render(context, instance, placeholder)
return context

We changed the model attribute to point to our newly created Hello model and pass the model instance to the context.

As alast step, we have to update our template to make use of this new configuration:

<h1l>Hello {% if request.user.is_authenticated %}

{{ request.user.first_name }}! {{ request.user.last_name}}
{% else %}

{{ instance.guest_name }}
{% endif %}</hl>

The only thing we changed there is that we use the template variable {{ instance.guest_name }} instead of the
hard-coded Guest string in the else clause.

Warning: You cannot name your model fields the same as any installed plugins lower- cased model name, due to
the implicit one-to-one relation Django uses for sub-classed models. If you use all core plugins, this includes: file,
googlemap, 1ink, picture, snippetptr, teaser, twittersearch, twitterrecententries and video.

Additionally, it is recommended that you avoid using page as a model field, as it is declared as a property of cms.
models.pluginmodel.CMSPIugin. While the use of CMSP1lugin.page is deprecated the property still exists as
a compatibility shim.

Handling Relations

Some user interactions make it necessary to create a copy of the plugin, most notably if a user copies and pastes
contents of a placeholder. So if your custom plugin has foreign key (to it, or from it) or many-to-many relations you
are responsible for copying those related objects, if required, whenever the CMS copies the plugin - it won’t do it for
you automatically.

Every plugin model inherits the empty cms.models.pluginmodel.CMSPlugin.copy_relations () method from
the base class, and it’s called when your plugin is copied. So, it’s there for you to adapt to your purposes as required.

Typically, you will want it to copy related objects. To do this you should create a method called copy_relations on
your plugin model, that receives the old instance of the plugin as an argument.

You may however decide that the related objects shouldn’t be copied - you may want to leave them alone, for example.
Or, you might even want to choose some altogether different relations for it, or to create new ones when it’s copied. ..
it depends on your plugin and the way you want it to work.

5.2. Django/Python compatibility table 77




django cms Documentation, Release 4.1.1

If you do want to copy related objects, you’ll need to do this in two slightly different ways, depending on whether your
plugin has relations o or from other objects that need to be copied too:

For foreign key relations from other objects

Your plugin may have items with foreign keys to it, which will typically be the case if you set it up so that they are
inlines in its admin. So you might have two models, one for the plugin and one for those items:

class ArticlePluginModel (CMSPlugin):
title = models.CharField(max_length=50)

class AssociatedItem(models.Model):
plugin = models.ForeignKey(
ArticlePluginModel,
related_name="associated_item"

You’ll then need the copy_relations() method on your plugin model to loop over the associated items and copy
them, giving the copies foreign keys to the new plugin:

class ArticlePluginModel (CMSPlugin):
title = models.CharField(max_length=50)

def copy_relations(self, oldinstance):
# Before copying related objects from the old instance, the ones
# on the current one need to be deleted. Otherwise, duplicates may
# appear on the public version of the page
self.associated_item.all().delete()

for associated_item in oldinstance.associated_item.all():
# instance.pk = None; instance.pk.save() is the slightly odd but
# standard Django way of copying a saved model instance
associated_item.pk = None
associated_item.plugin = self
associated_item.save()

For many-to-many or foreign key relations to other objects

Let’s assume these are the relevant bits of your plugin:

class ArticlePluginModel (CMSPlugin):
title = models.CharField(max_length=50)
sections = models.ManyToManyField(Section)

Now when the plugin gets copied, you want to make sure the sections stay, so it becomes:

class ArticlePluginModel (CMSPlugin):
title = models.CharField(max_length=50)
sections = models.ManyToManyField(Section)

def copy_relations(self, oldinstance):
self.sections.set(oldinstance.sections.all())

78 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

If your plugins have relational fields of both kinds, you may of course need to use both the copying techniques described
above.

Relations between plugins

It is much harder to manage the copying of relations when they are from one plugin to another.

See the GitHub issue copy_relations() does not work for relations between cmsplugins #4143 for more details.

Advanced

Inline Admin

If you want to have the foreign key relation as a inline admin, you can create an admin. StackedInline class and put
it in the Plugin to “inlines”. Then you can use the inline admin form for your foreign key references:

class ItemInlineAdmin(admin.StackedInline):
model = AssociatedItem

class ArticlePlugin(CMSPluginBase):
model = ArticlePluginModel
name = _("Article Plugin")
render_template = "article/index.html"
inlines = (ItemInlineAdmin,)

def render(self, context, instance, placeholder):
context = super().render(context, instance, placeholder)
items = instance.associated_item.all()
context.update({
'items': items,
b

return context

Plugin form

Since cms.plugin_base.CMSPluginBase extends django.contrib.admin.ModelAdmin, you can customise the
form for your plugins just as you would customise your admin interfaces.

The template that the plugin editing mechanism uses is cms/templates/admin/cms/page/plugin/change_form.
html. You might need to change this.

If you want to customise this the best way to do it is:

e create a template of your own that extends cms/templates/admin/cms/page/plugin/change_form.html
to provide the functionality you require;

e provide your cms.plugin_base.ClMSPluginBase sub-class with a change_form_template attribute point-
ing at your new template.

Extending admin/cms/page/plugin/change_form.html ensures that you’ll keep a unified look and functionality
across your plugins.

5.2. Django/Python compatibility table 79



https://github.com/django-cms/django-cms/issues/4143
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin

django cms Documentation, Release 4.1.1

There are various reasons why you might want to do this. For example, you might have a snippet of JavaScript that
needs to refer to a template variable), which you’d likely place in {% block extrahead %}, aftera {{ block.super
}} to inherit the existing items that were in the parent template.

Handling media

If your plugin depends on certain media files, JavaScript or stylesheets, you can include them from your plugin template
using django-sekizai. Your CMS templates are always enforced to have the css and js sekizai namespaces, therefore
those should be used to include the respective files. For more information about django-sekizai, please refer to the
django-sekizai documentation.

Note that sekizai can’t help you with the admin-side plugin templates - what follows is for your plugins’ output
templates.

Sekizai style

To fully harness the power of django-sekizai, it is helpful to have a consistent style on how to use it. Here is a set of
conventions that should be followed (but don’t necessarily need to be):

* One bit per addtoblock. Always include one external CSS or JS file per addtoblock or one snippet per
addtoblock. This is needed so django-sekizai properly detects duplicate files.

» External files should be on one line, with no spaces or newlines between the addtoblock tag and the HTML
tags.

* When using embedded javascript or CSS, the HTML tags should be on a newline.
A good example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/
—myjsfile.js"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/
—myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}<link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}
—myplugin/css/astylesheet.css">{% endaddtoblock %}
{% addtoblock "js" %}
<script type="text/javascript">

$ (document) .ready (function(){

doSomething();

9K
</script>
{% endaddtoblock %}

A bad example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/
—myjsfile.js"></script>

<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{
% endaddtoblock %}

{% addtoblock "css" %}

(continues on next page)

80 Chapter 5. Software version requirements and release notes



https://github.com/ojii/django-sekizai
https://django-sekizai.readthedocs.io

django cms Documentation, Release 4.1.1

(continued from previous page)

<link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.
—.css''></script>
{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript">
$ (document) .ready (function(){
doSomething();

B
</script>{% endaddtoblock %}

Note: If the Plugin requires javascript code to be rendered properly, the class 'cms-execute-js-to-render' can
be added to the script tag. This will download and execute all scripts with this class, which weren’t present before, when
the plugin is first added to the page. If the javascript code is protected from prematurely executing by the EventListener
for the event 'load' and/or 'DOMContentLoaded’, the following classes can be added to the script tag:

Classname Corresponding javascript code
cms-trigger-event-document- document .dispatchEvent (new
DOMContentLoaded Event ('DOMContentLoaded')
cms-trigger-event-window- window.dispatchEvent (new
DOMContentLoaded Event ('DOMContentLoaded")
cms-trigger-event-window-load window.dispatchEvent (new Event('load')

The events will be triggered once after all scripts are successfully injected into the DOM.

Note: Some plugins might need to run a certain bit of javascript after a content refresh. In such a case, you can use
the cms-content-refresh event to take care of that, by adding something like:

{% if request.toolbar and request.toolbar.edit_mode_active %}
<script>
CMS. $(window) .on('cms-content-refresh', function () {
// Here comes your code of the plugin's javascript which
// needs to be run after a content refresh
B
</script>
{% endif %}

Plugin Context

The plugin has access to the django template context. You can override variables using the with tag.

Example:

{% with 320 as width %}{% placeholder "content" %}{% endwith %}

5.2. Django/Python compatibility table 81




django cms Documentation, Release 4.1.1

Plugin Context Processors

Plugin context processors are callables that modify all plugins’ context before rendering. They are enabled using the
CMS_PLUGIN_CONTEXT_PROCESSORS setting.

A plugin context processor takes 3 arguments:
* instance: The instance of the plugin model
* placeholder: The instance of the placeholder this plugin appears in.
» context: The context that is in use, including the request.
The return value should be a dictionary containing any variables to be added to the context.

Example:

def add_verbose_name(instance, placeholder, context):

"

This plugin context processor adds the plugin model's verbose_name to context.

"

return {'verbose_name': instance._meta.verbose_name}

Plugin Processors

Plugin processors are callables that modify all plugins’ output after rendering. They are enabled using the
CMS_PLUGIN_PROCESSORS setting.

A plugin processor takes 4 arguments:
* instance: The instance of the plugin model
* placeholder: The instance of the placeholder this plugin appears in.
* rendered_content: A string containing the rendered content of the plugin.

* original_context: The original context for the template used to render the plugin.

Note: Plugin processors are also applied to plugins embedded in Text plugins (and any custom plugin allowing nested
plugins). Depending on what your processor does, this might break the output. For example, if your processor wraps the
output in a <div> tag, you might end up having <div> tags inside of <p> tags, which is invalid. You can prevent such
cases by returning rendered_content unchanged if instance._render_meta.text_enabled is True, which is
the case when rendering an embedded plugin.

Example

Suppose you want to wrap each plugin in the main placeholder in a colored box but it would be too complicated to edit
each individual plugin’s template:

In your settings.py:

CMS_PLUGIN_PROCESSORS = (
'yourapp.cms_plugin_processors.wrap_in_colored_box',

)

In your yourapp.cms_plugin_processors.py:

82 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

def wrap_in_colored_box(instance, placeholder, rendered_content, original_context):
This plugin processor wraps each plugin's output in a colored box if it is in the
— "main" placeholder.
# Plugins not in the main placeholder should remain unchanged
# Plugins embedded in Text should remain unchanged in order not to break output

if placeholder.slot != 'main' or (instance._render_meta.text_enabled and instance.
< parent) :
return rendered_content
else:

from django.template import Context, Template
# For simplicity's sake, construct the template from a string:
t = Template('<div style="border: 10px {{ border_color }} solid; background: {{.
—background_color }};">{{ content|safe }}</div>")
# Prepare that template's context:
c = Context({
'content': rendered_content,
# Some plugin models might allow you to customise the colors,
# for others, use default colors:
"background_color': instance.background_color if hasattr(instance,
— "background_color') else 'lightyellow',
"border_color': instance.border_color if hasattr(instance, 'border_color').
—else 'lightblue',
b
# Finally, render the content through that template, and return the output
return t.render(c)

Nested Plugins

You can nest CMS Plugins in themselves. There’s a few things required to achieve this functionality:

models.py:

class ParentPlugin(CMSPlugin):
# add your fields here

class ChildPlugin(CMSPlugin):
# add your fields here

cms_plugins.py:

from .models import ParentPlugin, ChildPlugin

@plugin_pool.register_plugin
class ParentCMSPlugin(CMSPluginBase):
render_template = "parent.html”
name = "Parent"
model = ParentPlugin
allow_children = True # This enables the parent plugin to accept child plugins
# You can also specify a list of plugins that are accepted as children,

(continues on next page)

5.2. Django/Python compatibility table 83




django cms Documentation, Release 4.1.1

(continued from previous page)

# or leave it away completely to accept all
# child_classes = ['ChildCMSPlugin']

def render(self, context, instance, placeholder):

context = super().render(context, instance, placeholder)
return context

@plugin_pool.register_plugin
class ChildCMSPlugin(CMSPluginBase):
render_template = "child.html"
name = "Child"
model = ChildPlugin
require_parent = (
True # Is it required that this plugin is a child of another plugin?
)
# You can also specify a list of plugins that are accepted as parents,
# or leave it away completely to accept all
# parent_classes = ['ParentCMSPlugin']

def render(self, context, instance, placeholder):

context = super(ChildCMSPlugin, self).render(context, instance, placeholder)
return context

parent.html:

{% load cms_tags %}

<div class="plugin parent'">
{% for plugin in instance.child_plugin_instances %}
{% render_plugin plugin %}
{% endfor %}
</div>

child.html:

<div class="plugin child">
{{ instance }}
</div>

If you have attributes of the parent plugin which you need to access in the child you can access the parent instance using
get_bound_plugin:

class ChildPluginForm(forms.ModelForm) :

class Meta:
model = ChildPlugin
exclude = O

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.instance:
parent, parent_cls = self.instance.parent.get_bound_plugin()

84 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Extending context menus of placeholders or plugins

There are three possibilities to extend the context menus of placeholders or plugins.

* You can either extend a placeholder context menu.

* You can extend all plugin context menus.

For this purpose you can overwrite the two methods on CMSPluginBase.

e get_extra_placeholder_menu_items()

e get_extra_plugin_menu_items()

Example:

class AliasPlugin(CMSPluginBase):

name = _("Alias")

allow_children = False

model = AliasPluginlModel

render_template = "cms/plugins/alias.html"”

def render(self, context, instance, placeholder):

context = super().render(context, instance, placeholder)

if instance.plugin_id:
plugins = instance.plugin.get_descendants(

include_self=True

) .order_by('placeholder', 'tree_id', 'level', 'position')
plugins = downcast_plugins(plugins)
plugins[0] .parent_id = None
plugins = build_plugin_tree(plugins)
context['plugins'] = plugins

if instance.alias_placeholder_id:
content = render_placeholder(instance.alias_placeholder, context)
print content
context['content'] = mark_safe(content)

return context

def get_extra_plugin_menu_items(self, request, plugin):
return [
PluginMenuItem(

_("Create Alias"),

reverse("admin:cms_create_alias"),

data={
'plugin_id': plugin.pk,
'csrfmiddlewaretoken': get_token(request)

3,

]

def get_extra_placeholder_menu_items(self, request, placeholder):
return [
PluginMenuItem(
_("Create Alias"),
reverse("admin:cms_create_alias"),
data={

(continues on next page)

5.2. Django/Python compatibility table

85




django cms Documentation, Release 4.1.1

(continued from previous page)

'placeholder_id': placeholder.pk,
'csrfmiddlewaretoken': get_token(request)

3
]

def get_plugin_urls(self):
urlpatterns = [
re_path(r'Acreate_alias/$', self.create_alias, name='cms_create_alias'),

]

return urlpatterns

def create_alias(self, request):
if not request.user.is_staff:
return HttpResponseForbidden("not enough privileges")
if not 'plugin_id' in request.POST and not 'placeholder_id' in request.POST:
return HttpResponseBadRequest (
"plugin_id or placeholder_id POST parameter missing."
)
plugin = None
placeholder = None
if 'plugin_id' in request.POST:
pk = request.POST['plugin_id']
try:
plugin = CMSPlugin.objects.get (pk=pk)
except CMSPlugin.DoesNotExist:
return HttpResponseBadRequest (
"plugin with id not found." % pk
)
if 'placeholder_id' in request.POST:
pk = request.POST['placeholder_id']
try:
placeholder = Placeholder.objects.get(pk=pk)
except Placeholder.DoesNotExist:
return HttpResponseBadRequest(
"placeholder with id not found." % pk
)
if not placeholder.has_change_permission(request):
return HttpResponseBadRequest (
"You do not have enough permission to alias this placeholder."”
)
clipboard = request.toolbar.clipboard
clipboard.cmsplugin_set.all().delete()
language = request.LANGUAGE_CODE
if plugin:
language = plugin.language
alias = AliasPluginModel (
language=language, placeholder=clipboard,
plugin_type="AliasPlugin"
)
if plugin:
alias.plugin = plugin

(continues on next page)

86 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

if placeholder:

alias.alias_placeholder = placeholder
alias.save()
return HttpResponse('ok")

Creating and deleting plugin instances

New in version 4.0.

Plugins live inside placeholders. Since django CMS version 4 placeholders manage the creation, and especially the
deletion of plugins. Besides creating (or deleting) database entries for the plugins the placeholders make all necessary
changes to the entire plugin tree. Not using the placeholders to create or delete plugins can lead to corrupted
plugin trees.

Use cms.models.placeholdermodel.Placeholder.add_plugin() or cms.api.add_plugin() to create
plugins:

new_instance = MyPluginModel (
plugin_data="secret"
placeholder=placeholder_to_add_to,
position=1, # First plugin in placeholder

)

placeholder_to_add_to.add_plugin(new_instance)
assert new_instance_pk is not None # Saved to db

or:

new_plugin = cms.api.add_plugin(
placeholder_to_add_to,
"MyPlugin",
position="first-child', # First position in placeholder (no parent)
data=dict(plugin_data="secret"),
)

Use cms.models.placeholdermodel.Placeholder.delete_plugin() to delete a plugin
including its children:

old_instance.placeholder.delete_plugin(old_instance)

Warning: Do not use PluginModel.objects.create(...) or PluginModel.objects.delete() to create
or delete plugin instances. This most likely either throw a database integrity exception or create a inconsistent
plugin tree leading to unexpected behavior.

Also, do not use queryset.delete() to remove multiple plugins at the same time. This will most likely damage
the plugin tree.

5.2. Django/Python compatibility table 87



django cms Documentation, Release 4.1.1

How to upgrade custom plugins for django CMS v4+
Difference between django CMS v3 and v4 plugins

The main difference between plugins of django CMS version 3 and django CMS v4 is how the tree is stored in the
database. Up to django CMS version 3, the plugin model CMSPIugin inherited from a tree model MP_Node declared
in the django-treebeard library.

As of django CMS version 4, CMSPI1ugin inherits directly from django.db.models.Model and manages the tree
structure with the two fields parent and position using SQL Common Table Expressions (CTE) which allow re-
cursive SQL statements. Consequently all model fields originating with treebeard are not available in django CMS
va+.

Warning: Django CMS 4 removes the following fields form CMSPIugin:
¢ depth
e numchild

e path

Also, the meaning of the position field has changed. Im django CMS v3 it was unique for each parent value
(including None for plugins at root level). From django CMS v4 on, it is unique for each placeholder and language
entry. Also, positions are counted from 1 to » for all n plugins of a placeholder language combination. There must not
be gaps in the position field (i.e., a missing position value).

Warning: Since the management of the plugin tree happens within the CMS it is important to use the new
placeholder API described in the section Creating and deleting plugin instances to create and delete plugins.

What to change

The good news is that most custom plugins will not require any changes. This is unless they either directly access one
of the django-treebeard fields or they create or delete plugins programmatically.

Replacing access to django-treebeard fields

If your custom plugin accesses django-treebeard field directly, you will have to change your code. How to do this
obviously depends on what your code needs to achieve. Here are some examples:

path

To order a queryset of plugins replace qs.orderby("path") by gs.orderby("position").

88 Chapter 5. Software version requirements and release notes


https://github.com/django-treebeard/django-treebeard
https://docs.djangoproject.com/en/4.2/ref/models/instances/#django.db.models.Model

django cms Documentation, Release 4.1.1

depth

There is no correspondence to the depth field. If needed, it has to be computed:

@property
def depth(self):
if self.parent is None:
return 1
return self.parent.depth + 1

position

Often changes are made at the leaves of the tree. If you happen to know that the parent plugin does not have grant-
children, the quick way to get a django CMS 3 position value is:

plugin.position - plugin.parent.position if plugin.parent else plugin.position

To calculate the position field valid for all cases, you can use this code bit:

@property
def v3position(self):
siblings = CMSPlugin.objects.filter(parent=self.parent).orderby("position")
pos =1
for plugin in siblings:
if plugin == self:
return pos
pos += 1

Creating or deleting plugins programmatically

To create a plugin, first build an instance, then add it to its placeholder:

my_new_plugin = MyPluginModel (parent=None, position=1, my_config="whatever",.
—placeholder=my_placholder)
my_placeholder.add_plugin(my_new_plugin)

This example puts the plugin at the first position if the placeholder. Those shortcuts might help:

Position Meaning
position=parent.position + 1 First child of parent
position=parent.position + n n th child of parent if parent does not have

grand-children
position=placeholder.get_last_plugin_position(languabest'{#ngn in placeholder
+ 1

Warning: Do not use MyPluginModel.objects.create(). It will almost certainly throw a database integrity
exception.

5.2. Django/Python compatibility table 89




django cms Documentation, Release 4.1.1

Creating “universal” plugins

Some packages introduce universal plugins which can be used both on django CMS 3 and django CMS 4 alike. Exam-
ples include djangocms-text-ckeditor or djangocms-frontend.

Here is an excerpt from djangocms-text-ckeditor which needs to be able to create and delete child plugins for text fields.
It adds private static methods to

@staticmethod
def _create_ghost_plugin(placeholder, plugin):
"""CMS version-save function to add a plugin to a placeholder
if hasattr(placeholder, "add_plugin"): # available as of CMS v4
placeholder.add_plugin(plugin)
else: # CMS < v4
plugin.save() # Plugin is created upon save

mirn

Similarly, it deletes plugins:

@staticmethod
def _delete_plugin(plugin):
"""Version-safe plugin delete method"""
placeholder = plugin.placeholder
if hasattr(placeholder, 'delete_plugin'): # since CMS v4
return placeholder.delete_plugin(plugin)
else:
return plugin.delete()

Note: Please consider the different counting schemes for the position field.

Adapting your test suite

Test suites often create pages, add plugins that are to be tested, and publish the pages. Since publishing in django CMS
4 is not part of the core any more, a way updating the test suites is to add a test fixture to your tests that provide publish
and unpublish functionality.

In the tests themselves all page . publish() calls then need to be replaced by self.publis(page) calls to the fixture.

Here’s an example of test fixture (from djangocms-frontend)

from packaging.version import Version

from cms import __version__

DJANGO_CMS4 = Version(__version__) >= Version("4")

class TestFixture:
"""Sets up generic setUp and tearDown methods for tests.

mirn

if DJANGO_CMS4: # CMS V4
def _get_version(self, grouper, version_state, language=None):
language = language or self.language

(continues on next page)

90 Chapter 5. Software version requirements and release notes



https://github.com/django-cms/djangocms-text-ckeditor
https://github.com/django-cms/djangocms-frontend

django cms Documentation, Release 4.1.1

(continued from previous page)

from djangocms_versioning.models import Version

versions = Version.objects.filter_by_grouper(grouper).filter(
state=version_state

)
for version in versions:
if (
hasattr(version.content, "language')
and version.content.language == language
):

return version

def publish(self, grouper, language=None):
from djangocms_versioning.constants import DRAFT

version = self._get_version(grouper, DRAFT, language)
if version is not None:
version.publish(self.superuser)

def unpublish(self, grouper, language=None):
from djangocms_versioning.constants import PUBLISHED

version = self._get_version(grouper, PUBLISHED, language)
if version is not None:
version.unpublish(self.superuser)

def create_page(self, title, **kwargs):
kwargs.setdefault("language", self.language)
kwargs.setdefault('created_by", self.superuser)
kwargs.setdefault("in_navigation", True)
kwargs.setdefault("limit_visibility_in_menu", None)
kwargs.setdefault("menu_title", title)
return create_page(title=title, **kwargs)

def get_placeholders(self, page):
return page.get_placeholders(self.language)

else: # CMS V3
def publish(self, page, language=None):
page.publish(language)

def unpublish(self, page, language=None):
page.unpublish(language)

def create_page(self, title, **kwargs):
kwargs.setdefault("language", self.language)
kwargs.setdefault("menu_title", title)
return create_page(title=title, **kwargs)

def get_placeholders(self, page):
return page.get_placeholders()

5.2.

Django/Python compatibility table 91




django cms Documentation, Release 4.1.1

How to create apphooks

An apphook allows you to attach a Django application to a page. For example, you might have a news application that
you’d like integrated with django CMS. In this case, you can create a normal django CMS page without any content of
its own, and attach the news application to the page; the news application’s content will be delivered at the page’s URL.

All URLs in that URL path will be passed to the attached application’s URL configs.

The Tutorials section contains a basic guide to getting started with apphooks. This document assumes more familiarity
with the CMS generally.

The basics of apphook creation

To create an apphook, create a cms_apps . py file in your application.

The file needs to contain a CMSApp sub-class. For example:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

@apphook_pool.register

class MyApphook (CMSApp) :
app_name = "myapp" # must match the application namespace
name = "My Apphook"

def get_urls(self, page=None, language=None, **kwargs):
return ["myapp.urls"] # replace this with the path to your application's URLs.
—module

Apphooks for namespaced applications

Your application should use namespaced URLs.

In the example above, the application uses the myapp namespace. Your CMSApp sub-class must reflect the applica-
tion’s namespace in the app_name attribute.

The application may specify a namespace by supplying an app_name in its urls.py, or its documentation might advise
that you when include its URLS, you do it thus:

path("myapp/", include("myapp.urls", app_name="myapp"))

If you fail to do this, then any templates in the application that invoke URLSs using the form {% url 'myapp:index’
%3} or views that call (for example) reverse('myapp:index') will throw a NoReverseMatch error.

92 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/topics/http/urls/#topics-http-defining-url-namespaces

django cms Documentation, Release 4.1.1

Apphooks for non-namespaced applications

If you are writing apphooks for third-party applications, you may find one that in fact does not have an application
namespace for its URLs. Such an application is liable to tun into namespace conflicts, and doesn’t represent good
practice.

However if you do encounter such an application, your own apphook for it will need in turn to forgo the app_name
attribute.

Note that unlike apphooks without app_name attributes can be attached only to one page at a time; attempting to apply
them a second time will cause an error. Only one instance of these apphooks can exist.

See Attaching an application multiple times for more on having multiple apphook instances.

Returning apphook URLs manually

Instead of defining the URL patterns in another file myapp/urls.py, it also is possible to return them manually, for
example if you need to override the set provided. An example:

from django.urls import path
from myapp.views import SomeListView, SomeDetailView

class MyApphook (CMSApp) :

def get_urls(self, page=None, language=None, **kwargs):
return [
path("<str:slug>/", SomeDetailView.as_view()),
path("", SomeListView.as_view()),
]

However, it’s much neater to keep them in the application’s urls.py, where they can easily be reused.

Loading new and re-configured apphooks

Certain apphook-related changes require server restarts in order to be loaded.
Whenever you:

¢ add or remove an apphook

* change the slug of a page containing an apphook or the slug of a page which has a descendant with an apphook
the URL caches must be reloaded.

If you have the cms.middleware.utils.ApphookReloadMiddleware installed, which is recommended, the server will do
it for you by re-initialising the URL patterns automatically.

Otherwise, you will need to restart the server manually.

5.2. Django/Python compatibility table 93




django cms Documentation, Release 4.1.1

Using an apphook

Once your apphook has been set up and loaded, you’ll now be able to select the Application that’s hooked into that page
from its Advanced settings.

Note: An apphook won’t actually do anything until the page it belongs to is published. Take note that this also means
all parent pages must also be published.

The apphook attaches all of the apphooked application’s URLSs to the page; its root URL will be the page’s own URL,
and any lower-level URLs will be on the same URL path.

So, given an application with the urls. py for the views index_view and archive_view:

urlpatterns = [
path('archive/', archive_view),
path('', index_view),

]

attached to a page whose URL path is /hello/world/, the views will be exposed as follows:
e index_view at /hello/world/

e archive_view at /hello/world/archive/

Sub-pages of an apphooked page

Important: Don’t add child pages to a page with an apphook.

The apphook “swallows” all URLs below that of the page, handing them over to the attached application. If you have
any child pages of the apphooked page, django CMS will not be able to serve them reliably.

Managing apphooks
Uninstalling an apphook with applied instances

If you remove an apphook class from your system (in effect uninstalling it) that still has instances applied to pages,
django CMS tries to handle this as gracefully as possible:

» Affected pages still maintain a record of the applied apphook; if the apphook class is subsequently reinstated, it
will work as before.

* The page list will show apphook indicators where appropriate.
* The page will otherwise behave like a normal django CMS page, and display its placeholders in the usual way.

« If you save the page’s Advanced settings, the apphook will be removed.

94 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Management commands

You can clear uninstalled apphook instances using the CMS management command uninstall apphooks. For ex-
ample:

python -m manage cms uninstall apphooks MyApphook MyOtherApphook

You can get a list of installed apphooks using the cms [ist; in this case:

python -m manage cms list apphooks

See the Management commands reference for more information.

Adding menus to apphooks

Generally, it is recommended to allow the user to control whether a menu is attached to a page (See Attach Menus for
more on these menus). However, an apphook can be made to do this automatically if required. It will behave just as if
the menu had been attached to the page using its Advanced settings).

Menus can be added to an apphook using the get_menus () method. On the basis of the example above:

#[...]

from myapp.cms_menus import MyAppMenu

class MyApphook (CMSApp) :
#[...]
def get_menus(self, page=None, language=None, **kwargs):
return [MyAppMenu]

Changed in version 3.3: CMSApp.get_menus () replaces CMSApp.menus. The menus attribute is now deprecated and
has been removed in version 3.5.

The menus returned in the get_menus () method need to return a list of nodes, in their get_nodes () methods. Artach
Menus has more information on creating menu classes that generate nodes.

You can return multiple menu classes; all will be attached to the same page:

def get_menus(self, page=None, language=None, **kwargs):
return [MyAppMenu, CategoryMenu]

Managing permissions on apphooks

By default the content represented by an apphook has the same permissions set as the page it is assigned to. So if
for example a page requires the user to be logged in, then the attached apphook and all its URLs will have the same
requirements.

To disable this behaviour set permissions = False on your apphook:

class MyApphook (CMSApp) :
[...]

permissions = False

If you still want some of your views to use the CMS’s permission checks you can enable them via a decorator, cms.
utils.decorators.cms_perms

5.2. Django/Python compatibility table 95




django cms Documentation, Release 4.1.1

Here is a simple example:

from cms.utils.decorators import cms_perms

@cms_perms
def my_view(request, **kw):

If you make your own permission checks in your application, then use the exclude_permissions property of the
apphook:

class MyApphook (CMSApp) :
[...]
permissions = True
exclude_permissions = ["some_nested_app"]

where you provide the name of the application in question

Automatically restart server on apphook changes

As mentioned above, whenever you:
* add or remove an apphook
* change the slug of a page containing an apphook
* change the slug of a page with a descendant with an apphook

The CMS the server will reload its URL caches. It does this by listening for the signal cms.signals.
urls_need_reloading.

Warning: This signal does not actually do anything itself. For automated server restarting you need to implement
logic in your project that gets executed whenever this signal is fired. Because there are many ways of deploying
Django applications, there is no way we can provide a generic solution for this problem that will always work.

The signal is fired after a request - for example, upon saving a page’s settings. If you change and apphook’s setting
via an API the signal will not fire until a subsequent request.

Apphooks and placeholder template tags

It’s important to understand that while an apphooked application takes over the CMS page at that location completely,
depending on how the application’s templates extend other templates, a django CMS {% placeholder %} template
tag may be invoked - but will not work.

96 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

How to manage complex apphook configuration

In How to create apphooks we discuss some basic points of using apphooks. In this document we will cover some more
complex implementation possibilities.

Attaching an application multiple times
Define a namespace at class-level

If you want to attach an application multiple times to different pages, then the class defining the apphook must have an
app_name attribute:

class MyApphook (CMSApp) :
name = _("My Apphook™)
app_name = "myapp"

def get_urls(self, page=None, language=None, **kwargs):
return ["myapp.urls"]

The app_name does three key things:
* It provides the fallback namespace for views and templates that reverse URLSs.
* It exposes the Application instance name field in the page admin when applying an apphook.
* It sets the default apphook instance name (which you’ll see in the Application instance name field).

We'll explain these with an example. Let’s suppose that your application’s views or templates use
reverse('myapp:index') or {% url 'myapp:index' %}.

In this case the namespace of any apphooks you apply must match myapp. If they don’t, your pages using them will
throw up a NoReverseMatch error.

You can set the namespace for the instance of the apphook in the Application instance name field. However, you’ll
need to set that to something different if an instance with that value already exists. In this case, as long as app_name
= "myapp" it doesn’t matter; even if the system doesn’t find a match with the name of the instance it will fall back to
the one hard-wired into the class.

In other words setting app_name correctly guarantees that URL-reversing will work, because it sets the fallback names-
pace appropriately.

Set a nhamespace at instance-level

On the other hand, the Application instance name will override the app_name if a match is found.

This arrangement allows you to use multiple application instances and namespaces if that flexibility is required, while
guaranteeing a simple way to make it work when it’s not.

Django’s Reversing namespaced URLs documentation provides more information on how this works, but the simplified
version is:

1. First, it will try to find a match for the Application instance name.

2. If it fails, it will try to find a match for the app_name.

5.2. Django/Python compatibility table 97



https://docs.djangoproject.com/en/4.2/topics/http/urls/#topics-http-reversing-url-namespaces

django cms Documentation, Release 4.1.1

Apphook configurations

Namespacing your apphooks also makes it possible to manage additional database-stored apphook configuration, on
an instance-by-instance basis.

Basic concepts

To capture the configuration that different instances of an apphook can take, a Django model needs to be created - each
apphook instance will be an instance of that model, and administered through the Django admin in the usual way.

Once set up, an apphook configuration can be applied to to an apphook instance, in the Advanced settings of the page
the apphook instance belongs to:

APPLICATION:

NewsBlog v

Hook application to this page.

APPLICATION CONFIGURATIONS

¥ NewsBlog / blog ¢

The configuration is then loaded in the application’s views for that namespace, and will be used to determined how it
behaves.

Creating an application configuration in fact creates an apphook instance namespace. Once created, the namespace
of a configuration cannot be changed - if a different namespace is required, a new configuration will also need to be
created.

An example apphook configuration

In order to illustrate how this all works, we’ll create a new FAQ application, that provides a simple list of questions and
answers, together with an apphook class and an apphook configuration model that allows it to exist in multiple places
on the site in multiple configurations.

We’ll assume that you have a working django CMS project running already.

Create the new FAQ application

Let us quickly create the new app:

1. Create a new app in your project:

python -m manage startapp faq

2. Create a model for the app config in ““models.py ": The app config will be identified by its namespace.

from django.db import models
from django.utils.translation import gettext_lazy as _

class FagConfigModel (models.Model):
namespace = models.CharField(
_("instance namespace"),
default=None,
max_length=100,

(continues on next page)

98 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

(continued from previous page)

unique=True,

)

paginate_by = models.PositivelIntegerField(
_("paginate size"),
blank=False,
default=5,

3. Create the FAQ model also in models.py: All entries will be assigned to an instance of the app hook.

class Entry(models.Model):

app_config = models.ForeignKey(FaqConfigModel, null=False) # e need to assign.
—.an FAQ entry to its app instance

question = models.TextField(blank=True, default='")

answer = models.TextField()

def __str__(self):

return self.question or "<Empty question>"

class Meta:
verbose_name_plural = 'entries'

4. Create the FAQ CMS app: In the apps’s cms_apps.py create the FagConfig class. This extensions tells
django CMS how to get the app config instances.

from django.core.exceptions import ObjectDoesNotExist
from django.urls import reverse

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

from .models import FagConfigModel

@apphook_pool .register
class FagConfig(CMSApp):
name = "FAQ"
app_config = FaqConfigModel

def get_urls(self, page=None, language=-None, **kwargs):
return ["faq.urls"]

def get_configs(self):
return self.app_config.objects.all()

def get_config(self, namespace):
try:
return self.app_config.objects.get(namespace=namespace)
except ObjectDoesNotExist:
return None

(continues on next page)

5.2. Django/Python compatibility table 99



django cms Documentation, Release 4.1.1

(continued from previous page)

def get_config_add_url(self):
try:
return reverse("admin:{}_{}_add".format(self.app_config._meta.app_label,..
—.self.app_config._meta.model_name))
except AttributeError:
return reverse(
"admin: {}_{}_add". format(self.app_config._meta.app_label, self.app_
—config._meta.module_name)

)

. Add models to the admin interface: Its admin properties are defined in admin.py:

from django.contrib import admin
from . import models
@admin.register(models.Entry)

class EntryAdmin(admin.ModelAdmin):
list_display = (

'question',
'answer',
'app_config',
)
list_filter = (
'app_config',
)

@admin.register(models.FagConfigModel)
class FagConfigAdmin(admin.ModelAdmin):
pass

Create a simple list view in views.py: For the views there is a catch: The view will have to determine which
app instance it is showing. Here’s a short reusable mixin to help with that:

from django.views.generic import ListView
from django.urls import Resolver404, resolve
from django.utils.translation import override

from cms.apphook_pool import apphook_pool
from cms.utils import get_language_from_request

from . import models

def get_app_instance(request):
namespace, config = "", None
if getattr(request, "current_page", None) and request.current_page.application_
—urls:
app = apphook_pool.get_apphook(request.current_page.application_urls)
if app and app.app_config:

(continues on next page)

100

Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

try:
config = None
with override(get_language_from_request(request)):
if hasattr(request, "toolbar") and hasattr(request.toolbar,
~"request_path"):
path = request.toolbar.request_path # If v4 endpoint take,
—request_path from toolbar
else:
path = request.path_info
namespace = resolve(path) .namespace
config = app.get_config(namespace)
except Resolver404:
pass
return namespace, config

class AppHookConfigMixin:
def dispatch(self, request, *args, **kwargs):
# get namespace and config
self.namespace, self.config = get_app_instance(request)
request.current_app = self.namespace
return super().dispatch(request, *args, **kwargs)

def get_queryset(self):
gs = super().get_queryset()
return gs.filter(app_config__namespace=self.namespace)

class IndexView(AppHookConfigMixin, ListView):
model = models.Entry
template_name = 'fag/index.html’

def get_paginate_by(self, queryset):
try:
return self.config.paginate_by
except AttributeError:
return 10

7. Declare the app’s URLSs in urls.py: .. code-block:

from django.urls import path
from . import views

urlpatterns = [
path("", views.IndexView.as_view(), name='index'),

]

8. Finally, create a template for the index view: .. code-block:

{% extends 'base.html' %}

(continues on next page)

5.2. Django/Python compatibility table 101



django cms Documentation, Release 4.1.1

(continued from previous page)

{% block content %}
<h1>Namespace: {{ view.namespace }}</hl>
<dl>
{% for entry in object_list %}
<dt>{{ entry.question }}</dt>
<dd>{{ entry.answer }}</dd>
{% endfor %}
</d1l>

{% if is_paginated %}
<div class="pagination'>
<span class="step-links">

{% if page_obj.has_previous %}
<a href="7?page={{ page_obj.previous_page_number }}">previous</a>

{% else %}
previous

{% endif %}

<span class="current">
Page {{ page_obj.number }} of {{ page_obj.paginator.num_pages }}

</span>

{% if page_obj.has_next %}
<a href="7?page={{ page_obj.next_page_number }}">next</a>
{% else %}
next
{% endif %}
</span>
</div>
{% endif %}
{% endblock %}

Put it all together

Finally, we add "faq" to INSTALLED_APPS, then create and run migrations:

python -m manage makemigrations faq
python -m manage migrate faq

Now we should be all set.

Create two pages with the faq apphook, with different namespaces and different configurations. Also create some
entries assigned to the two namespaces.

You can experiment with the different configured behaviours (in this case, only pagination is available), and the way
that different Entry instances can be associated with a specific apphook.

102 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

How to extend the Toolbar

The django CMS toolbar provides an API that allows you to add, remove and manipulate toolbar items in your own
code. It helps you to integrate django CMS’s frontend editing mode into your application, and provide your users with
a streamlined editing experience.

See also:
e Extending the Toolbar in the tutorial

* Toolbar API reference

Create a cms_toolbars.py file

In order to interact with the toolbar API, you need to create a CMSToolbar sub-class in your own code, and register it.

This class should be created in your application’s cms_toolbars.py file, where it will be discovered automatically
when the Django runserver starts.

You can also use the CMS_TOOLBARS to control which toolbar classes are loaded.

Use the high-level toolbar APIs

You will find a toolbar object in the request in your views, and you may be tempted to do things with it, like:

toolbar = request.toolbar
toolbar.add_modal_button('Do not touch', dangerous_button_url)

- but you should not, in the same way that it is not recommended to poke tweezers into electrical sockets just because
you can.

Instead, you should only interact with the toolbar using a CMSToolbar class, and the documented APIs for managing
it.

Similarly, although a generic add_item() method is available, we provide higher-level methods for handling specific
item types, and it is always recommended that you use these instead.

Define and register a CMSToolbar sub-class

from cms.toolbar_base import CMSToolbar
from cms.toolbar_pool import toolbar_pool

class MyToolbarClass(CMSToolbar):
[...]

toolbar_pool.register(MyToolbarClass)

The cms. toolbar_pool.ToolbarPool.register method can also be used as a decorator:

@toolbar_pool.register
class MyToolbarClass(CMSToolbar):
[...]

5.2. Django/Python compatibility table 103




django cms Documentation, Release 4.1.1

Populate the toolbar

Two methods are available to control what will appear in the django CMS toolbar:
* populate(), which is called before the rest of the page is rendered
* post_template_populate(), which is called after the page’s template is rendered

The latter method allows you to manage the toolbar based on the contents of the page, such as the state of plugins or
placeholders, but unless you need to do this, you should opt for the more simple populate () method.

class MyToolbar(CMSToolbar):
def populate(self):

# add items to the toolbar

Now you have to decide exactly what items will appear in your toolbar. These can include:
* menus
* buttons and button lists

¢ various other toolbar items

Add links and buttons to the toolbar

You can add links and buttons as entries to a menu instance, using the various add_ methods.

Action Text link variant Button variant

Open link add_link_item() add_button()

Open link in sideframe | add_sideframe_item() | add_sideframe_button()
Open link in modal add_modal_item() add_modal_button()
Ajax POST action add_ajax_item()

The basic form for using any of these is:

def populate(self):

self.toolbar.add_link_item( # or add_button(), add_modal_item(), etc
name='A link',
url=url

)

Note that although these toolbar items may take various positional arguments in their methods, we strongly recommend
using named arguments, as above. This will help ensure that your own toolbar classes and methods survive upgrades.
See the reference documentation linked to in the table above for details of the signature of each method.

104 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Opening a URL in an iframe

A common case is to provide a URL that opens in a sideframe or modal dialog on the same page. Administration... in
the site menu, that opens the Django admin in a sideframe, is a good example of this. Both the sideframe and modal
are HTML iframes.

A typical use for a sideframe is to display an admin list (similar to that used in the tutorial example):

from cms.utils.urlutils import admin_reverse

[...]
class PollToolbar(CMSToolbar):
def populate(self):
self.toolbar.add_sideframe_item(
name='Poll list',

url=admin_reverse('polls_poll_changelist"')

)

A typical use for a modal item is to display the admin for a model instance:

self.toolbar.add_modal_item(name='Add new poll', url=admin_reverse('polls_poll_add'))

However, you are not restricted to these examples, and you may open any suitable resource inside the modal or side-
frame. Note that protocols may need to match and the requested resource must allow it.

Adding buttons to the toolbar

A button is a sub-class of cms. toolbar.items.Button

Buttons can also be added in a list - a ButtonList is a group of visually-linked buttons.

def populate(self):

button_list = self.toolbar.add_button_list()
button_list.add_button(name='Button 1', url=url_1)
button_list.add_button(name="'Button 2', url=url_2)

Create a toolbar menu

The text link items described above can also be added as nodes to menus in the toolbar.

A menu is an instance of cms.toolbar.items.Menu. In your CMSToolbar sub-class, you can either create a
menu, or identify one that already exists (in order to add new items to it, for example), in the populate() or
post_template_populate () methods, using get_or_create_menu().

def populate(self):
menu = self.toolbar.get_or_create_menu(
key="polls_cms_integration',
verbose_name="Polls'

)

5.2. Django/Python compatibility table 105




django cms Documentation, Release 4.1.1

The key is unique menu identifier; verbose_name is what will be displayed in the menu. If you know a menu already
exists, you can obtain it with get_menu ().

Note: It’s recommended to namespace your key with the application name. Otherwise, another application could
unexpectedly interfere with your menu.

Once you have your menu, you can add items to it in much the same way that you add them to the toolbar. For example:

def populate(self):
menu = [...]

menu.add_sideframe_item(
name="'Poll list',
url=admin_reverse('polls_poll_changelist')

To add a menu divider

add_break () will place a Break, a visual divider, in a menu list, to allow grouping of items. For example:

menu.add_break(identifier="settings_section')

To add a sub-menu

A sub-menu is a menu that belongs to another Menu:

def populate(self):
menu = [...]

submenu = menu.get_or_create_menu(
key="sub_menu_key"',
verbose_name='My sub-menu'

)

You can then add items to the sub-menu in the same way as in the examples above. Note that a sub-menu is an instance
of SubMenu, and may not itself have further sub-menus.

Finding existing toolbar items
get_or_create_menu() and get_menu()

A number of methods and useful constants exist to get hold of and manipulate existing toolbar items. For example, to
find (using get_menu()) and rename the Site menu:

from cms.cms_toolbars import ADMIN_MENU_IDENTIFIER
class ManipulativeToolbar(CMSToolbar):

def populate(self):

(continues on next page)

106 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

admin_menu = self.toolbar.get_menu(ADMIN_MENU_IDENTIFIER)

admin_menu.name = "Site"

get_or_create_menu() will equally well find the same menu, and also has the advantages that:

* it can update the item’s attributes itself (self.toolbar.get_or_create_menu(ADMIN_MENU_IDENTIFIER,
'Site'))

« if the item doesn’t exist, it will create it rather than raising an error.

find_items() and find_first(

Search for items by their type:

def populate(self):

self.toolbar.find_items(item_type=LinkItem)

will find all LinkItems in the toolbar (but not for example in the menus in the toolbar - it doesn’t search other items
in the toolbar for items of their own).

find_items () returns a list of ItemSearchResult objects; find_first () returns the first object in that list. They
share similar behaviour so the examples here will use find_items () only.

The item_type argument is always required, but you can refine the search by using their other attributes, for example:

self.toolbar.find_items(Menu, disabled=True))

Note that you can use these two methods to search Menu and SubMenu classes for items too.

Control the position of items in the toolbar

Methods to add menu items to the toolbar take an optional position argument, that can be used to control where the
item will be inserted.

By default (position=None) the item will be inserted after existing items in the same level of the hierarchy (a new
sub-menu will become the last sub-menu of the menu, a new menu will be become the last menu in the toolbar, and so
on).

A position of ® will insert the item before all the others.

If you already have an object, you can use that as a reference too. For example:

def populate(self):

link = self.toolbar.add_link_item('Link', url=link_url)
self.toolbar.add_button('Button', url=button_url, position=1ink)

will add the new button before the link item.

Finally, you can use a ItemSearchResult as a position:

5.2. Django/Python compatibility table 107




django cms Documentation, Release 4.1.1

def populate(self):
self.toolbar.add_link_item('Link', url=link_url)
link = self.toolbar.find_first(LinkItem)

self.toolbar.add_button('Button', url=button_url, position=1ink)

and since the TtemSearchResult can be cast to an integer, you could even do:

self.toolbar.add_button(‘Button’, url=button_url, position=link+1)

Control how and when the toolbar appears

By default, your CMSToolbar sub-class will be active (i.e. its populate methods will be called) in the toolbar on
every page, when the user is_staff. Sometimes however a CMSToolbar sub-class should only populate the toolbar
when visiting pages associated with a particular application.

A CMSToolbar sub-class has a useful attribute that can help determine whether a toolbar should be activated.
is_current_app is True when the application containing the toolbar class matches the application handling the
request.

This allows you to activate it selectively, for example:

def populate(self):

if not self.is_current_app:
return

If your toolbar class is in another application than the one you want it to be active for, you can list any applications it
should support when you create the class:

supported_apps = ['some_app']

supported_apps is a tuple of application dotted paths (e.g: supported_apps = ('whatever.path.app',
'another.path.app').

The attribute app_path will contain the name of the application handling the current request - if app_path is in
supported_apps, then is_current_app will be True.

Modifying an existing toolbar

If you need to modify an existing toolbar (say to change an attribute or the behaviour of a method) you can do this by
creating a sub-class of it that implements the required changes, and registering that instead of the original.

The original can be unregistered using toolbar_pool.unregister(), as in the example below. Alternatively if you
originally invoked the toolbar class using CMS_TOOLBARS, you will need to modify that to refer to the new one instead.

An example, in which we unregister the original and register our own:

from cms.toolbar_pool import toolbar_pool
from third_party_app.cms_toolbar import ThirdPartyToolbar

(continues on next page)

108 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

@toolbar_pool.register
class MyBarToolbar(ThirdPartyToolbar):
[...]

toolbar_pool.unregister(ThirdPartyToolbar)

Detecting URL changes to an object

If you want to watch for object creation or editing of models and redirect after they have been added or changed add a
watch_models attribute to your toolbar.

Example:

class PollToolbar(CMSToolbar):
watch_models = [Poll]

def populate(self):

After you add this every change to an instance of Poll via sideframe or modal window will trigger a redirect to the
URL of the poll instance that was edited, according to the toolbar status:

¢ in draft mode the get_draft_url() is returned (or get_absolute_url() if the former does not exist)

¢ in live mode, and the method exists, get_public_url () is returned.

Frontend

If you need to interact with the toolbar, or otherwise account for it in your site’s frontend code, it provides CSS and
JavaScript hooks for you to use.

It will add various classes to the page’s <html> element:
* cms-ready, when the toolbar is ready
* cms-toolbar-expanded, when the toolbar is fully expanded
e cms-toolbar-expanding and cms-toolbar-collapsing during toolbar animation.

The toolbar also fires a JavaScript event called cms-ready on the document. You can listen to this event using jQuery:

CMS.$(document) .on('cms-ready', function O { ... });

5.2. Django/Python compatibility table 109




django cms Documentation, Release 4.1.1

How to customise navigation menus

In this document we discuss three different way of customising the navigation menus of django CMS sites.
1. Menus: Statically extend the menu entries
2. Attach Menus: Attach your menu to a page.

3. Navigation Modifiers: Modify the whole menu tree

Menus

Create a cms_menus . py in your application, with the following:

from menus.base import Menu, NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import gettext_lazy as _

class TestMenu(Menu):

def get_nodes(self, request):
nodes = []
n = NavigationNode(_('sample root page'), "/", 1)
n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
n3 NavigationNode(_('sample account page'), "/hello/", 3)
n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
nodes.append(n)
nodes.append(n2)
nodes.append(n3)
nodes.append(n4)
return nodes

menu_pool.register_menu(TestMenu)

Note: Up to version 3.1 this module was named menu.py. Please update your existing modules to the new naming
convention. Support for the old name will be removed in version 3.5.

If you refresh a page you should now see the menu entries above. The get_nodes function should return a list of
NavigationNode instances. A menus.base.NavigationNode takes the following arguments:

title
Text for the menu node

url
URL for the menu node link

id
A unique id for this menu

parent_id=None
If this is a child of another node, supply the id of the parent here.

parent_namespace=None
If the parent node is not from this menu you can give it the parent namespace. The namespace is the name of the
class. In the above example that would be: TestMenu

110 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

attr=None
A dictionary of additional attributes you may want to use in a modifier or in the template

visible=True
Whether or not this menu item should be visible

Additionally, each menus.base.NavigationNode provides a number of methods which are detailed in the
NavigationNode API references.

Customise menus at runtime

To adapt your menus according to request dependent conditions (say: anonymous/logged in user), you can use Navi-
gation Modifiers or you can make use of existing ones.

For example it’s possible to add {'visible_for_anonymous': False}/{'visible_for_authenticated':
False} attributes recognised by the django CMS core AuthVisibility modifier.

Complete example:

class UserMenu(Menu) :
def get_nodes(self, request):
return [

NavigationNode(_("Profile"), reverse(profile), 1, attr={'visible_for_
—anonymous': False}),

NavigationNode(_("Log in"), reverse(login), 3, attr={'visible_for_
—authenticated': False}l),

NavigationNode(_("Sign up"), reverse(logout), 4, attr={'visible_for_
—authenticated': False}),

NavigationNode(_("Log out"), reverse(logout), 2, attr={'visible_for_
—anonymous': False}),

]

Attach Menus

Classes that extend from menus. base.Menu always get attached to the root. But if you want the menu to be attached
to a CMS Page you can do that as well.

Instead of extending from Menu you need to extend from cms.menu_bases. CSAttachMenu and you need to define
a name.

We will do that with the example from above:

from menus.base import NavigationNode

from menus.menu_pool import menu_pool

from django.utils.translation import gettext_lazy as _
from cms.menu_bases import CMSAttachMenu

class TestMenu(CMSAttachMenu) :
name = _("test menu")
def get_nodes(self, request):

nodes = []
n = NavigationNode(_('sample root page'), "/", 1)

(continues on next page)

5.2. Django/Python compatibility table 111




django cms Documentation, Release 4.1.1

(continued from previous page)

n2 NavigationNode(_('sample settings page'), "/bye/", 2)

n3 NavigationNode(_('sample account page'), "/hello/", 3)

n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
nodes . append(n)

nodes.append(n2)

nodes.append(n3)

nodes . append(n4)

return nodes

menu_pool.register_menu(TestMenu)

Now you can link this Menu to a page in the Advanced tab of the page settings under attached menu.

Navigation Modifiers

Navigation Modifiers give your application access to navigation menus.

A modifier can change the properties of existing nodes or rearrange entire menus.

Example use-cases

A simple example: you have a news application that publishes pages independently of django CMS. However, you
would like to integrate the application into the menu structure of your site, so that at appropriate places a News node
appears in the navigation menu.

In another example, you might want a particular attribute of your Pages to be available in menu templates. In order to
keep menu nodes lightweight (which can be important in a site with thousands of pages) they only contain the minimum
attributes required to generate a usable menu.

In both cases, a Navigation Modifier is the solution - in the first case, to add a new node at the appropriate place, and in
the second, to add a new attribute - on the attr attribute, rather than directly on the NavigationNode, to help avoid
conflicts - to all nodes in the menu.

How it works

Place your modifiers in your application’s cms_menus. py.
To make your modifier available, it then needs to be registered with menus.menu_pool .menu_pool.
Now, when a page is loaded and the menu generated, your modifier will be able to inspect and modify its nodes.

Here is an example of a simple modifier that places each Page’s changed_by attribute in the corresponding
NavigationNode:

from menus.base import Modifier
from menus.menu_pool import menu_pool

from cms.models import Page
class MyExampleModifier (Modifier):

mren

This modifier makes the changed_by attribute of a page

(continues on next page)

112 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

accessible for the menu system.
def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):
# only do something when the menu has already been cut
if post_cut:
# only consider nodes that refer to cms pages
# and put them in a dict for efficient access
page_nodes = {n.id: n for n in nodes if n.attr["is_page"]}
# retrieve the attributes of interest from the relevant pages
pages = Page.objects.filter(id__in=page_nodes.keys()).values('id', 'changed_
—by")
# loop over all relevant pages
for page in pages:
# take the node referring to the page
node = page_nodes[page['id']]
# put the changed_by attribute on the node
node.attr["changed_by"] = page['changed_by']
return nodes

menu_pool.register_modifier (MyExampleModifier)

It has a method modi £y () that should return a list of NavigationNode instances. modify () should take the following
arguments:

request
A Django request instance. You want to modify based on sessions, or user or permissions?

nodes
All the nodes. Normally you want to return them again.

namespace
A Menu Namespace. Only given if somebody requested a menu with only nodes from this namespace.

root_id
Was a menu request based on an ID?

post_cut
Every modifier is called two times. First on the whole tree. After that the tree gets cut to only show the nodes
that are shown in the current menu. After the cut the modifiers are called again with the final tree. If this is the
case post_cut is True.

breadcrumb
Is this a breadcrumb call rather than a menu call?

Here is an example of a built-in modifier that marks all node levels:

class Level (Modifier):

e

marks all node levels

o

post_cut = True

def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb) :
if breadcrumb:
return nodes
for node in nodes:

(continues on next page)

5.2. Django/Python compatibility table 113




django cms Documentation, Release 4.1.1

(continued from previous page)

if not node.parent:
if post_cut:
node.menu_level = 0
else:
node.level = 0
self.mark_levels(node, post_cut)
return nodes

def mark_levels(self, node, post_cut):
for child in node.children:
if post_cut:
child.menu_level = node.menu_level + 1
else:
child.level = node.level + 1
self.mark_levels(child, post_cut)

menu_pool.register_modifier(Level)

Performance issues in menu modifiers

Navigation modifiers can quickly become a performance bottleneck. Each modifier is called multiple times: For the
breadcrumb (breadcrumb=True), for the whole menu tree (post_cut=False), for the menu tree cut to the visible part
(post_cut=True) and perhaps for each level of the navigation. Performing inefficient operations inside a navigation
modifier can hence lead to big performance issues. Some tips for keeping a modifier implementation fast:

* Specify when exactly the modifier is necessary (in breadcrumb, before or after cut).
* Only consider nodes and pages relevant for the modification.

» Perform as less database queries as possible (i.e. not in a loop).

* In database queries, fetch exactly the attributes you are interested in.

* If you have multiple modifications to do, try to apply them in the same method.

New in version 3.2.

How to implement content creation wizards

django CMS offers a framework for creating ‘wizards’ - helpers - for content editors.
They provide a simplified workflow for common tasks such as creating a new page.

A django CMS Page wizard already exists, but you can create your own for other content types very easily.

114 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Create a content-creation wizard

Creating a CMS content creation wizard for your own module is fairly easy.

To begin, create a file in the root level of your module called forms.py to create your form(s):

# my_apps/forms.py
from django import forms

class MyAppWizardForm(forms.ModelForm) :
class Meta:
model = MyApp
exclude = []

Now create another file in the root level called cms_wizards.py. In this file, import Wizard as follows:

from cms.wizards.wizard_base import Wizard

Then, simply subclass Wizard and instantiate it.

Note: Registering a wizard with the wizard_pool is no longer the preferred way to register a wizard. Since django
CMS version 4 django CMS keeps track of wizard using cms_config.py.

If you were to do this for MyApp, it might look like this:

# my_apps/cms_wizards.py

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

from .forms import MyAppWizardForm

class MyAppWizard(Wizard):
pass

my_app_wizard = MyAppWizard(
title="New MyApp",
weight=200,
form=MyAppWizardForm,
description="Create a new MyApp instance",

)

wizard_pool.register(my_app_wizard)

Note: If your model doesn’t define a get_absolute_url function then your wizard will require a get_success_url
method.

class MyAppWizard(Wizard):

def get_success_url(self, obj, **kwargs):

o

(continues on next page)

5.2. Django/Python compatibility table 115




django cms Documentation, Release 4.1.1

(continued from previous page)

This should return the URL of the created object, «obj».
if 'language' in kwargs:
with force_language(kwargs['language']):
url = obj.get_absolute_url()
else:
url = obj.get_absolute_url()

return url

That’s it!

Note: The module name cms_wizards is special, in that any such-named modules in your project’s Python path
will automatically be loaded, triggering the registration of any wizards found in them. Wizards may be declared and
registered in other modules, but they might not be automatically loaded.

The above example is using a Mode1Form, but you can also use forms . Form. In this case, you must provide the model
class as another keyword argument when you instantiate the Wizard object.

For example:

# my_apps/forms.py
from django import forms

class MyAppWizardForm(forms.Form) :
name = forms.CharField()

# my_apps/cms_wizards.py

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

from .forms import MyAppWizardForm
from .models import MyApp

class MyAppWizard(Wizard):
pass

my_app_wizard = MyAppWizard(
title="New MyApp",
weight=200,
form=MyAppWizardForm,
model=MyApp,
description="Create a new MyApp instance",

)

wizard_pool.register(my_app_wizard)

You must subclass cms.wizards.wizard_base.Wizard to use it. This is because each wizard’s uniqueness is de-

116 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

termined by its class and module name.
See the Reference section on wizards for technical details of the wizards API.

New in version 4.1.

How to create an admin class for a grouper model
What is a grouper model?

It’s an reusable abstract structural pattern, that is in django CMS used to separate language independent and language
specific content.

django CMS defines grouper-content structure for Page-PageContent as follows:
* The Page is the grouper model which represents base unit, that can have multiple content objects attached

» The PageContent is the content model which represents page content that can be different for its grouping field
- language in our case. It also includes the placeholders for the frontend editor.

This mechanism ensures that language-independent properties of a page, such as position in the page tree or permis-
sions, are collected at the grouper model while language-specific content is collected in the content model.

Note: This pattern is relevant for django CMS Versioning since it versions the content objects and not the grouper
objects.

To this end, if you want to create models that should be versionable like the PageContent of a Page objects you need
to define a grouper and a content model.

Extra grouping fields define fields of the content model by which they are grouped: PageContent uses language
as an extra grouping field. This means that one Page object can have multiple PageContent objects assign to which
differ in their language.

If not extra grouping fields are given each grouper object can have at most one content object assigmed to it.

The language field is a typical (but not necessary) extra grouping field.

Administrating grouper models

To simplify creation of grouper content models, django CMS provides support for both the model admin class of the
grouper model and the change and add forms of the content model.

In this scenario you will register a model admin for the grouper model and it will provide the user with the ability to
view, change and add content objects, too. You will not necessarily need to add a model admin class for the content
model at all (with the possible exception of a redirecting stub to allow third party apps to reverse admin views for the
content model, too, see below).

To create a model admin class for a grouper model put the following code in your admin.py:

from cms.admin.utils import GrouperModelAdmin

class MyGrouperAdmin(GrouperModelAdmin):
# Declare content model
content_model = MyContent

(continues on next page)

5.2. Django/Python compatibility table 117




django cms Documentation, Release 4.1.1

(continued from previous page)

# Add language tabs to change and add views
extra_grouping_fields = ("language",)
# Add grouper and content fields to change list view
# Add preview and settings action to change list view
list_display = (
"field_in_grouper_model",
"content__field_in_content_model",
"admin_list_actions",

The property content_model defines which model is used as the content model. If you do not specify a
content_model, django CMS will look for a model named like the grouper model but with “Content” appended.
The default content model for Post would be PostContent.

The content model needs to have a foreign key pointing to the grouper model. The first foreign key found is assumed
to be the field by which the content objects are assigned to their grouper objects. If you have multiple foreign keys to
the grouper model, please specify content_related_field.

For this example there is only language as extra grouping field declared. You only have to proviude tuple of
extra_grouping_fields if you have any.

Note: All fields serving as extra grouping fields must be part of the admin’s fieldsets setting for GrouperModelAdmin
to work properly. In the change form the fields will be invisible.

Change list view

For the list display GrouperModelAdmin provides additional fields from the content model:
content__{content_model_field_name}. Those fields can be used in list_display just as grouper model
fields and will automatically show the content of the currently selected grouping fields.

Finally, GrouperModelAdmin provides two action buttons for each entry in the change list view:
* to preview the content model in the frontend editor
* to change the settings (i.e., go to the change view of the grouper object)

These are for convenience and appear as soon as admin_list_actions is added to the 1ist_display attribute.

Example

This is an example (taken from django CMS alias) on how a grouper admin might look like:

from cms.admin.utils import GrouperModelAdmin

@admin.register(Alias)
class AliasAdmin(GrouperModelAdmin):
list_display = ["content__name", "category", "admin_list_actions"]
list_display_links = None # With action buttons a link is not needed
list_filter = (
SiteFilter,
CategoryFilter,

(continues on next page)

118 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

) # Custom filters
fields = (
"content__name",
"category",
"site",
"content__language",
) # feeds into fieldsets
readonly_fields = ("static_code",)
form = AliasGrouperAdminForm # Custom admin form
extra_grouping_fields = ("language",) # Language as grouping field
EMPTY_CONTENT_VALUE = mark_safe(
_("<i>Missing language</i>")
) # Label for missing content objects

Other extra grouping fields (besides language)

The standard templates of django CMS will work with 1anguage as an extra grouping field out of the box:
* It creates a dropdown to switch languages for the admin’s change list view.
* It creates tabs to switch languages for the admin’s change and add views.

To use other grouping fields you will have to do two things:

1. You will need to supply templates for the change list view and the change and add views that render correspond-
ing dropdowns or other ways of selecting which content is currently being viewed.

2. You will need to provide context for the templates to render the valid choices.

Providing your own templates

To show a selector for your additional grouping field you need to overwrite both the change_list_template and
change_form_template. Your templates can extend the default templates. Let’s say you have “region” as an addi-
tional grouping field. For the change list template this might look like this:

{% extends "admin/cms/grouper/change_list.html" %}
{% block language_tabs %}
{# Here goes the region mark-up #}
{% if region_dropdown %}
<div class="region-selector">

</div>
{% endif %}
{{ block.super }}
{% endblock %}

For the change form template this might look like this:

{% extends "admin/cms/grouper/change_form.html" %}
{% block search %}
{# Here goes the region mark-up #}
{% if "region" in cl.model_admin.extra_grouping_fields %}

(continues on next page)

5.2. Django/Python compatibility table 119



https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin.change_list_template
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin.change_form_template

django cms Documentation, Release 4.1.1

(continued from previous page)

<div class="region-selector">

</div>
{% endif %}
{{ block.super }}
{% endblock %}

Providing the required context

To provide the required context for your additional grouping model, you will have to implement two methods in your
grouper model admin.

from cms.admin.utils import GrouperModelAdmin

class MyGrouperAdmin(GrouperModelAdmin) :
model = MyModel
extra_grouping_fields = ("region",)

def changelist_view(request, extra_context=None):
Extra context for changelist_view"""
my_context = {...} # Add context on region grouper
return super().changelist_view(
request, extra_context={**(extra_context or {}), **my_context}

o

)

def get_extra_context(self, request, obj_id=None):
Extra context for add_view and change_view"""
my_context = {...} # Add context on region grouper
return {
**super() .get_extra_context(request, obj_id),
“*my_context,

o

Consider that the context will require a set of values your additional grouping field can take. In the region example this
might be all_regions = {"americas": _("Americas"), "europe": _("Europe"), ...}.

How to extend Page & PageContent models

You can extend the cms.models.pagemodel.Page and cms.models.contentmodels.PageContent models
with your own fields (e.g. adding an icon for every page) by using the extension models: cms.extensions.
PageExtension and cms.extensions.PageContentExtension, respectively.

Note: Changed in version 4.1: In django CMS the PageContent model used to be called Title. Since django CMS
4.1 aTitleExtension has become PageContentExtension

120 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

PageContent vs Page extensions

The difference between a page extension and a page content extension is related to the difference between the cms.
models.pagemodel.Page and cms.models.contentmodels.PageContent models.

* PageExtension: use to add fields that should have the same values for the different language versions of a page
- for example, an icon.

* PageContentExtension: use to add fields that should have language-specific values for different language
versions of a page - for example, keywords.

Implement a basic extension

Three basic steps are required:
¢ add the extension model
¢ add the extension admin

¢ add a toolbar menu item for the extension

Page model extension example
The model

To add a field to the Page model, create a class that inherits from cms.extensions.PageExtension. Your class
should live in one of your applications’ models. py (or module).

Note: Since PageExtension (and PageContentExtension) inherit from django.db.models.Model, you are
free to add any field you want but make sure you don’t use a unique constraint on any of your added fields because
uniqueness prevents the copy mechanism of the extension from working correctly. This means that you can’t use one-
to-one relations on the extension model.

Finally, you’ll need to register the model using extension_pool.

Here’s a simple example which adds an icon field to the page:

from django.db import models
from cms.extensions import PageExtension
from cms.extensions.extension_pool import extension_pool

class IconExtension(PageExtension):
image = models.ImageField(upload_to="icons')

extension_pool.register(IconExtension)

Of course, you will need to make and run a migration for this new model.

5.2. Django/Python compatibility table 121




django cms Documentation, Release 4.1.1

The admin

To make your extension editable, you must first create an admin class that sub-classes cms.extensions.
PageExtensionAdmin. This admin handles page permissions.

Continuing with the example model above, here’s a simple corresponding PageExtensionAdmin class:

from django.contrib import admin
from cms.extensions import PageExtensionAdmin

from .models import IconExtension
class IconExtensionAdmin(PageExtensionAdmin):
pass

admin.site.register(IconExtension, IconExtensionAdmin)

Since PageExtensionAdmin inherits from ModelAdmin, you’ll be able to use the normal set of Django ModelAdmin
properties appropriate to your needs.

Note: Note that the field that holds the relationship between the extension and a CMS Page is non-editable, so it does
not appear directly in the Page admin views. This may be addressed in a future update, but in the meantime the toolbar
provides access to it.

The toolbar item

You’ll also want to make your model editable from the cms toolbar in order to associate each instance of the extension
model with a page.

To add toolbar items for your extension create a file named cms_toolbars. py in one of your apps, and add the relevant
menu entries for the extension on each page.

Here’s a simple version for our example. This example adds a node to the existing Page menu, called Page icon. When
selected, it will open a modal dialog in which the Page icon field can be edited.

from cms.toolbar_pool import toolbar_pool

from cms.extensions.toolbar import ExtensionToolbar
from django.utils.translation import gettext_lazy as _
from .models import IconExtension

@toolbar_pool.register

class IconExtensionToolbar(ExtensionToolbar):
# defines the model for the current toolbar
model = IconExtension

def populate(self):
# setup the extension toolbar with permissions and sanity checks

current_page_menu = self._setup_extension_toolbar()

# if it's all ok

(continues on next page)

122 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

if current_page_menu:
# retrieves the instance of the current extension (if any) and the toolbar.
—1tem URL

page_extension, url = self.get_page_extension_admin()

if url:
# adds a toolbar item in position 0 (at the top of the menu)
current_page_menu.add_modal_item(_('Page Icon'), url=url,

disabled=not self.toolbar.edit_mode_active, position=0)

PageContent model extension example

In this example, we’ll create a Rating extension field, that can be applied to each PageContent, in other words, to
each language version of each Page.

Note: Please refer to the more detailed discussion above of the Page model extension example, and in particular to the
special notes.

The model

from django.db import models
from cms.extensions import PageContentExtension
from cms.extensions.extension_pool import extension_pool

class RatingExtension(PageContentExtension):
rating = models.IntegerField()

extension_pool.register(RatingExtension)

The admin

from django.contrib import admin
from cms.extensions import PageContentExtensionAdmin
from .models import RatingExtension

class RatingExtensionAdmin(PageContentExtensionAdmin):
pass

admin.site.register(RatingExtension, RatingExtensionAdmin)

5.2. Django/Python compatibility table 123




django cms Documentation, Release 4.1.1

The toolbar item

In this example, we need to loop over the page contents for the page, and populate the menu with those.

from cms.toolbar_pool import toolbar_pool
from cms.extensions.toolbar import ExtensionToolbar
from django.utils.translation import gettext_lazy as _
from .models import RatingExtension
from cms.utils import get_language_list # needed to get the page's languages
@toolbar_pool.register
class RatingExtensionToolbar(ExtensionToolbar):
# defines the model for the current toolbar
model = RatingExtension

def populate(self):
# setup the extension toolbar with permissions and sanity checks
current_page_menu = self._setup_extension_toolbar()

# if it's all ok
if current_page_menu and self.toolbar.edit_mode_active:
# create a sub menu labelled "Ratings" at position 1 in the menu
sub_menu = self._get_sub_menu(
current_page_menu, 'submenu_label', 'Ratings', position=1

)

# we now need to get the pagecontent_set (i.e. different language page.
—contents)

# for this page

page = self._get_page()

page_contents = page.pagecontent_set(manager="admin_manager").latest_
—.content (language__in=get_language_list(page.node.site_id))

# create a 3-tuple of (title_extension, url, title)
nodes = [
(*self.get_page_content_extension_admin(page_content), page_content.

—~title)
for page_content in page_contents
1
# cycle through the list of nodes
for title_extension, url, title in nodes:
# adds toolbar items
sub_menu. add_modal_item(
'Rate %s' % title, url=url, disabled=not self.toolbar.edit_mode_
—,active

124 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Using extensions
In templates

To access a page extension in page templates you can simply access the appropriate related_name field that is now
available on the Page object.

Page extensions

As per the normal related_name naming mechanism, the appropriate field to access is the same as your PageExtension
model name, but lowercased. Assuming your Page Extension model class is IconExtension, the relationship to the
page extension model will be available on page.iconextension. From there you can access the extra fields you
defined in your extension, so you can use something like:

{% load static %}
{# rest of template omitted ... #}
{% if request.current_page.iconextension %}

<img src="{ tatic request.current_page.iconextension.image.url %}">
{% endif %}

where request.current_page is the normal way to access the current page that is rendering the template.

It is important to remember that unless the operator has already assigned a page extension to every page, a page may
not have the iconextension relationship available, hence the use of the {% if ... %}...{% endif %} above.

PageContent extensions

In order to retrieve a page content extension within a template, get the PageContent object using request.
current_page.get_pagecontent_obj. Using the example above, we could use:

{{ request.current_page.get_pagecontent_obj.ratingextension.rating }}

With menus

Like most other Page attributes, extensions are not represented in the menu NavigationNodes, and therefore menu
templates will not have access to them by default.

In order to make the extension accessible, you’ll need to create a menu modifier (see the example provided) that does
this.

Each page extension instance has a one-to-one relationship with its page. Get the extension by using the reverse relation,
along the lines of extension = page.yourextensionlowercased, and place this attribute of page on the node -
as (for example) node. extension.

In the menu template the icon extension we created above would therefore be available as child.extension.icon.

5.2. Django/Python compatibility table 125




django cms Documentation, Release 4.1.1

Handling relations

If your PageExtension or PageContentExtension includes a ForeignKey from another model or includes a Many-
ToManyField, you should also override the method copy_relations(self, oldinstance, language) so that
these fields are copied appropriately when the CMS makes a copy of your extension to support versioning, etc.

Here’s an example that uses a ManyToManyField

from django.db import models
from cms.extensions import PageExtension
from cms.extensions.extension_pool import extension_pool

class MyPageExtension(PageExtension):
page_categories = models.ManyToManyField(Category, blank=True)
def copy_relations(self, oldinstance, language):
for page_category in oldinstance.page_categories.all():
page_category.pk = None
page_category.mypageextension = self

page_category.save()

extension_pool.register(MyPageExtension)

Complete toolbar API

The example above uses the Simplified Toolbar API.

If you need complete control over the layout of your extension toolbar items you can still use the low-level API to edit
the toolbar according to your needs:

from cms.api import get_page_draft

from cms.toolbar_pool import toolbar_pool

from cms.toolbar_base import CMSToolbar

from cms.utils import get_cms_setting

from cms.utils.page_permissions import user_can_change_page
from django.urls import reverse, NoReverseMatch

from django.utils.translation import gettext_lazy as _
from .models import IconExtension

@toolbar_pool.register
class IconExtensionToolbar(CMSToolbar):
def populate(self):
# always use draft if we have a page
self.page = get_page_draft(self.request.current_page)

if not self.page:
# Nothing to do

return

if user_can_change_page(user=self.request.user, page=self.page):

(continues on next page)

126 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

try:
icon_extension = IconExtension.objects.get(extended_object_id=self.page.
—id)
except IconExtension.DoesNotExist:
icon_extension = None
try:
if icon_extension:
url = reverse('admin:myapp_iconextension_change', args=(icon_
—.extension.pk,))
else:
url = reverse('admin:myapp_iconextension_add') + '?7extended_object=
" % self.page.pk
except NoReverseMatch:
# not in urls
pass
else:
not_edit_mode = not self.toolbar.edit_mode_active
current_page_menu = self.toolbar.get_or_create_menu('page')
current_page_menu.add_modal_item(_('Page Icon'), url=url, disabled=not_
—edit_mode)

Now when the operator invokes “Edit this page...” from the toolbar, there will be an additional menu item Page Icon
... (in this case), which can be used to open a modal dialog where the operator can affect the new icon field.

Note that when the extension is saved, the corresponding page is marked as having unpublished changes. To see the
new extension values publish the page.

Simplified Toolbar API

The simplified Toolbar API works by deriving your toolbar class from ExtensionToolbar which provides the fol-
lowing APIL:

* ExtensionToolbar.get_page_extension_admin(): for page extensions, retrieves the correct admin URL
for the related toolbar item; returns the extension instance (or None if none exists) and the admin URL for the
toolbar item

* ExtensionToolbar.get_page_content_extension_admin(page_content=None): for page content ex-
tensions, retrieves the correct admin URL for the related toolbar item; returns a tuple of the extension instance
(or None if none exists) and the admin URL for the current page content (if the argument is None or omitted) or
the page content object passed.

Typically, ExtensionToolbar.get_page_content_extension_admin isused without the argument to mod-
ify the toolbar for the currently visible page content object.

Warning: The ExtensionToolbar.get_title_extension_admin(language=None) from django CMS ver-
sions before 4.1 still exists but is deprecated.

5.2. Django/Python compatibility table 127




django cms Documentation, Release 4.1.1

How to test your extensions
Testing Apps
Resolving View Names

Your apps need testing, but in your live site they aren’t in urls.py as they are attached to a CMS page. So if you want
to be able to use reverse() in your tests, or test templates that use the url template tag, you need to hook up your
app to a special test version of urls.py and tell your tests to use that.

So you could create myapp/tests/urls.py with the following code:

from django.contrib import admin
from django.urls import re_path, include

urlpatterns = [
re_path(r'*admin/', admin.site.urls),
re_path(r'*myapp/', include('myapp.urls')),
re_path(r'', include('cms.urls")),

And then in your tests you can plug this in with the override_settings () decorator:

from django.test.utils import override_settings
from cms.test_utils.testcases import CMSTestCase

class MyappTests(CMSTestCase):

@override_settings (ROOT_URLCONF='"myapp.tests.urls")
def test_myapp_page(self):

test_url = reverse('myapp_view_name')

# rest of test as normal

If you want to the test url conf throughout your test class, then you can use apply the decorator to the whole class:

from django.test.utils import override_settings
from cms.test_utils.testcases import CMSTestCase

@override_settings (ROOT_URLCONF='myapp.tests.urls')
class MyappTests(CMSTestCase):

def test_myapp_page(self):
test_url = reverse('myapp_view_name')
# rest of test as normal

128 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/ref/urlresolvers/#django.urls.reverse
https://docs.djangoproject.com/en/4.2/ref/templates/builtins/#std-templatetag-url
https://docs.djangoproject.com/en/4.2/topics/testing/tools/#django.test.override_settings

django cms Documentation, Release 4.1.1

CMSTestCase

Django CMS includes CMSTestCase which has various utility methods that might be useful for testing your CMS app
and manipulating CMS pages.

Testing Plugins

To test plugins, you need to assign them to a placeholder. Depending on at what level you want to test your plugin, you
can either check the HTML generated by it or the context provided to its template:

from django.test import TestCase
from django.test.client import RequestFactory

from cms.api import add_plugin
from cms.models import Placeholder
from cms.plugin_rendering import ContentRenderer

from myapp.cms_plugins import MyPlugin
from myapp.models import MyappPlugin

class MypluginTests(TestCase):
def test_plugin_context(self):
placeholder = Placeholder.objects.create(slot="test")
model_instance = add_plugin(
placeholder,
MyPlugin,

v v

en',
)

plugin_instance = model_instance.get_plugin_class_instance()
context = plugin_instance.render({}, model_instance, None)
self.assertIn('key', context)

self.assertEqual (context['key'], 'value')

def test_plugin_html(self):

placeholder = Placeholder.objects.create(slot="test')
model_instance = add_plugin(

placeholder,

MyPlugin,

'en',
)
renderer = ContentRenderer (request=RequestFactory())
html = renderer.render_plugin(model_instance, {})
self.assertEqual (html, '<strong>Test</strong>"')

5.2. Django/Python compatibility table 129




django cms Documentation, Release 4.1.1

Sharing functionality

How to share capabilities between apps

New in version 4.0.

To understand how to use the app registration system, lets use an example. Let’s say our INSTALLED_APPS include
these three apps:

INSTALLED_APPS = [

'pink_cms_admin',
'pony_cms_icons',
'blog_posts',

The pink_cms_admin is an app that extends the cms by making apps, that are accordingly configured, to have a pink
admin. To do that, it would define a pink_cms_admin/cms_config. py file, which would look like this:

from cms.app_base import CMSAppExtension

from pink_cms_admin import make_admin_pink

class PinkAdminCMSExtension(CMSAppExtension):

def configure_app(self, cms_config):
# Do anything you need to do to each app that wants to be pink
make_admin_pink(cms_config)

The blog_posts app wants to be pink and wants to have pony icons everywhere. So it would define blog_posts/
cms_config.py like this:

from cms.app_base import CMSAppConfig

class BlogPostsCMSConfig(CMSAppConfig):
# To enable functionality define an attribute like <app_label>_enabled
# and set it to True
pink_cms_admin_enabled = True
pony_cms_icons_enabled = True

# pony_cms_icons also has additional settings. These are defined here.
pony_cms_icons_pony_colours = ['purple', 'pink']
pony_cms_icons_ponies_with_wings = True

The pony_cms_icons app lets other apps have pony icons everywhere, but also wants to have a pink admin. So it would
define pony_cms_icons/cms_config.py like this:

from django.core.exceptions import ImproperlyConfigured
from cms.app_base import CMSAppConfig, CMSAppExtension

from pony_cms_icons import add_pony_icons

(continues on next page)

130 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

class PonyIconsCMSConfig(CMSAppConfig):
pink_cms_admin_enabled = True

class PonyIconsCMSExtension(CMSAppExtension) :

def configure_app(self, cms_config):
# Do anything you need to do to each app that wants to have
# pony icons here

# As pony icons defines additional settings, you will also need to check
# for any required settings here
pony_colours = getattr(cms_config, 'pony_cms_icons_pony_colours', None)
if not pony_colours:
raise ImproperlyConfigured(
"Apps that use pony_cms_icons, must define pony_cms_icons_pony_colours")
ponies_with_wings = getattr(cms_config, 'pony_cms_icons_ponies_with_wings',.
—False)

add_pony_icons(cms_config.django_app, pony_colours, ponies_with_wings)

The configure_app () method, as is already apparent, takes one param - cms_config. cms_config is an instance
of an app’s CMSAppConfig class. In addition to that you can also access the django app object (as defined in the
app’s apps.py) by using cms_config.app_config. In this way you can access attributes that django provides (such
as label, verbose_name etc.).

The configure_app () method is run once for every django cms app that declares a feature as enabled.

If an app asks for a feature of another app that is not installed this feature is simply ignored. This in turn implies
that you cannot assume that the feature you request in a CMSAppConfig is also available. Therefore, make sure your
app’s code also runs without that feature or check if your providing app is present in your C¥SAppConfig and raise an
ImproperlyConfigured exception if it is missing.

5.2.4 Reference

Technical reference material.

Command Line Interface

You can invoke the django CMS command line interface using the cms Django command:

python manage.py cms

5.2. Django/Python compatibility table 131




django cms Documentation, Release 4.1.1

Informational commands
cms list

The 1ist command is used to display information about your installation.
It has two sub-commands:

e cms list plugins lists all plugins that are used in your project.

e cms list apphooks lists all apphooks that are used in your project.

cms list plugins will issue warnings when it finds orphaned plugins (see cms delete-orphaned-plugins be-
low).
cms check

Checks your configuration and environment.

Plugin and apphook management commands

cms delete-orphaned-plugins

Warning: The delete-orphaned-plugins command permanently deletes data from your database. You
should make a backup of your database before using it!

Identifies and deletes orphaned plugins.
Orphaned plugins are ones that exist in the CMSPlugins table, but:
* have a plugin_type that is no longer even installed
* have no corresponding saved instance in that particular plugin type’s table

Such plugins will cause problems when trying to use operations that need to copy pages (and therefore plugins), which
includes cms moderator on as well as page copy operations in the admin.

It is recommended to run cms list plugins periodically, and cms delete-orphaned-plugins when required.

cms uninstall

The uninstall subcommand can be used to make uninstalling a CMS plugin or an apphook easier.
It has two sub-commands:

e cms uninstall plugins <plugin name> [<plugin name 2> [...]] uninstalls one or several plugins
by removing them from all pages where they are used. Note that the plugin name should be the name of the
class that is registered in the django CMS. If you are unsure about the plugin name, use the cms list to see a list
of installed plugins.

e cms uninstall apphooks <apphook name> [<apphook name 2> [...]] uninstalls one or several ap-
phooks by removing them from all pages where they are used. Note that the apphook name should be the name
of the class that is registered in the django CMS. If you are unsure about the apphook name, use the cms list to
see a list of installed apphooks.

132 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Warning: The uninstall commands permanently delete data from your database. You should make a backup of
your database before using them!

cms copy

The copy command is used to copy content from one language or site to another.
It has two sub-commands:
* cms copy lang copy content to a given language.

e cms copy site copy pages and content to a given site.

cms copy lang

The copy lang subcommand can be used to copy content (titles and plugins) from one language to another. By default
the subcommand copy content from the current site (e.g. the value of SITE_ID) and only if the target placeholder has
no content for the specified language; using the defined options you can change this.

You must provide two arguments:
e --from-lang: the language to copy the content from;
* --to-lang: the language to copy the content to.

It accepts the following options

» —-force: set to copy content even if a placeholder already has content; if set, copied content will be appended
to the original one;

* --site: specify a SITE_ID to operate on sites different from the current one;
* --verbosity: set for more verbose output.
* --skip-content: if set, content is not copied, and the command will only create titles in the given language.

Example:

cms copy lang --from-lang=en --to-lang=de --force --site=2 --verbosity=2

cms copy site

The copy site subcommand can be used to copy content (pages and plugins) from one site to another. The subcom-
mand copy content from the from-site to to-site; please note that static placeholders are copied as they are shared
across sites. The whole source tree is copied, in the root of the target website. Existing pages on the target website are
not modified.

You must provide two arguments:
» —-from-site: the site to copy the content from;
e --to-site: the site to copy the content to.

Example:

cms copy site --from-site=1 --to-site=2

5.2. Django/Python compatibility table 133




django cms Documentation, Release 4.1.1

Maintenance and repair

fix-tree

Occasionally, the page tree can become corrupted. Typical symptoms include problems when trying to copy or delete
pages.

This command will fix small corruptions by rebuilding the tree.

New in version 4.0: Since django CMS Version 4 this command does not affect the plugin tree.

Configuring django CMS
django CMS has a number of settings to configure its behaviour. These should be available in your settings. py file.
The INSTALLED_APPS setting

The ordering of items in INSTALLED_APPS matters. Entries for applications with plugins should come after cms.

The MIDDLEWARE setting
cms.middleware.utils.ApphookReloadMiddleware

Adding ApphookReloadMiddleware to the MIDDLEWARE tuple will enable automatic server restarts when changes are
made to apphook configurations. It should be placed as near to the top of the classes as possible.

Note: This has been tested and works in many production environments and deployment configurations, but we haven’t
been able to test it with all possible set-ups. Please file an issue if you discover one where it fails.

Custom User Requirements

When using a custom user model (i.e. the AUTH_USER_MODEL Django setting), there are a few requirements that must
be met.

django CMS expects a user model with at minimum the following fields: email, password, is_active,
is_staff, and is_superuser. Additionally, it should inherit from AbstractBaseUser and PermissionsMixin
(or AbstractUser), and must define one field as the USERNAME_FIELD (see Django documentation for more details)
and define a get_full_name () method.

The models must also be editable via Django’s admin and have an admin class registered.

Additionally, the application in which the model is defined must be loaded before cms in INSTALLED_APPS.

Note: In most cases, it is better to create a UserProfile model with a one to one relationship to auth.User rather
than creating a custom user model. Custom user models are only necessary if you intended to alter the default behaviour
of the User model, not simply extend it.

Additionally, if you do intend to use a custom user model, it is generally advisable to do so only at the beginning of a
project, before the database is created.

134 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Required Settings
CMS_TEMPLATES

default
(O (Not a valid setting!)

A list of templates you can select for a page.

Example:

CMS_TEMPLATES = (
('base.html', gettext('default')),
('2col.html', gettext('2 Column')),
('3col.html', gettext('3 Column')),
('extra.html', gettext('Some extra fancy template')),

Note: All templates defined in CMS_TEMPLATES must contain at least the js and css sekizai namespaces. For an
example, see Templates.

Note: Alternatively you can use CMS_TEMPLATES_DIR to define a directory containing templates for django CMS.

Warning: django CMS requires some special templates to function correctly. These are provided within cms/
templates/cms. You are strongly advised not to use cms as a directory name for your own project templates.

Basic Customisation
CMS_TEMPLATE_INHERITANCE

default
True

Enables the inheritance of templates from parent pages.

When enabled, pages’ Template options will include a new default: Inherit from the parent page (unless the page is a
root page).

CMS_TEMPLATES_DIR

default
None

Instead of explicitly providing a set of templates via CMS_TEMPLATES a directory can be provided using this configu-
ration.

CMS_TEMPLATES_DIR can be set to the (absolute) path of the templates directory, or set to a dictionary with SITE_ID:
template path items:

5.2. Django/Python compatibility table 135




django cms Documentation, Release 4.1.1

CMS_TEMPLATES_DIR: {
1: '/absolute/path/for/site/1/',
2: '/absolute/path/for/site/2/"',
}

The provided directory is scanned and all templates in it are loaded as templates for django CMS.

Template loaded and their names can be customised using the templates dir as a python module, by creating a
__init__.py file in the templates directory. The file contains a single TEMPLATES dictionary with the list of tem-
plates as keys and template names as values:::

from django.utils.translation import gettext_lazy as _
TEMPLATES = {

'col_two.html': _('Two columns'),

'col_three.html': _('Three columns'),

}

Being a normal python file, templates labels can be passed through gettext for translation.

Note: As templates are still loaded by the Django template loader, the given directory must be reachable by the
template loading system. Currently filesystem and app_directory loader schemas are tested and supported.

CMS_PLACEHOLDER_CONF

default
{1

Used to configure placeholders. If not given, all plugins will be available in all placeholders.

Example:

CMS_PLACEHOLDER_CONF = {

None: {
"plugins": ['TextPlugin'],
'excluded_plugins': ['InheritPlugin'],

3

'content': {
'plugins': ['TextPlugin', 'PicturePlugin'],
"text_only_plugins': ['LinkPlugin'],
'extra_context': {"width":640},
'name': gettext("Content"),
'language_fallback': True,
'default_plugins': [

{
'plugin_type': 'TextPlugin',
'values': {
'body"': '<p>Lorem ipsum dolor sit amet...</p>',
1,
1,

] 3
'child_classes': {
'TextPlugin': ['PicturePlugin', 'LinkPlugin'],

(continues on next page)

136 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

1,
'parent_classes': {
'LinkPlugin': ['TextPlugin'],
1
I
'right-column': {
"plugins": ['TeaserPlugin', 'LinkPlugin'],
"extra_context": {"width": 280},
'name': gettext("Right Column'),
"limits': {
'global': 2,
'TeaserPlugin': 1,
'LinkPlugin': 1,
1,
'plugin_modules': {
'LinkPlugin': 'Extra',
1,
'plugin_labels': {
'LinkPlugin': 'Add a link',

1,

3,

'base.html content': {
"plugins": ['TextPlugin', 'PicturePlugin', 'TeaserPlugin'],
'inherit': 'content',

3

}

You can combine template names and placeholder names to define plugins in a granular fashion, as shown above with
base.html content.

Configuration is retrieved in the following order:
1. CMS_PLACEHOLDER_CONF[ ‘template placeholder’]
2. CMS_PLACEHOLDER_CONF][ ‘placeholder’]
3. CMS_PLACEHOLDER_CONF] ‘template’]
4. CMS_PLACEHOLDER_CONF[None]
The first CUS_PLACEHOLDER_CONF key that matches for the required configuration attribute is used.

E.g: given the example above if the plugins configuration is retrieved for the content placeholder in a page using
the base.html template, the value ['TextPlugin', 'PicturePlugin', 'TeaserPlugin'] will be returned as
'base.html content' matches; if the same configuration is retrieved for the content placeholder in a page using
fullwidth.html template, the returned value will be ['TextPlugin', 'PicturePlugin']. If plugins config-
uration is retrieved for sidebar_left placeholder, [ ' TextPlugin'] from CMS_PLACEHOLDER_CONF key None will
be returned.

plugins
A list of plugins that can be added to this placeholder. If not supplied, all plugins can be selected.

text_only_plugins
A list of additional plugins available only in the TextPlugin, these plugins can’t be added directly to this place-
holder.

excluded_plugins
A list of plugins that will not be added to the given placeholder; this takes precedence over plugins configu-

5.2. Django/Python compatibility table 137




django cms Documentation, Release 4.1.1

ration: if a plugin is present in both lists, it will not be available in the placeholder. This is basically a way to
blacklist a plugin: even if registered, it will not be available in the placeholder. If set on the None (default) key,
the plugins will not be available in any placeholder (except the excluded_plugins configuration is overridden
in more specific CMS_PLACEHOLDER_KEYS.

extra_context
Extra context that plugins in this placeholder receive.

name
The name displayed in the Django admin. With the gettext stub, the name can be internationalised.
limits
Limit the number of plugins that can be placed inside this placeholder. Dictionary keys are plugin names and the

values are their respective limits. Special case: global - Limit the absolute number of plugins in this placeholder
regardless of type (takes precedence over the type-specific limits).

language_fallback
When True, if the placeholder has no plugin for the current language it falls back to the fallback languages as
specified in CMS_LANGUAGES. Defaults to True since version 3.1.

default_plugins
You can specify the list of default plugins which will be automatically added when the placeholder will be created
(or rendered). Each element of the list is a dictionary with following keys :

plugin_type
The plugin type to add to the placeholder Example : TextPlugin

values
Dictionary to use for the plugin creation. It depends on the plugin_type. See the documenta-
tion of each plugin type to see which parameters are required and available. Example for a text
plugin: {'body':'<p>Lorem ipsum</p>'} Example for a link plugin: {'name':'Django-CMS',
'url': 'https://www.django-cms.org'}

children
Itis alist of dictionaries to configure default plugins to add as children for the current plugin (it must accepts

children). Each dictionary accepts same args than dictionaries of default_plugins : plugin_type,
values, children (yes, it is recursive).

Complete example of default_plugins usage:

CMS_PLACEHOLDER_CONF = {
'content': {
'name' : _('Content'),
'plugins': ['TextPlugin', 'LinkPlugin'],
'default_plugins': [

{
'plugin_type':'TextPlugin',
'values':{
'body': '<p>Great websites : and
—~2)s</p>"
1,
'children': [
{

'plugin_type':'LinkPlugin',
'values':{
'name': 'django’,
'url':'https://www.djangoproject.com/"
1,

(continues on next page)

138 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

(continued from previous page)

1,
{
'plugin_type':'LinkPlugin',
'values':{
'name': 'django-cms',
'url': 'https://www.django-cms.org'
3,
# If using LinkPlugin from djangocms-1link which
# accepts children, you could add some grandchildren :
# 'children' : [
#
# ]
1,
1
1,
]
}
}
plugin_modules

A dictionary of plugins and custom module names to group plugin in the toolbar UL

plugin_labels
A dictionary of plugins and custom labels to show in the toolbar UI.

child_classes
A dictionary of plugin names with lists describing which plugins may be placed inside each plugin. If not
supplied, all plugins can be selected.

parent_classes
A dictionary of plugin names with lists describing which plugins may contain each plugin. If not supplied, all
plugins can be selected.

require_parent
A Boolean indication whether that plugin requires another plugin as parent or not.
inherit
Placeholder name or template name + placeholder name which inherit. In the example, the configuration for

base.html content inherits from content and just overwrites the plugins setting to allow TeaserPlugin,
thus you have not to duplicate the configuration of content.

CMS_PLUGIN_CONTEXT_PROCESSORS

default
[]

A list of plugin context processors. Plugin context processors are callables that modify all plugins’ context before
rendering. See /how_to/10-custom_plugins for more information.

5.2. Django/Python compatibility table 139



django cms Documentation, Release 4.1.1

CMS_PLUGIN_PROCESSORS

default
(]

A list of plugin processors. Plugin processors are callables that modify all plugins’ output after rendering. See
/how_to/10-custom_plugins for more information.

CMS_APPHOOKS

default:
O

A list of import paths for cms. app_base. CMSApp sub-classes.

By default, apphooks are auto-discovered in applications listed in all INSTALLED_APPS, by trying to import their
cms_app module.

When CMS_APPHOOKS is set, auto-discovery is disabled.

Example:

CMS_APPHOOKS = (
'myapp.cms_app.MyApp"',
'otherapp.cms_app.MyFancyApp',
'sampleapp.cms_app.SampleApp',

Internationalisation and localisation (118N and L10N)
CMS_LANGUAGES

default
Value of LANGUAGES converted to this format

Defines the languages available in django CMS.

Example:

CMS_LANGUAGES = {

1: [

{
'code': 'en',
'name': gettext('English'),
'fallbacks': ['de', '"fr'],
'public': True,
'hide_untranslated': True,
'redirect_on_fallback': False,

1,

{

'code': 'de',

'name': gettext('Deutsch'),
'fallbacks': ['en', '"fr'],
'public': True,

(continues on next page)

140 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-INSTALLED_APPS
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES

django cms Documentation, Release 4.1.1

(continued from previous page)

1,
{
'code': 'fr',
'name': gettext('French'),
'public': False,
1
1,
2: [
{
'code': 'nl',
'name': gettext('Dutch'),
'public': True,
'fallbacks': ['en'],
1,
1,
'default': {
'fallbacks': ['en', 'de', 'fr'j],
'redirect_on_fallback': True,
'public': True,
'hide_untranslated': False,
}

Note: Make sure you only define languages which are also in LANGUAGES.

Warning: Make sure you use language codes (en-us) and not locale names (en_US) here and in LANGUAGES.
Use check command to check for correct syntax.

CMS_LANGUAGES has different options where you can define how different languages behave, with granular control.

On the first level you can set values for each SITE_ID. In the example above we define two sites. The first site has 3
languages (English, German and French) and the second site has only Dutch.

The default node defines default behaviour for all languages. You can overwrite the default settings with language-
specific properties. For example we define hide_untranslated as False globally, but the English language over-
writes this behaviour.

Every language node needs at least a code and a name property. code is the ISO 2 code for the language, and name is
the verbose name of the language.

Note: With a gettext () lambda function you can make language names translatable. To enable this add gettext
= lambda s: s at the beginning of your settings file.

What are the properties a language node can have?

5.2. Django/Python compatibility table 141



https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES

django cms Documentation, Release 4.1.1

code

String. RFC5646 code of the language.

example

en .

Note: Is required for every language.

name

String. The verbose name of the language.

Note: Is required for every language.

public

Determines whether this language is accessible in the frontend. You may want for example to keep a language private
until your content has been fully translated.

type
Boolean

default
True

fallbacks

A list of alternative languages, in order of preference, that are to be used if a page is not translated yet..

example
[ 'de' , ] fr ] ]

default
(]

hide_untranslated

Hides untranslated pages in menus.

When applied to the default directive, if False, all pages in menus will be listed in all languages, including those
that don’t yet have content in a particular language. If True, untranslated pages will be hidden.

When applied to a particular language, hides that language’s pages in menus until translations exist for them.

type
Boolean

default
True

142 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

redirect_on_fallback

Determines behaviour when the preferred language is not available. If True, will redirect to the URL of the same page
in the fallback language. If False, the content will be displayed in the fallback language, but there will be no redirect.

Note that this applies to the fallback behaviour of pages. Starting for 3.1 placeholders will default to the same behaviour.
If you do not want a placeholder to follow a page’s fallback behaviour, you must set its Language_fallback to False
in CMS_PLACEHOLDER_CONF, above.

type
Boolean

default
True

Unicode support for automated slugs

If your site has languages which use non-ASCII character sets, CMS_UNIHANDECODE_HOST and
CMS_UNIHANDECODE_VERSION will allow it to automate slug generation for those languages too.

Support for this is provided by the unihandecode.js project.

CMS_UNIHANDECODE_HOST

default
None

Must be set to the URL where you host your unihandecode.js files. For licensing reasons, django CMS does not include
unihandecode.js.

If set to None, the default, unihandecode.js is not used.

Note: Unihandecode.js is a rather large library, especially when loading support for Japanese. It is therefore very
important that you serve it from a server that supports gzip compression. Further, make sure that those files can be
cached by the browser for a very long period.

CMS_UNIHANDECODE_VERSION

default
None

Must be set to the version number (eg '1.0.0") you want to use. Together with CMS_UNIHANDECODE_HOST
this setting is used to build the full URLs for the javascript files. URLs are built like this:
<CMS_UNIHANDECODE_HOST>-<CMS_UNIHANDECODE_VERSION>.<DECODER>.min. js.

5.2. Django/Python compatibility table 143



django cms Documentation, Release 4.1.1

CMS_UNIHANDECODE_DECODERS

default
['ja', '"zh', 'vn', 'kr', 'diacritic']

If you add additional decoders to your CMS_UNTHANDECODE_HOST, you can add them to this setting.

CMS_UNIHANDECODE_DEFAULT_DECODER

default
'diacritic’
The default decoder to use when unihandecode.js support is enabled, but the current language does not provide a

specific decoder in CMS_UNTHANDECODE_DECODERS. If set to None, failing to find a specific decoder will disable uni-
handecode.js for this language.

Example

Add these to your project’s settings:

CMS_UNIHANDECODE_HOST = '/static/unihandecode/'
CMS_UNTHANDECODE_VERSION = '1.0.0°'
CMS_UNIHANDECODE_DECODERS = ['ja', 'zh', 'vn', 'kr', 'diacritic']

Add the library files from GitHub ojii/unihandecode.js tree/dist to your static folder:

project/
static/
unihandecode/
unihandecode-1.
unihandecode-1.
unihandecode-1.
unihandecode-1.
unihandecode-1.
unihandecode-1.

.core.min. js
.diacritic.min.js
.ja.min.js
.kr.min. js
.vn.min. js
.zh.min. js

(=B — I~ I — I — =]
(= — I — = = I~ ]

More documentation is available on unihandecode.js’ Read the Docs.

Media Settings
CMS_MEDIA_PATH

default
cms/

The path from MEDIA_ROOT to the media files located in cms/media/

144 Chapter 5. Software version requirements and release notes



https://github.com/ojii/unihandecode.js/tree/master/dist
https://unihandecodejs.readthedocs.io/
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MEDIA_ROOT

django cms Documentation, Release 4.1.1

CMS_MEDIA_ROOT

default
MEDIA_ROOT + CMS_MEDIA_PATH

The path to the media root of the cms media files.

CMS_MEDIA_URL

default
MEDIA_URL + CMS_MEDIA_PATH

The location of the media files that are located in cms/media/cms/

CMS_PAGE_MEDIA_PATH

default
'cms_page_media/’'

By default, django CMS creates a folder called cms_page_media in your static files folder where all uploaded media
files are stored. The media files are stored in sub-folders numbered with the id of the page.

You need to ensure that the directory to which it points is writeable by the user under which Django will be running.

Advanced Settings
CMS_INTERNAL_IPS

default
(]

By default CMS_INTERNAL_IPS is an empty list ([]).

If left as an empty list, this setting does not add any restrictions to the toolbar. However, if set, the toolbar will only
appear for client IP addresses that are in this list.

This setting may also be set to an IpRangeList from the external package iptools. This package allows convenient
syntax for defining complex IP address ranges.

The client IP address is obtained via the CMS_REQUEST_IP_RESOLVER in the cms.middleware.toolbar.
ToolbarMiddleware middleware.

CMS_REQUEST _IP_RESOLVER

default
‘cms.utils.request_ip_resolvers.default_request_ip_resolver’

This setting is used system-wide to provide a consistent and plug-able means of extracting a client IP address from the
HTTP request. The default implementation should work for most project architectures, but if not, the administrator can
provide their own method to handle the project’s specific circumstances.

The supplied method should accept a single argument request and return an IP address String.

5.2. Django/Python compatibility table 145


https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MEDIA_ROOT
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MEDIA_URL

django cms Documentation, Release 4.1.1

CMS_PERMISSION

default
False

When enabled, 3 new models are provided in Admin:
» Pages global permissions
» User groups - page
e Users - page

In the edit-view of the pages you can now assign users to pages and grant them permissions. In the global permissions
you can set the permissions for users globally.

If a user has the right to create new users he can now do so in the “Users - page”, but he will only see the users he
created. The users he created can also only inherit the rights he has. So if he only has been granted the right to edit a
certain page all users he creates can, in turn, only edit this page. Naturally he can limit the rights of the users he creates
even further, allowing them to see only a subset of the pages to which he is allowed access.

CMS_RAW_ID_USERS

default
False

This setting only applies if CS_PERMISSION is True

The view restrictions and page permissions inlines on the cms.models.Page admin change forms can cause
performance problems where there are many thousands of users being put into simple select boxes. If set to a positive
integer, this setting forces the inlines on that page to use standard Django admin raw ID widgets rather than select boxes
if the number of users in the system is greater than that number, dramatically improving performance.

Note: Using raw ID fields in combination with 1imit_choices_to causes errors due to excessively long URLSs if
you have many thousands of users (the PKs are all included in the URL of the popup window). For this reason, we only
apply this limit if the number of users is relatively small (fewer than 500). If the number of users we need to limit to is
greater than that, we use the usual input field instead unless the user is a CMS superuser, in which case we bypass the
limit. Unfortunately, this means that non-superusers won’t see any benefit from this setting.

Changed in version 3.2.1:: CMS_RAW_ID_USERS also applies to GlobalPagePermission admin.

CMS_PUBLIC_FOR

default
all

Determines whether pages without any view restrictions are public by default or staff only. Possible values are all and
staff.

146 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

CMS_CACHE_DURATIONS

This dictionary carries the various cache duration settings.

'content’

default
60

Cache expiration (in seconds) for show_placeholder, page_url, placeholder and static_placeholder tem-
plate tags.

Note: This settings was previously called CMS_CONTENT_CACHE_DURATION

'menus’

default
3600

Cache expiration (in seconds) for the menu tree.

Note: This settings was previously called MENU_CACHE_DURATION

'permissions’

default
3600

Cache expiration (in seconds) for view and other permissions.

CMS_CACHE_PREFIX

default
cms-

The CMS will prepend the value associated with this key to every cache access (set and get). This is useful when you
have several django CMS installations, and you don’t want them to share cache objects.

Example:

CMS_CACHE_PREFIX = 'mysite-live'

Note: Django 1.3 introduced a site-wide cache key prefix. See Django’s own docs on cache key prefixing

5.2. Django/Python compatibility table 147



https://docs.djangoproject.com/en/4.2/topics/cache/#cache-key-prefixing

django cms Documentation, Release 4.1.1

CMS_PAGE_CACHE

default
True

Should the output of pages be cached? Takes the language, and time zone into account. Pages for logged in users are
not cached. If the toolbar is visible the page is not cached as well.

CMS_PLACEHOLDER_CACHE

default
True

Should the output of the various placeholder template tags be cached? Takes the current language and time zone into
account. If the toolbar is in edit mode or a plugin with cache=False is present the placeholders will not be cached.

CMS_PLUGIN_CACHE

default
True

Default value of the cache attribute of plugins. Should plugins be cached by default if not set explicitly?

Warning: If you disable the plugin cache be sure to restart the server and clear the cache afterwards.

CMS_TOOLBARS

default
None

If defined, specifies the list of toolbar modifiers to be used to populate the toolbar, as import paths. Otherwise, all
available toolbars from both the CMS and the third-party apps will be loaded.

Example:

CMS_TOOLBARS = [
# CMS Toolbars
'cms.cms_toolbars.PlaceholderToolbar',
'ems.cms_toolbars.BasicToolbar',
'cms . cms_toolbars.PageToolbar',

# third-party Toolbar
'aldryn_blog.cms_toolbars.BlogToolbar'

148 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

CMS_TOOLBAR_ANONYMOUS_ON

default
True

This setting controls if anonymous users can see the CMS toolbar with a login form when ?toolbar_on is appended
to a URL. The default behaviour is to show the toolbar to anonymous users.

CMS_TOOLBAR_URL__ENABLE

default
"toolbar_on

This setting controls how users can activate the CMS toolbar by appending a query string to the url. The default setting
lets ?toolbar_on activate the toolbar.

Note: This replaces the ?edit query string of django CMS 3.x

CMS_TOOLBAR_URL__DISABLE

default
"toolbar_off

This setting controls how users can deactivate the CMS toolbar by appending a query string to the url. The default
setting lets 7toolbar_off deactivate the toolbar.

CMS_TOOLBAR_HIDE

default
False

By default, the django CMS toolbar is displayed to logged-in admin users on all pages that use the {% cms_toolbar
%} template tag. Its appearance can be optionally restricted to django CMS pages only (technically, pages that are
rendered by a django CMS view).

When this is set to True, all other pages will no longer display the toolbar. This includes pages with apphooks applied
to them, as they are handled by the other application’s views, and not django CMS’s.

CMS_DEFAULT_X_FRAME_OPTIONS

default
constants.X_FRAME_OPTIONS_INHERIT

This setting is the default value for a Page’s X Frame Options setting. This should be an integer preferably taken from
the cms . constants e.g.

* X_FRAME_OPTIONS_INHERIT

« X_FRAME_OPTIONS_ALLOW

* X_FRAME_OPTIONS_SAMEORIGIN
* X FRAME_OPTIONS_DENY

5.2. Django/Python compatibility table 149



django cms Documentation, Release 4.1.1

CMS_PAGE_WIZARD_DEFAULT_TEMPLATE

default
TEMPLATE_INHERITANCE_MAGIC

This is the path of the template used to create pages in the wizard. It must be one of the templates in CMS_TEMPLATES.

CMS_PAGE_WIZARD CONTENT_PLACEHOLDER

default
None

When set to an editable, non-static placeholder that is available on the page template, the CMS page wizards will target
the specified placeholder when adding any content supplied in the wizards’ “Content” field. If this is left unset, then
the content will target the first suitable placeholder found on the page’s template.

CMS_PAGE_WIZARD_CONTENT_PLUGIN

default
TextPlugin

This is the name of the plugin created in the Page Wizard when the “Content” field is filled in. There should be no
need to change it, unless you don’t use djangocms-text-ckeditor in your project.

CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY

default
body

This is the name of the body field in the plugin created in the Page Wizard when the “Content” field is filled in. There
should be no need to change it, unless you don’t use djangocms-text-ckeditor in your project and your custom
plugin defined in CMS_PAGE_WIZARD_CONTENT_PLUGIN have a body field different than body.

CMS_ENDPOINT_LIVE_URL_QUERYSTRING_PARAM_ENABLED

default
False

New in version 4.0: Setting to enable the appending of a PageContents live url to its preview and edit endpoints as a
querystring parameter. This is disabled by default.

CMS_ENDPOINT_LIVE_URL_QUERYSTRING_PARAM

default
live-url

New in version 4.0: Setting to configure the query string parameter name used for the live-url of a PageContent
edit/preview endpoint.

150 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

CMS_REDIRECT PRESERVE_QUERY_PARAMS

default
False

This indicates to the CMS that redirects should preserve the query parameters.

CMS_REDIRECT_TO_LOWERCASE_SLUG

default
False

This indicates to the CMS that it should redirect requests with an non-lowercase slug to its lowercase version if no page
with that slug is found.

CMS_CONFIRM_VERSION4

default
False

New in version 4.1: This setting has to be set to True for your project to run on django CMS version 4.1 or later.

The reason is that accidentally running a migration command on an existing installation of django CMS v3.x may
corrupt the database. Upgrading from version 3.x to 4.x is not an automatic process.

API References

cms.api

Python APIs for creating CMS content. This is done in cms.api and not on the models and managers, because the
direct API via models and managers is slightly counterintuitive for developers. Also the functions defined in this module
do sanity checks on arguments.

Warning: None of the functions in this module does any security or permission checks. They verify their input
values to be sane wherever possible, however permission checks should be implemented manually before calling
any of these functions.

Note: Due to potential circular dependency issues, it’s recommended to import the api in the functions that uses its
function.

e.g. use:

def my_function():
from cms.api import api_function
api_function(...)

instead of:

5.2. Django/Python compatibility table 151




django cms Documentation, Release 4.1.1

from cms.api import api_function

def my_function():
api_function(...)

Functions and constants

cms.api.create_page (title, template, language, menu_title=None, slug=None, apphook=None,
apphook_namespace=None, redirect=None, meta_description=None,
created_by="python-api', parent=None, publication_date=None,
publication_end_date=None, in_navigation=False, soft_root=False, reverse_id=None,
navigation_extenders=None, published=None, site=None, login_required=False,
limit_visibility_in_menu=None, position="last-child’, overwrite_url=None,
xframe_options=0)

Creates a cms .models.Page instance and returns it. Also creates a cms.models.Title instance for the spec-
ified language.

Warning: Since version 4 the parameters published, publication_date, and publication_end_date do not
change the behaviour of this function. If they are supplied a warning is raised.

Parameters
» title (str) - Title of the page
* template (str) — Template to use for this page. Must be in CMS_TEMPLATES
» language (str) — Language code for this page. Must be in LANGUAGES
* menu_title (str)— Menu title for this page
* slug (str) — Slug for the page, by default uses a slugified version of title

* apphook (str or cms. app_base . CSApp sub-class) — Application to hook on this page, must
be a valid apphook

* apphook_namespace (str) — Name of the apphook namespace
e redirect (str) — URL redirect
» meta_description (str) — Description of this page for SEO

» created_by (str of django.contrib.auth.models.User instance) — User that is creat-
ing this page

* parent (cms.models.Page instance) — Parent page of this page

* in_navigation (bool) — Whether this page should be in the navigation or not

» soft_root (bool)— Whether this page is a soft root or not

» reverse_id (str)— Reverse ID of this page (for template tags)

* navigation_extenders (str)— Menu to attach to this page. Must be a valid menu
» site(django.contrib.sites.models.Site instance) — Site to put this page on

* login_required (bool) — Whether users must be logged in or not to view this page

152 Chapter 5. Software version requirements and release notes



https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/contrib/sites/#django.contrib.sites.models.Site
https://docs.python.org/3/library/functions.html#bool

django cms Documentation, Release 4.1.1

e limit_visibility_in_menu (VISIBILITY_ALL or VISIBILITY USERS or
VISIBILITY_ANONYMOUS) — Limits visibility of this page in the menu

* position (str)— Where to insert this node if parent is given, must be ' first-child"' or
'last-child’

» overwrite_url (str) — Overwritten path for this page
» xframe_options (int) — X Frame Option value for Clickjacking protection
* page_title (str)— Overridden page title for HTML title tag
cms.api.create_page_content (language, title, page, menu_title=None, slug=None, redirect=None,
meta_description=None, parent=None, overwrite_url=None, page_title=None,

path=None, created_by='python-api’, soft_root=False, in_navigation=False,
template="INHERIT', limit_visibility_in_menu=None, xframe_options=0)

Creates a cms .models.PageContent instance and returns it.
parent is only used if slug=None.
Parameters

» language (str) — Language code for this page. Must be in LANGUAGES
e title (str) - Title of the page
* page (cms.models.Page instance) — The page for which to create this title
* menu_title (str)— Menu title for this page
* slug (str) — Slug for the page, by default uses a slugified version of title
e redirect (str) — URL redirect
» meta_description (str) — Description of this page for SEO
» parent (cms.models.Page instance) — Used for automated slug generation
» overwrite_url (str) — Overwritten path for this page
* page_title (str)— Overridden page title for HTML title tag

cms.api.create_title(language, title, page, menu_title=None, slug=None, redirect=None,
meta_description=None, parent=None, overwrite_url=None, page_title=None,
path=None, created_by='python-api', soft_root=False, in_navigation=False,
template="INHERIT', limit_visibility_in_menu=None, xframe_options=0)

Warning: create_title has been renamed to create_page_content as of django CMS version 4.

cms . api.add_plugin(placeholder, plugin_type, language, position="last-child', target=None, **data)
Adds a plugin to a placeholder and returns it.
Parameters

e placeholder (cms.models.placeholdermodel.Placeholder instance) — Placeholder
to add the plugin to

* plugin_type (str or cms.plugin_base.CHMSPluginBase sub-class, must be a valid plu-
gin) — What type of plugin to add

* language (str) — Language code for this plugin, must be in LANGUAGES

5.2. Django/Python compatibility table 153


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES

django cms Documentation, Release 4.1.1

» position (str) — Position to add this plugin to the placeholder. Allowed positions are
"last-child" (default), "first-child", "left", "right".

* target — Parent plugin. Must be plugin instance
» data - Data for the plugin type instance

cms.api.create_page_user (created_by, user, can_add_page=True, can_view_page=True,
can_change_page=True, can_delete_page=True, can_recover_page=True,
can_add_pageuser=True, can_change_pageuser=True, can_delete_pageuser=True,
can_add_pagepermission=True, can_change_pagepermission=True,
can_delete_pagepermission=True, grant_all=False)

Creates a page user for the user provided and returns that page user.

Parameters

e created_by (django.contrib.auth.models.User instance) — The user that creates the
page user

* user (django.contrib.auth.models.User instance) — The user to create the page user
from

* can_* (bool) — Permissions to give the user
e grant_all (bool) — Grant all permissions to the user

cms . api.assign_user_to_page (page, user, grant_on=>5, can_add=False, can_change=False, can_delete=False,
can_change_advanced_settings=False, can_publish=None,
can_change_permissions=False, can_move_page=False,
can_recover_page=True, can_view=False, grant_all=False,
global_permission=False)

Assigns a user to a page and gives them some permissions. Returns the cms.models.PagePermission object
that gets created.

Parameters
* page (cms.models.Page instance) — The page to assign the user to
e user (django.contrib.auth.models.User instance) — The user to assign to the page

e grant_on (cms.models.ACCESS_PAGE, cms.models.ACCESS_CHILDREN,) — Controls
which pages are affected

cms .models.ACCESS_DESCENDANTS or cms.models.ACCESS_PAGE_AND_DESCENDANTS :param can_*: Per-
missions to grant :param bool grant_all: Grant all permissions to the user

cms . api.publish_page (page, user, language)

Warning: Publishing pages has been removed from django CMS core in version 4 onward.

For publishing functionality see djangocms-versioning:

cms . api.publish_pages (include_unpublished=False, language=None, site=None)

Warning: Publishing pages has been removed from django CMS core in version 4 onward.

For publishing functionality see djangocms-versioning:

154 Chapter 5. Software version requirements and release notes


https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/4.2/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.djangoproject.com/en/4.2/ref/contrib/auth/#django.contrib.auth.models.User
https://github.com/django-cms/djangocms-versioning
https://github.com/django-cms/djangocms-versioning

django cms Documentation, Release 4.1.1

cms. api.get_page_draft (page)

Warning: The concept of draft pages has been removed from django CMS core in version 4 onward.

For draft functionality see djangocms-versioning:

cms . api.copy_plugins_to_language (page, source_language, target_language, only_empty=True)
Copy the plugins to another language in the same page for all the page placeholders.

By default, plugins are copied only if placeholder has no plugin for the target language; use only_empty=False
to change this.

Parameters
* page (cms.models.pagemodel.Page instance) — the page to copy
» source_language (string) — The source language code, must be in LANGUAGES
* target_language (string) — The source language code, must be in LANGUAGES

» only_empty (bool) - if False, plugin are copied even if plugins exists in the target language
(on a placeholder basis).

Return int
number of copied plugins

cms . api.can_change_page (request)

Check whether a user has the permission to change the page.
This will work across all permission-related setting, with a unified interface to permission checking.

Parameters
request (HttpRequest instance) — The request object from which the user will be taken.

Example workflows

Create a page called 'My Page using the template 'my_template.html' and add a text plugin with the content
'hello world'. This is done in English:

from cms.api import create_page, add_plugin

page = create_page('My Page', 'my_template.html', 'en')
placeholder = page.placeholders.get(slot="body")
add_plugin(placeholder, 'TextPlugin', 'en', body='hello world")

cms.constants

cms.constants.VISIBILITY_ALL = None
Used for the 1imit_visibility_in_menu keyword argument to :func: create_page.Does not limit menu vis-
ibility.

cms.constants.VISIBILITY_USERS = 1

Used for the 1imit_visibility_in_menu keyword argument to :func: create_page. Limits menu visibility to
authenticated users.

5.2. Django/Python compatibility table 155



https://github.com/django-cms/djangocms-versioning
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES
https://docs.python.org/3/library/functions.html#bool

django cms Documentation, Release 4.1.1

cms.

cms

cms

cms

cms.

cms.

constants.VISIBILITY_ANONYMOUS = 2

Used for the 1imit_visibility_in_menu keyword argument to :func: create_page. Limits menu visibility to
anonymous(not authenticated) users.

.constants.TEMPLATE_INHERITANCE_MAGIC = 'INHERIT'

The token used to identify when a user selects “inherit” as template for a page.

.constants.LEFT

Used as a position indicator in the toolbar: On the left side.

.constants.RIGHT

Used as a position indicator in the toolbar: On the right side.
constants.EXPIRE_NOW = 0
Used for cache control headers: 0 seconds, i.e. now.

constants.MAX_EXPIRATION_TTL = 31536000

Used for cache control headers: 365 * 24 * 3600 seconds, i.e. one year. HTTP specification says max caching
should only be up to one year.

Configuring apps to work with django CMS

App Hooks

class cms.app_base.CMSApp

Base class for creating apphooks. Apphooks live in a file called cms_apps . py. To create an AppHook subclass
CMSApp in cms_apps.py

class MyAppHook (CMSApp) :
name = "Problem solver"

_urls
list of urlconfs: example: _urls = ["myapp.urls"]

_menus
list of menu classes: example: _menus = [MyAppMenu]

get_config(namespace)
Returns the apphook configuration instance linked to the given namespace

To be implemented by apphook subclass.
get_config_add_url()

Returns the url to add a new apphook configuration instance (usually the model admin add view)
To be implemented by apphook subclass.

get_configs()
Returns all the apphook configuration instances.

To be implemented by apphook subclass.

get_menus (page=None, language=None, **kwargs)
Returns the menus for the apphook instance, eventually selected according to the given arguments.

By default, it returns the menus assigned to CMSApp._menus.

156

Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

The method accepts page, language and generic keyword arguments: you can customize this function to
return different list of menu classes according to the given arguments.

If no menus are returned, then the user will need to attach menus to pages manually in the admin.

If no page and language are provided, this method must return all the menus used by this apphook.
Example:

if page and page.reverse_id == 'pagel':
return [Menul]

elif page and page.reverse_id == 'page2':
return [Menu2]

else:
return [Menul, Menu2]

Parameters
* page — page the apphook is attached to
¢ language - current site language

Returns
list of menu classes

get_urls(page=None, language=None, **kwargs)
Returns the urlconfs for the apphook instance, eventually selected according to the given arguments.

By default, it returns the urls assigned to CMSApp._urls

The method accepts page, language and generic keyword arguments: you can customize this function to
return different list of menu classes according to the given arguments.

This method must return a non-empty list of urlconfs, even if no argument is passed.
Parameters
* page — page the apphook is attached to
* language — current site language

Returns
list of urlconfs strings

app_config = None

configuration model (optional)
app_name = None

Gives the system a unique way to refer to the apphook. This enables Django namespaces support (optional)
exclude_permissions = []

list of application names to exclude from inheriting CMS permissions
name = None

Human-readable name of the apphook (required). This name will be displayed on the admin site.
permissions = True

if set to true, apphook inherits permissions from the current page

5.2. Django/Python compatibility table 157



django cms Documentation, Release 4.1.1

App Config

class cms.app_base.CMSAppConfig(django_app_config)

New in version 4.0.
Base class that all cms app configurations should inherit from.
CMSAppConfig live in a file called cms_config.py.

Apps subclassing CMSAppConfig can set cms_enabled = True for their app config to use django CMS’ wizard
functionality. Additional wizzwards are listed in the app config’s cms_wizzards property.

The second functionality that django CMS offers is attaching Model objects to the toolbar. To use this function-
ality, set list the Model classes in cms_toolbar_enabled_models and have cms_enabled = True

App Extensions

class cms.app_base.CMSAppExtension

New in version 4.0.

Base class that all cms app extensions should inherit from. App extensions allow apps to offer their functionality
to other apps, e.g., as done by djangocms-versioning.

CMSAppExtensions live in a file called cms_config.py.
abstract configure_app(cms_config)
Implement this method if the app provides functionality that other apps can use and configure.

This method will be run once for every app that defines an attribute like <app_label>_enabled as True
on its cms app config class.

bl

So for example, if app A with label “app_a” implements this method and app B and app C define
app_a_enabled = True on their cms config classes, the method app A has defined will run twice, once
for app B and once for app C.

Parameters
cms_config (CMSAppConfig subclass) — the cms config class of the app registering for ad-
ditional functionality

ready()

Override this method to run code after all CMS extensions have been configured.

This method will be run once, even if no cms app config sets its <app_label>_enabled attribute to True

Form and model fields

Model fields

class cms.models.fields.PageField(**kwargs)

Bases: ForeignKey

This is a foreign key field to the cms.models.pagemodel.Page model that defaults to the
PageSelectFormField form field when rendered in forms. It has the same API as the django.db.
models.ForeignKey but does not require the othermodel argument.
default_form_class

alias of PageSelectFormField

158

Chapter 5. Software version requirements and release notes


https://docs.djangoproject.com/en/4.2/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/4.2/ref/models/fields/#django.db.models.ForeignKey

django cms Documentation, Release 4.1.1

formfield (**kwargs)
Pass 1imit_choices_to to the field being constructed.

Only passes it if there is a type that supports related fields. This is a similar strategy used to pass the
queryset to the field being constructed.

class cms.models.fields.PlaceholderRelationField(checks=None, **kwargs)

Bases: GenericRelation
GenericForeignKey to placeholders.

If you create a model which contains placeholders you first create the PlaceHolderRelationField:

from cms.utils.placeholder import get_placeholder_from_slot
class Post(models.Model):
p.)i;;ceholders = PlaceholderRelationField() # Generic relation
@cached_property
def content(self):

return get_placeholder_from_slot(self.placeholders, "content") # A.
—specific placeholder

class cms.models. fields.PlaceholderField(slotmame, default_width=None, actions=None, **kwargs)

Warning: This field is for django CMS versions below 4 only. It may only used for migrations.

The PlaceholderField has been replaced by the P1aceholderRelationField, the built-in migrations will
automatically take care of the replacement.

See documentation of PlaceholderRelationField for how to replace the code.

Form fields

class cms.forms.fields.PageSelectFormField(queryset=None, empty_label="--------- '

cache_choices=False, required=True, widget=None,
to_field_name=None, limit_choices_to=None, *args,
**kwargs)

Behaves like a django. forms.ModelChoiceField field for the cms.models.pagemodel.Page model, but

displays itself as a split field with a select drop-down for the site and one for the page. It also indents the page

names based on what level they’re on, so that the page select drop-down is easier to use. This takes the same

arguments as django. forms.ModelChoiceField.

widget
alias of PageSelectWidget

compress (data_list)

Return a single value for the given list of values. The values can be assumed to be valid.

For example, if this MultiValueField was instantiated with fields=(DateField(), TimeField()), this might
return a datetime object created by combining the date and time in data_list.

5.2. Django/Python compatibility table 159


https://docs.djangoproject.com/en/4.2/ref/contrib/contenttypes/#django.contrib.contenttypes.fields.GenericRelation
https://docs.djangoproject.com/en/4.2/ref/contrib/contenttypes/#django.contrib.contenttypes.fields.GenericForeignKey
https://docs.djangoproject.com/en/4.2/ref/forms/fields/#django.forms.ModelChoiceField
https://docs.djangoproject.com/en/4.2/ref/forms/fields/#django.forms.ModelChoiceField

django cms Documentation, Release 4.1.1

has_changed (initial, data)

Return True if data differs from initial.

class cms.forms.fields.PageSmartLinkField(max_length=None, min_length=None,
placeholder_text=None, ajax_view=None, *args, **kwargs)

A field making use of cms. forms.widgets.PageSmartLinkWidget. This field will offer you a list of match-
ing internal pages as you type. You can either pick one or enter an arbitrary URL to create a non-existing entry.
Takes a placeholder_text argument to define the text displayed inside the input before you type.

The widget uses an ajax request to try to find pages match. It will try to find case-insensitive matches amongst
public and published pages on the title, path, page_title, menu_title fields.

widget
alias of PageSmartLinkWidget

clean(value)

Validate the given value and return its “cleaned” value as an appropriate Python object. Raise Validation-
Error for any errors.

widget_attrs(widget)

Given a Widget instance (not a Widget class), return a dictionary of any HTML attributes that should be
added to the Widget, based on this Field.

User site navigation

There are four template tags for use in the templates that are connected to the menu:
e show_menu
* show_menu_below_id
e show_sub_menu
* show_breadcrumb

To use any of these template tags, you need to have {% load menu_tags %} in your template before the line on which
you call the template tag.

Note: Please note that menus live in the menus application, which though tightly coupled to the cms application exists
independently of it. Menus are usable by any application, not just by django CMS.

show_menu

The show_menu tag renders the navigation of the current page. You can overwrite the appearance and the HTML if
you add a menu/menu.html template to your project or edit the one provided with django CMS. show_menu takes six
optional parameters: start_level, end_level, extra_inactive, extra_active, namespace and root_id.

The first two parameters, start_level (default=0) and end_level (default=100) specify from which level the nav-
igation should be rendered and at which level it should stop. If you have home as a root node (i.e. level 0) and don’t
want to display the root node(s), set start_level to 1.

The third parameter, extra_inactive (default=0), specifies how many levels of navigation should be displayed if a
node is not a direct ancestor or descendant of the current active node.

The fourth parameter, extra_active (default=100), specifies how many levels of descendants of the currently active
node should be displayed.

160 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

The fifth parameter, namespace, is currently not implemented.
The sixth parameter root_id specifies the id of the root node.

You can supply a template parameter to the tag.

Some Examples

Complete navigation (as a nested list):

{% load menu_tags %}
<ul>

{% show_menu 0 100 100 100 %}
</ul>

Navigation with active tree (as a nested list):

<ul>
{% show_menu 0 100 ® 100 %}
</ul>

Navigation with only one active extra level:

<ul>
{% show_menu 0 100 0 1 %}
</ul>

Level 1 navigation (as a nested list):

<ul>
{% show_menu 1 %}
</ul>

Navigation with a custom template:

{% show_menu 0 100 100 100 "myapp/menu.html" %}

show_menu_below id

If you have set an id in the advanced settings of a page, you can display the sub-menu of this page with a template tag.
For example, we have a page called meta that is not displayed in the navigation and that has the id “meta’:

<ul>
{% show_menu_below_id "meta" %}
</ul>

You can give it the same optional parameters as show_menu:

<ul>
{% show_menu_below_id "meta"” ® 100 100 100 "myapp/menu.html"” %}
</ul>

Unlike show_menu, however, soft roots will not affect the menu when using show_menu_below_id.

5.2. Django/Python compatibility table 161



django cms Documentation, Release 4.1.1

show_sub_menu

Displays the sub menu of the current page (as a nested list).
The first argument, levels (default=100), specifies how many levels deep the sub menu should be displayed.

The second argument, root_level (default=None), specifies at what level, if any, the menu should have its root.
For example, if root_level is O the menu will start at that level regardless of what level the current page is on.

The third argument, nephews (default=100), specifies how many levels of nephews (children of siblings) are shown.

Fourth argument, template (default=menu/sub_menu.html), is the template used by the tag; if you want to use a
different template you must supply default values for root_level and nephews.

Examples:
<ul>

{% show_sub_menu 1 %}
</ul>

Rooted at level O:

<ul>
{% show_sub_menu 1 0 %}
</ul>

Or with a custom template:

<ul>
{% show_sub_menu 1 None 100 "myapp/submenu.html" %}
</ul>

show_breadcrumb

Show the breadcrumb navigation of the current page. The template for the HTML can be found at menu/breadcrumb.
html.

{% show_breadcrumb %}

Or with a custom template and only display level 2 or higher:

{% show_breadcrumb 2 "myapp/breadcrumb.html" %}

Usually, only pages visible in the navigation are shown in the breadcrumb. To include all pages in the breadcrumb,
write:

{% show_breadcrumb ® "menu/breadcrumb.html"” 0 %}

If the current URL is not handled by the CMS or by a navigation extender, the current menu node can not be determined.
In this case you may need to provide your own breadcrumb via the template. This is mostly needed for pages like login,
logout and third-party apps. This can easily be accomplished by a block you overwrite in your templates.

For example in your base.html:

162 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

<ul>
{% block breadcrumb %}
{% show_breadcrumb %}
{% endblock %}

<ul>

And then in your app template:

{% block breadcrumb %}
<li><a href="/">home</a></1li>
<li>My current page</li>

{% endblock %}

Properties of Navigation Nodes in templates

{{ node.is_leaf_node }}

Is it the last in the tree? If true it doesn’t have any children.

{{ node.level }}

The level of the node. Starts at O.

{{ node.menu_level }}

The level of the node from the root node of the menu. Starts at 0. If your menu starts at level 1 or you have a “soft root”
(described in the next section) the first node would still have O as its menu_level.

{{ node.get_absolute_url }}

The absolute URL of the node, without any protocol, domain or port.

{{ node.title }}

The title in the current language of the node.

{{ node.selected }}

If true this node is the current one selected/active at this URL.

{{ node.ancestor }}

If true this node is an ancestor of the current selected node.

{{ node.sibling }}

If true this node is a sibling of the current selected node.

{{ node.descendant }}

If true this node is a descendant of the current selected node.

5.2. Django/Python compatibility table 163




django cms Documentation, Release 4.1.1

{{ node.soft_root }}

If true this node is a soft root. A page can be marked as a soft root in its ‘Advanced Settings’.

Menu system classes and function

class menus.base.Menu(renderer)

The base class for all menu-generating classes.

get_nodes (request) — List[NavigationNode]
Get a list of NavigationNode instances for the menu.
Args:
request: The request object.
Returns:
A list of NavigationNode instances.
class menus.base.Modifier (renderer)
The base class for all menu-modifying classes. A modifier add, removes or changes menus.base.
NavigationNode in the list.
modify (request, nodes, namespace, root_id, post_cut, breadcrumb)
Modify the list of nodes.
Args:
request: The request object. nodes: List of NavigationNode instances. namespace: The namespace

for the menu. root_id: ID of the root node. post_cut: Boolean indicating post-cut status. breadcrumb:
Boolean indicating breadcrumb status.

class menus.base.NavigationNode (title: str, url: str, id: Any, parent_id: Optional[Any] = None,
parent_namespace: Optional[str] = None, attr: Optional[Dict[str, Any]] =
None, visible: bool = True)
Represents each node in a menu tree.
Attributes:
title: The title of the menu item. url: The URL associated with the menu item. id: The unique ID of this
item. parent_id: The ID of the parent item (optional). parent_namespace: The namespace of the parent
(optional). attr: Additional information to store on this node (optional). visible: Indicates whether this
item is visible (default is True).
get_absolute_url() — str
Returns the URL associated with this menu item.

get_ancestors() — List[NavigationNode]

Returns a list of all parent items, excluding the current menu item.

get_attribute(name: str) — Any
Retrieves a dictionary item from ‘attr’. Returns None if it does not exist.

Args:
name: The name of the attribute.

Returns:
The value associated with the attribute name or None if not found.

164 Chapter 5. Software version requirements and release notes



https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

django cms Documentation, Release 4.1.1

get_descendants () — List[NavigationNode]

Returns a list of all children beneath the current menu item.

get_menu_title() — str

Returns the associated title using the naming convention of ‘cms.models.pagemodel.Page’.

is_selected(request) — bool
Checks if the node is selected based on the request path.

Args:
request: The request object.

Returns:
True if the node is selected, False otherwise.

attr

A dictionary to add arbitrary attributes to the node. An important key is ‘is_page’: * If True, the node
represents a django CMS ‘Page’ object. * Nodes representing CMS pages have specific keys in ‘attr’.

class menus.menu_pool.MenuPool
clear (site_id=None, language=None, all=False)
This invalidates the cache for a given menu (site_id and language)

get_menus_by_attribute (name, value)

Returns the list of menus that match the name/value criteria provided.

get_registered_menus (for_rendering=False)

Returns all registered menu classes.

Parameters

for_rendering — Flag that when True forces us to include all CMSAttachMenu subclasses,
even if they’re not attached.

class menus.menu_pool .MenuPool
get_nodes()
discover_menus()
apply_modifiers()
_build_nodes ()
_mark_selected()
menus .menu_pool._build_nodes_inner_for_one_menu()
menus.templatetags.menu_tags.cut_levels()
class menus.templatetags.menu_tags.ShowMenu
get_context()

class menus.base.NavigationNode (sitle: str, url: str, id: Any, parent_id: Optional[Any] = None,
parent_namespace: Optional[str] = None, attr: Optional[Dict[str, Any]] =
None, visible: bool = True)

Represents each node in a menu tree.

5.2. Django/Python compatibility table 165


https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

django cms Documentation, Release 4.1.1

Attributes:
title: The title of the menu item. url: The URL associated with the menu item. id: The unique ID of this
item. parent_id: The ID of the parent item (optional). parent_namespace: The namespace of the parent
(optional). attr: Additional information to store on this node (optional). visible: Indicates whether this
item is visible (default is True).

__init__(utle: str, url: str,id: Any, parent_id: Optional[Any] = None, parent_namespace: Optional[str] =
None, attr: Optional[Dict[str, Any]] = None, visible: bool = True)
Initialize a NavigationNode instance.
Args:
title: The title of the menu item. url: The URL associated with the menu item. id: The unique ID
of this item. parent_id: The ID of the parent item (optional). parent_namespace: The namespace of
the parent (optional). attr: Additional information to store on this node (optional). visible: Indicates
whether this item is visible (default is True).
get_absolute_url() — str
Returns the URL associated with this menu item.

get_ancestors() — List[NavigationNode]
Returns a list of all parent items, excluding the current menu item.

get_attribute (name: str) — Any
Retrieves a dictionary item from ‘attr’. Returns None if it does not exist.

Args:
name: The name of the attribute.

Returns:
The value associated with the attribute name or None if not found.
get_descendants () — List[NavigationNode]
Returns a list of all children beneath the current menu item.

get_menu_title() — str
Returns the associated title using the naming convention of ‘cms.models.pagemodel.Page’.

is_selected(request) — bool
Checks if the node is selected based on the request path.
Args:
request: The request object.
Returns:
True if the node is selected, False otherwise.
attr

A dictionary to add arbitrary attributes to the node. An important key is ‘is_page’: * If True, the node
represents a django CMS ‘Page’ object. * Nodes representing CMS pages have specific keys in ‘attr’.

class menus.modifiers.Marker (renderer)

Searches the current selected node and marks them. - current_node (bool): Whether the current node is selected.
- siblings (bool): Whether siblings of the current node are marked. - descendants (bool): Whether descendants
of the current node are marked. - ancestors (bool): Whether ancestors of the current node are marked.
mark_descendants (nodes)
Mark the descendants of the given nodes.
Args:
nodes (list): A list of nodes to mark their descendants.

166

Chapter 5. Software version requirements and release notes


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

django cms Documentation, Release 4.1.1

Returns:
None

Raises:
None

modify (request, nodes, namespace, root_id, post_cut, breadcrumb)
Modifies a list of nodes based on certain conditions.
Args:
self: The current object of the class. request: The request object. nodes (list): A list of node ob-

jects. namespace: The namespace of the nodes. root_id: The root ID of the nodes. post_cut (bool):

A flag indicating whether post_cut condition is met. breadcrumb (bool): A flag indicating whether
breadcrumb condition is met.

Returns:
list: The modified list of nodes based on the conditions.
class menus.modifiers.AuthVisibility (renderer)

Remove nodes that are login required or require a group

modify (request, nodes, namespace, root_id, post_cut, breadcrumb)
Modify the list of nodes based on certain conditions.
Args:
self: The instance of the class containing this method. request: The current request object. nodes
(list): A list of nodes to be modified. namespace: The namespace. root_id: The ID of the root node.

post_cut (bool): Flag indicating if the modification is happening after cutting. breadcrumb (bool):
Flag indicating if the modification is happening for the breadcrumb.

Returns:
list: The modified list of nodes.
class menus.modifiers.Level (renderer)

Marks all node levels.

mark_levels (node, post_cut)
Mark the levels of menu items.
Args:

node (Node): The root node of the menu hierarchy. post_cut (bool): Flag indicating whether the
function is called after a cut is made.

Returns:
None

Raises:
None

modify (request, nodes, namespace, root_id, post_cut, breadcrumb)
Modify the given list of nodes based on the specified conditions.
Args:
self: The current instance of the class. request: The request object associated with the operation. nodes
(list): A list of node objects. namespace: The namespace associated with the nodes. root_id: The ID

of the root node. post_cut (bool): Flag indicating whether the modification is being done after the cut
operation. breadcrumb (bool): Flag indicating whether the breadcrumb data is being used.

Returns:
list: The modified list of nodes.

5.2. Django/Python compatibility table 167



django cms Documentation, Release 4.1.1

CMS menus

class cms.cms_menus.CMSMenu(renderer)

Subclass of menus.base.Menu. Its get_nodes() creates a list of NavigationNodes based on a site’s cms.
models.pagemodel.Page objects.

get_nodes (request)
Get a list of NavigationNode instances for the menu.

Args:
request: The request object.

Returns:
A list of NavigationNode instances.

class cms.cms_menus.NavExtender (renderer)
modify (request, nodes, namespace, root_id, post_cut, breadcrumb)
Modify the list of nodes.

Args:
request: The request object. nodes: List of NavigationNode instances. namespace: The namespace
for the menu. root_id: ID of the root node. post_cut: Boolean indicating post-cut status. breadcrumb:
Boolean indicating breadcrumb status.

class cms.cms_menus.SoftRootCutter (renderer)

A soft root is a page that acts as the root for a menu navigation tree.
Typically, this will be a page that is the root of a significant new section on your site.

When the soft root feature is enabled, the navigation menu for any page will start at the nearest soft root, rather
than at the real root of the site’s page hierarchy.

This feature is useful when your site has deep page hierarchies (and therefore multiple levels in its navigation
trees). In such a case, you usually don’t want to present site visitors with deep menus of nested items.

For example, you’re on the page -Introduction to Bleeding-?, so the menu might look like this:
* School of Medicine
— Medical Education
— Departments
% Department of Lorem Ipsum
% Department of Donec Imperdiet
# Department of Cras Eros
# Department of Mediaeval Surgery
- Theory
- Cures
- Bleeding
Introduction to Bleeding <this is the current page>
Bleeding - the scientific evidence
Cleaning up the mess

Cupping

168 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Leaches
Maggots
- Techniques
- Instruments
# Department of Curabitur a Purus
# Department of Sed Accumsan
% Department of Etiam

Research

Administration

Contact us

Impressum
which is frankly overwhelming.

By making “Department of Mediaeval Surgery” a soft root, the menu becomes much more manageable:
¢ Department of Mediaeval Surgery
— Theory
— Cures

* Bleeding
- Introduction to Bleeding <current page>
- Bleeding - the scientific evidence
- Cleaning up the mess

# Cupping

# Leaches

* Maggots
— Techniques
— Instruments
find_ancestors_and_remove_children(node, nodes)

Check ancestors of node for soft roots

modify (request, nodes, namespace, root_id, post_cut, breadcrumb)

Modity the list of nodes.
Args:
request: The request object. nodes: List of NavigationNode instances. namespace: The namespace
for the menu. root_id: ID of the root node. post_cut: Boolean indicating post-cut status. bread-
crumb: Boolean indicating breadcrumb status.
class cms.menu_bases.CMSAttachMenu( *args, **kwargs)

Base class that can be subclassed to allow your app to attach its ogqn menus.

classmethod get_apphooks()
Returns a list of apphooks to which this CMSAttachMenu is attached.

Calling this does not produce DB queries.

5.2. Django/Python compatibility table 169



django cms Documentation, Release 4.1.1

classmethod get_instances()

Return a queryset of all CMS Page objects (in this case) that are currently using this CMSAttachMenu
either directly as a navigation_extender, or, as part of an apphook.

Calling this does perform a DB query.

Pages

class cms.models.pagemodel.Page(*args, **kwargs)

Bases: Model

A Page is the basic unit of site structure in django CMS. The CMS uses a hierarchical page model: each page

stands in relation to other pages as parent, child or sibling. This hierarchy is managed by the django-treebeard

library.

A Page also has language-specific properties - for example, it will have a title and a slug for each language it

exists in. These properties are managed by the PageContent model.

copy_with_descendants (target_node=None, position=None, copy_permissions=True, target_site=None,
user=None)

Copy a page [ and all its descendants to a new location ]

get_application_urls (language=None, fallback=True, force_reload=False)

get application urls conf for application hook

get_changed_by (language=None, fallback=True, force_reload=False)
get user who last changed this page

get_changed_date (language=None, fallback=True, force_reload=False)
get when this page was last updated

get_content_obj (language=None, fallback=True, force_reload=False)
Helper function for accessing wanted / current title. If wanted title doesn’t exist, EmptyPageContent in-
stance will be returned.

get_media_path (filename)

Returns path (relative to MEDIA_ROOT/MEDIA_URL) to directory for storing page-scope files. This
allows multiple pages to contain files with identical names without namespace issues. Plugins such as
Picture can use this method to initialise the ‘upload_to’ parameter for File-based fields. For example:
image = models.ImageField(
_(“image”), upload_to=CMSPlugin.get_media_path)
where CMSPlugin.get_media_path calls self.page.get_media_path

This location can be customised using the CMS_PAGE_MEDIA_PATH setting

get_menu_title(language=None, fallback=True, force_reload=False)

get the menu title of the page depending on the given language
get_meta_description(language=None, fallback=True, force_reload=False)

get content for the description meta tag for the page depending on the given language
get_page_content_obj_attribute (attrname, language=None, fallback=True, force_reload=False)

Helper function for getting attribute or None from wanted/current page content.
get_page_title(language=None, fallback=True, force_reload=False)

get the page title of the page depending on the given language

170

Chapter 5. Software version requirements and release notes


http://django-treebeard.readthedocs.io/en/latest/

django cms Documentation, Release 4.1.1

get_path(language, fallback=True)
Get the path of the page depending on the given language

get_redirect (language=None, fallback=True, force_reload=False)

get redirect

get_template_name()
get the textual name (2nd parameter in get_cms_setting(‘TEMPLATES”)) of the template of this page or
of the nearest ancestor. failing to find that, return the name of the default template.
get_title(language=None, fallback=True, force_reload=False)
get the title of the page depending on the given language

has_add_permission(user)

Has user ability to add page under current page?

has_change_permissions_permission(user)

Has user ability to change permissions for current page?

has_move_page_permission (user)
Has user ability to move current page?

is_potential_home()
Encapsulates logic for determining if this page is eligible to be set as is_home. This is a public method
so that it can be accessed in the admin for determining whether to enable the “Set as home” menu item.
:return: Boolean

move_page (target_node, position=first-child")

Called from admin interface when page is moved. Should be used on all the places which are changing
page position. Used like an interface to django-treebeard, but after move is done page_moved signal is
fired.

Note for issue #1166: url conflicts are handled by updated check_title_slugs, overwrite_url on the moved
page don’t need any check as it remains the same regardless of the page position in the tree

reload()
Reload a page from the database

save (**kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.
The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.
set_as_homepage (user=None)
Sets the given page as the homepage. Updates the url paths for all affected pages. Returns the old home
page (if any).
class cms.models.pagemodel.PageUrl (id, slug, path, language, page, managed)
Bases: Model
class cms.models.pagemodel.PageType (id, created_by, changed_by, creation_date, changed_date, reverse_id,

navigation_extenders, login_required, is_home, application_urls,
application_namespace, languages, is_page_type, node)

Bases: Page

5.2. Django/Python compatibility table 171



django cms Documentation, Release 4.1.1

is_potential_home()

Encapsulates logic for determining if this page is eligible to be set as is_home. This is a public method
so that it can be accessed in the admin for determining whether to enable the “Set as home” menu item.
:return: Boolean

Page contents

class cms.models.contentmodels.PageContent (id, language, title, page_title, menu_title, meta_description,

redirect, page, creation_date, created_by, changed_by,
changed_date, in_navigation, soft_root, template,
limit_visibility_in_menu, xframe_options)

content_indicator()
returns the content indicator status. Without additional packages like djangocms-versioning page content
always is public.
Return type
str
get_absolute_url (language=None)
Get the absolute url for the page content. If language is specified it will return the absolute url of the
corresponding “sister”” content.
get_template()
get the template of this page if defined or if closer parent if defined or DEFAULT_PAGE_TEMPLATE
otherwise
get_template_name()
get the textual name (2nd parameter in get_cms_setting(‘TEMPLATES’)) of the template of this title.
failing to find that, return the name of the default template.
get_xframe_options()
Finds X_FRAME_OPTION from tree if inherited

is_editable(request)
returns True if page content object itself can be edited. Does not check user permissions to do that.
Return type
bool
rescan_placeholders()
Rescan and if necessary create placeholders in the current template.

save (**kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.
The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.
toggle_in_navigation(ser_ro=None)
Toggles (or sets) in_navigation and invalidates the cms page cache

admin_manager = <cms.models.managers.ContentAdminManager object>

Admin_manager does lack additional functionality of objects and must only be used inside admin objects
or admin forms. One of its key properties is that it can access all objects of type PageContent (irrespevtively
of some objects being hidden by third-party packages, e.g. due to viewing rights, publication or moderation
status.

172

Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

class cms.models.contentmodels.EmptyPageContent (language, page=None)

Empty title object, can be returned from cms.models.pagemodel.Page.get_content_obj () if required title
object doesn’t exist.

content_indicator()

returns the content indicator status. Empty page content always is empty
Return type
str

is_editable (request)

returns True if empty page content object itself can be edited. Since editing creates a new page content
object this should always be True
Return type
bool

Page extensions and page content extensions

Extensions

class cms.extensions.models.PageExtension(*args, **kwargs)

class cms.extensions.models.PageContentExtension(*args, **kwargs)

Admin

class cms.extensions.admin.PageExtensionAdmin(model, admin_site)
add_view(request, form_url=", extra_context=None)
Check if the page already has an extension object. If so, redirect to edit view instead.

delete_model (request, obj)
Given a model instance delete it from the database.

get_model_perms (request)
Return empty perms dict thus hiding the model from admin index.

save_model (request, obj, form, change)
Given a model instance save it to the database.

class cms.extensions.admin.PageContentExtensionAdmin (model, admin_site)
add_view(request, form_url=", extra_context=None)
Check if the page already has an extension object. If so, redirect to edit view instead.

delete_model (request, obj)
Given a model instance delete it from the database.

get_model_perms (request)

Return empty perms dict thus hiding the model from admin index.
save_model (request, obj, form, change)

Given a model instance save it to the database.

5.2. Django/Python compatibility table 173



django cms Documentation, Release 4.1.1

Toolbar

class cms.extensions.toolbar.ExtensionToolbar (request, toolbar, is_current_app, app_path)

Offers simplified API for providing the user access to the admin of page extensions and page content extensions
through the toolbar.
get_page_content_extension_admin(page_content_obj=None)
Get the admin url for the page content extensions menu item, depending on whether a
PageContentExtension instance exists for the PageContent displayed.

Return a tuple of the page content extension and the url; the extension is None if no instance exists, the url
is None is no admin is registered for the extension.

get_page_extension_admin()
Get the admin url for the page extension menu item, depending on whether a PageExtension instance exists
for the current page or not.

Return a tuple of the current extension and the url; the extension is None if no instance exists, the url is
None is no admin is registered for the extension.

get_title_extension_admin(language=None)
Deprecated.

Reflects now obsolete behavior in django CMS 3.x:

Get the admin urls for the page content extensions menu items, depending on whether a
PageContentExtension instance exists for each PageContent in the current page. A single language
can be passed to only work on a single page content object.

Return a list of tuples of the page content extension and the url; the extension is None if no instance exists,
the url is None is no admin is registered for the extension.

Permissions

class cms.models.permissionmodels.PagePermission(*args, **kwargs)

Page permissions for a single page

cms .models.permissionmodels.ACCESS_PAGE = 1

Access to the page itself

cms .models.permissionmodels.ACCESS_CHILDREN = 2

Access to immediate children (1 level)

cms .models.permissionmodels.ACCESS_DESCENDANTS = 4

Access to all children (first level and also their children)

cms.models.permissionmodels.ACCESS_PAGE_AND_DESCENDANTS = 5

Access to page itself and all children (first level and also their children)

174

Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Placeholders

class cms.models.placeholdermodel.Placeholder (*args, **kwargs)
Bases: Model

Placeholders can be filled with plugins, which store or generate content.

add_plugin(instance)

New in version 4.0.

Adds a plugin to the placeholder. The plugin’s position field must be set to the target position. Positions are
enumerated from the start of the palceholder’s plugin tree (1) to the last plugin (n, where n is the number
of plugins in the placeholder).
Parameters
instance (cms.models.pluginmodel.CMSPlugin instance) — Plugin to add. It’s
position parameter needs to be set.

Note: As of version 4 of django CMS the position counter does not re-start at 1 for the first child plugin.
The position field and 1language field are unique for a placeholder.

Example:

new_child = MyCoolPlugin()

new_child.position = parent_plugin.position + 1 # add as first child:.
—directly after parent

parent_plugin.placeholder.add(new_child)

clear (language=None)
Deletes all plugins from the placeholder
delete_plugin(instance)
New in version 4.0.
Removes a plugin and its descendants from the placeholder and database.
Parameters
instance (cms.models.pluginmodel.CMSPlugin instance) — Plugin to add. It’s
position parameter needs to be set.
get_cache_expiration(request, response_timestamp)

Returns the number of seconds (from «response_timestamp») that this placeholder can be cached. This is
derived from the plugins it contains.

This method must return: EXPIRE_NOW <= int <= MAX_EXPIRATION_IN_SECONDS
Return type
int

get_filled_languages()

Returns language objects for every language for which the placeholder has plugins.
This is not cached as it’s meant to be used in the frontend editor.

get_next_plugin_position(language, parent=None, insert_order=/irst")
New in version 4.0.

Helper to calculate plugin positions correctly.
Parameters

* language (str) — language for which the position is to be calculated

5.2. Django/Python compatibility table 175


https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

django cms Documentation, Release 4.1.1

* parent (cms.models.pluginmodel.CMSPlugin instance) — Parent plugin or
None (if position is on top level)

e insert_order (str)— Either "first" (default) or "last"
get_plugin_tree_order (language, parent_id=None)
Returns a list of plugin ids matching the given language ordered by plugin position.
get_plugins (language=None)

Returns a queryset of plugins attached to this placeholder. If language is given only plugins in the given
language are returned.

get_plugins_list (language=None)

Returns a list of plugins attached to this placeholder. If language is given only plugins in the given language
are returned.

get_vary_cache_on(request)
Returns a list of VARY headers.

has_add_plugin_permission(user, plugin_type)
Returns True if user has permission to add plugin_type to this placeholder.

has_add_plugins_permission(user, plugins)

Returns True if user has permission to add all plugins in plugins to this placeholder.

has_change_permission(user)

Returns True if user has permission to change all models attached to this placeholder.

has_change_plugin_permission(user, plugin)

Returns True if user has permission to change plugin to this placeholder.

has_clear_permission(user, languages)

Returns True if user has permission to delete all plugins in this placeholder

has_delete_plugin_permission(user, plugin)

Returns True if user has permission to delete plugin to this placeholder.

has_delete_plugins_permission(user, languages)

Returns True if user has permission to delete all plugins in this placeholder

has_move_plugin_permission(user, plugin, target_placeholder)
Returns True if user has permission to move plugin to the target_placeholder.

has_plugins (language=None)
Checks if placeholder is empty (False) or populated (True)

move_plugin(plugin, target_position, target_placeholder=None, target_plugin=None)
New in version 4.0.

Moves a plugin within the placeholder (target_placeholder=None) or to another placeholder.
Parameters

e plugin (cms.models.pluginmodel.CMSPlugin instance) — Plugin to move
e target_position (int) — The plugin’s new position

¢ target_placeholder (cms.models.placeholdermodel.Placeholder in-
stance) — Placeholder to move plugin to (or None)

176 Chapter 5. Software version requirements and release notes


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

django cms Documentation, Release 4.1.1

e target_plugin (cms.models.pluginmodel.CMSPlugin instance) — New
parent plugin (or None). The target plugin must be in the same placeholder or in
the target_placeholder if one is given.
The target_position is enumerated from the start of the palceholder’s plugin tree (1) to the last plugin
(n, where n is the number of plugins in the placeholder).
cache_placeholder = True
Flag caching the palceholder’s content

default_width

A default width is passed to the templace context as width
is_editable = True

If False the content of the placeholder is not editable in the frontend
is_static = False

Set to “True” for static placeholders (by the template tag)
property page

Gives the page object if the placeholder belongs to a cms.models.titlemodels.PageContent object
(and not to some other model.) If the placeholder is not attached to a page it returns None

slot
slot name that appears in the frontend

class cms.admin.placeholderadmin.FrontendEditableAdminMixin

Adding FrontendEditableAdminMixin to models admin class allows to open that admin in the frontend by
double-clicking on fields rendered with the render_model template tag.

get_urls(Q
Register the url for the single field edit view

class cms.admin.placeholderadmin.PlaceholderAdminMixin

Warning: PlaceholderAdminMixin is deprecated. It is no longer needed and thus will be removed

Plugins

class cms.plugin_base.CMSPluginBase (model=None, admin_site=None)
Inherits django.contrib.admin.ModelAdmin and in most respects behaves like a normal subclass.
Note however that some attributes of ModelAdmin simply won’t make sense in the context of a Plugin.

get_render_template(self, context, instance, placeholder)

If you need to determine the plugin render model at render time you can implement the
get_render_template () method on the plugin class; this method takes the same arguments as render.

The method must return a valid template file path.

Example:

def get_render_template(self, context, instance, placeholder):
if instance.attr = 'one':
return 'templatel.html'’
else:
return 'template2.html'’

5.2. Django/Python compatibility table 177


https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin

django cms Documentation, Release 4.1.1

See also: render_plugin() , render_template()

model

If the plugin requires per-instance settings, then this setting must be set to a model that inherits from
CMSPlugin. See also: Storing configuration.

alias of CMSPlugin

get_cache_expiration(request, instance, placeholder)

Provides hints to the placeholder, and in turn to the page for determining the appropriate Cache-Control
headers to add to the HTTPResponse object.
Parameters

¢ request — Relevant HTTPRequest instance.

¢ instance — The CMSPlugin instance that is being rendered.

Return type

None or datetime or ~time_delta or int
Must return one of:

None
This means the placeholder and the page will not even consider this plugin when cal-
culating the page expiration;

Datetime
A specific date and time (timezone-aware) in the future when this plugin’s content ex-
pires;

Important: The returned datetime must be timezone-aware or the plugin will be
ignored (with a warning) during expiration calculations.

Datetime.timedelta
A timedelta instance indicating how long, relative to the response timestamp that the
content can be cached;
Int
An integer number of seconds that this plugin’s content can be cached.
There are constants are defined in cms.constants that may be useful: EXPIRE_NOW and
MAX_EXPIRATION_TTL.

An integer value of 0 (zero) or EXPIRE_NOW effectively means “do not cache”. Negative values will be
treated as EXPIRE_NOW. Values exceeding the value ~cms.constants. MAX_EXPIRATION_TTL will be
set to that value.

Negative timedelta values or those greater than MAX_EXPIRATION_TTL will also be ranged in the same
manner.

Similarly, datetime values earlier than now will be treated as EXPIRE_NOW. Values greater than
MAX _EXPIRATION_TTL seconds in the future will be treated as MAX EXPIRATION _TTL seconds in
the future.

classmethod get_child_class_overrides(siot, page)

Returns a list of plugin types that are allowed as children of this plugin.
classmethod get_child_classes(slot, page, instance=None)
Returns a list of plugin types that can be added as children to this plugin.

classmethod get_child_plugin_candidates(slot, page)

Returns a list of all plugin classes that will be considered when fetching all available child classes for this
plugin.

178 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

classmethod get_empty_change_form_text (obj=None)

Returns the text displayed to the user when editing a plugin that requires no configuration.

classmethod get_extra_placeholder_menu_items (request, placeholder)
Extends the placeholder context menu for all placeholders.
To add one or more custom context menu items that are displayed in the context menu for all placeholders
when in structure mode, override this method in a related plugin to return a list of cms.plugin_base.
PluginMenuItem instances.

classmethod get_extra_plugin_menu_items (request, plugin)
Extends the plugin context menu for all plugins.
To add one or more custom context menu items that are displayed in the context menu for all plugins
when in structure mode, override this method in a related plugin to return a list of cms.plugin_base.
PluginMenulItem instances.

get_fieldsets (request, obj=None)
Same as from base class except if there are no fields, show an info message.

get_plugin_urls()

Returns the URL patterns the plugin wants to register views for. They are included under django CMS’s
page admin URLS in the plugin path (e.g.: /admin/cms/page/plugin/<plugin-name>/ in the default
case).

get_plugin_urls() is useful if your plugin needs to talk asynchronously to the admin.

get_vary_cache_on (request, instance, placeholder)

Returns an HTTP VARY header string or a list of them to be considered by the placeholder and in turn by
the page to caching behaviour.

Overriding this method is optional.

Must return one of:
None
This means that this plugin declares no headers for the cache to be varied upon. (default)
String
The name of a header to vary caching upon.
List of strings
A list of strings, each corresponding to a header to vary the cache upon.

Note:  This only makes sense to use with caching. If this plugin has cache = False or plu-
gin.get_cache_expiration(...) returns 0, get_vary_cache_on() will have no effect.

icon_alt (instance)

Overwrite this if necessary if text_enabled = True Return the ‘alt’ text to be used for an icon repre-
senting the plugin object in a text editor.
Parameters
instance (cms.models.pluginmodel.CMSPlugin instance) — The instance of the
plugin model to provide specific information for the ‘alt’ text.
By default icon_alt () will return a string of the form: “[plugin type] - [instance]”, but can be modified
to return anything you like.

This function accepts the instance as a parameter and returns a string to be used as the alt text for the
plugin’s preview or icon.

5.2. Django/Python compatibility table 179



django cms Documentation, Release 4.1.1

Authors of text-enabled plugins should consider overriding this function as it will be rendered as a tooltip
in most browser. This is useful, because if the same plugin is used multiple times, this tooltip can provide
information about its configuration.

See also: text_enabled, icon_src().

icon_src(instance)

By default, this returns an empty string, which, if left un-overridden would result in no icon rendered at
all, which, in turn, would render the plugin un-editable by the operator inside a parent text plugin.

Therefore, this should be overridden when the plugin has text_enabled set to True to return the path to an
icon to display in the text of the text plugin.

Since djangocms-text-ckeditor introduced inline previews of plugins, the icon will not be rendered in
TextPlugins anymore.
Parameters
instance (cms.models.pluginmodel.CMSPlugin instance) — The instance of the
plugin model.
Example:

def icon_src(self, instance):
return settings.STATIC_URL + "cms/img/icons/plugins/link.png"

See also: text_enabled, icon_alt()

log_addition(request, obj, bypass=None)

Log that an object has been successfully added.

The default implementation creates an admin LogEntry object.

log_change (request, obj, message, bypass=None)

Log that an object has been successfully changed.

The default implementation creates an admin LogEntry object.

log_deletion(request, obj, object_repr, bypass=None)

Log that an object will be deleted. Note that this method must be called before the deletion.

The default implementation creates an admin LogEntry object.

render (context, instance, placeholder)

This method returns the context to be used to render the template specified in render_template.
Parameters

e context (dict)— The context with which the page is rendered.

¢ instance (cms.models.pluginmodel.CMSPlugin instance) — The instance
of your plugin that is rendered.

* placeholder (str) — The name of the placeholder that is rendered.
Return type
dict or django.template.Context
This method must return a dictionary or an instance of django.template.Context, which will be used
as context to render the plugin template.

By default, this method will add instance and placeholder to the context, which means for simple
plugins, there is no need to overwrite this method.

If you overwrite this method it’s recommended to always populate the context with default values by calling
the render method of the super class:

180

Chapter 5. Software version requirements and release notes



https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/templates/api/#django.template.Context
https://docs.djangoproject.com/en/4.2/ref/templates/api/#django.template.Context

django cms Documentation, Release 4.1.1

def render(self, context, instance, placeholder):
context = super().render(context, instance, placeholder)

return context

render_change_form(request, context, add=False, change=False, form_url=", obj=None)
We just need the popup interface here
response_add (request, obj, **kwargs)
Determine the HttpResponse for the add_view stage.
response_change (request, obj)
Determine the HttpResponse for the change_view stage.
save_form(request, form, change)
Given a ModelForm return an unsaved instance. change is True if the object is being changed, and False
if it’s being added.
save_model (request, obj, form, change)

Override original method, and add some attributes to obj This has to be made, because if the object is
newly created, it must know where it lives.

admin_preview = False

If True, displays a preview in the admin.

allow_children = False
Allows this plugin to have child plugins - other plugins placed inside it?

If True you need to ensure that your plugin can render its children in the plugin template. For example:

{% load cms_tags %}
<div class="myplugin">
{{ instance.my_content }}
{% for plugin in instance.child_plugin_instances %}
{% render_plugin plugin %}
{% endfor %}
</div>

instance.child_plugin_instances provides access to all the plugin’s children. They are pre-filled
and ready to use. The child plugins should be rendered using the {% render_plugin %} template tag.

See also: child_classes, parent_classes, require_parent.

cache = True

Is this plugin cacheable? If your plugin displays content based on the user or request or other dynamic
properties set this to False.

If present and set to False, the plugin will prevent the caching of the resulting page.

Important: Setting this to False will effectively disable the CMS page cache and all upstream caches
for pages where the plugin appears. This may be useful in certain cases but for general cache management,
consider using the much more capable get_cache_expiration().

5.2. Django/Python compatibility table 181



django cms Documentation, Release 4.1.1

Warning: If you disable a plugin cache be sure to restart the server and clear the cache afterwards.

change_form_template = 'admin/cms/page/plugin/change_form.html'

The template used to render the form when you edit the plugin.

Example:

class MyPlugin(CMSPluginBase):
model = MyModel
name = _("My Plugin")
render_template = "cms/plugins/my_plugin.html"
change_form_template = "admin/cms/page/plugin_change_form.html"

See also: frontend_edit_template.

child_classes = None
A list of Plugin Class Names. If this is set, only plugins listed here can be added to this plugin. See also:
parent_classes.

disable_child _plugins = False

Disables dragging of child plugins in structure mode.

form = None

Custom form class to be used to edit this plugin.

module = 'Generic'

Modules collect plugins of similar type

name =

Name of the plugin needs to be set in child classes

page_only = False
Set to True if this plugin should only be used in a placeholder that is attached to a django CMS
page, and not other models with PlaceholderFields. See also: child_classes, parent_classes,
require_parent.

parent_classes = None
A list of the names of permissible parent classes for this plugin. See also: child_classes,
require_parent.

render_plugin = True
If set to False, this plugin will not be rendered at all. If True, render_template () must also be defined.
See also: render_template, get_render_template().

render_template = None
The path to the template used to render the template. If render_plugin is True either this or
get_render_template must be defined. See also: render_plugin, get_render_template().

require_parent = False
Is it required that this plugin is a child of another plugin? Or can it be added to any placeholder, even one
attached to a page. See also: child_classes, parent_classes.

text_enabled = False

This attribute controls whether your plugin will be usable (and rendered) in a text plugin. When you edit
a text plugin on a page, the plugin will show up in the CMS Plugins dropdown and can be configured and
inserted. The output will even be previewed in the text editor.

182

Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Of course, not all plugins are usable in text plugins. Therefore the default of this attribute is False. If
your plugin is usable in a text plugin:

1. set this to True

2. make sure your plugin provides its own icon_alt (), this will be used as a tooltip in

the text-editor and comes in handy when you use multiple plugins in your text.
See also: icon_alt(), icon_src().

class cms.plugin_base.PluginMenuItem(name, url, data=None, question=None, action='ajax’,
attributes=None)

Creates an item in the plugin / placeholder menu
Parameters

¢ name — Item name (label)

e url — URL the item points to. This URL will be called using POST

 data - Data to be POSTed to the above URL

¢ question — Confirmation text to be shown to the user prior to call the given URL
(optional)

e action — Custom action to be called on click; currently supported: ‘ajax’, ‘ajax_add’

* attributes — Dictionary whose content will be added as data-attributes to the menu
item

class cms.models.pluginmodel .CMSPlugin(*args, **kwargs)

The base class for a CMS plugin model. When defining a new custom plugin, you should store plugin-instance
specific information on a subclass of this class. (An example for this would be to store the number of pictures to
display in a gallery.)

Two restrictions apply when subclassing this to use in your own models:
1. Subclasses of CMSPlugin cannot be further subclassed
2. Subclasses of CMSPlugin cannot define a “text” field.
exception DoesNotExist

exception MultipleObjectsReturned

copy_relations (old_instance)
Handle copying of any relations attached to this plugin. Custom plugins have to do this themselves.
See also: Handling Relations, post_copy ().
Parameters
old_instance (CMSPlugin instance) — Source plugin instance
get_action_urls(js_compat=True)
Returns
dict of action urls for edit, add, delete, copy, and move plugin.
This method replaces the set of legacy methods get_add_url, "~ get_edit_url", get_move_url, get_delete_url,
get_copy_url.
get_bound_plugin()
Returns an instance of the plugin model configured for this plugin type.
get_instance_icon_alt()
Get alt text for instance’s icon
get_instance_icon_src()

Get src URL for instance’s icon

5.2. Django/Python compatibility table 183



django cms Documentation, Release 4.1.1

get_plugin_instance (admin=None)

For a plugin instance (usually as a CMSPluginBase), this method returns the downcasted (i.e., correctly
typed subclass of CMSPluginBase) instance and the plugin class
Returns
Tuple (instance, plugin)
instance: The instance AS THE APPROPRIATE SUBCLASS OF CMSPluginBase and not necessarily
just ‘self’, which is often just a CMSPluginBase,

plugin: the associated plugin class instance (subclass of CMSPlugin)

notify_on_autoadd(request, conf)
Method called when we auto add this plugin via default_plugins in CMS_PLACEHOLDER_CONF.

Some specific plugins may have some special stuff to do when they are auto added.

notify_on_autoadd_children(request, conf, children)
Method called when we auto add children to this plugin via default_plugins/<plugin>/children in
CMS_PLACEHOLDER_CONF.

Some specific plugins may have some special stuff to do when we add children to them. ie : TextPlugin
must update its content to add HTML tags to be able to see his children in WYSIWYG.

post_copy (old_instance, new_old_ziplist)

Can (should) be overridden to handle the copying of plugins which contain children plugins after the
original parent has been copied.

E.g., TextPlugins use this to correct the references in the text to child plugins. copied
refresh_from_db (*args, **kwargs)
Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router
if this instance wasn’t loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If
fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

changed_date

django:django.db.models.DateTimeField: Datetime the plugin was last changed
creation_date

django:django.db.models.DateTimeField: Datetime the plugin was created
language

django.db.models.CharField: Language of the plugin
parent

django.db.models.ForeignKey: Parent plugin or None for plugins at root level in the placeholder
placeholder

django.db.models.ForeignKey: Placeholder the plugin belongs to
plugin_type

django:django.db.models.CharField: Plugin type (name of the class as string)
position

django.db.models.SmallIntegerField: Position (unique for placeholder and language) starting with
1 for the first plugin in the placeholder

184

Chapter 5. Software version requirements and release notes


https://docs.djangoproject.com/en/4.2/ref/models/fields/#django.db.models.CharField
https://docs.djangoproject.com/en/4.2/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/4.2/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/4.2/ref/models/fields/#django.db.models.SmallIntegerField

django cms Documentation, Release 4.1.1

class cms.plugin_pool.PluginPool

get_plugin(name)

Retrieve a plugin from the cache.
register_plugin(plugin)

Registers the given plugin(s).

Static sanity checks is also performed.

If a plugin is already registered, this will raise PluginAlreadyRegistered.
unregister_plugin(plugin)

Unregisters the given plugin(s).

If a plugin isn’t already registered, this will raise PluginNotRegistered.

validate_templates (plugin=None)

Plugins templates are validated at this stage

Plugin utility functions

cms.utils.plugins.assign_plugins (request, placeholders, template=None, lang=None)

Fetch all plugins for the given placeholders and cast them down to the concrete instances in one query per
type.
Parameters
* request — The current request.
¢ placeholders — An iterable of placeholder objects.
¢ template — (optional) The template object.
¢ lang - (optional) The language code.
This method assigns plugins to the given placeholders. It retrieves the plugins from the database based on the
placeholders and the language. The plugins are then downcasted to their specific plugin types.

The plugins are split up by placeholder and stored in a dictionary where the key is the placeholder ID and the
value is a list of plugins.

For each placeholder, if there are plugins assigned to it, the plugins are organized as a layered tree structure.
Otherwise, an empty list is assigned.

The list of all plugins for each placeholder is stored in the _all_plugins_cache attribute of the placeholder, while
the list of root plugins is stored in the _plugins_cache attribute

cms.utils.plugins.copy_plugins_to_placeholder (plugins, placeholder, language=None,

root_plugin=None, start_positions=None)
Copies an iterable of plugins to a placeholder
Parameters
¢ plugins (iterable) — Plugins to be copied
* placeholder (cms.models.pluginmodel.CMSPlugin instance) — Target place-
holder
* language (str) — target language (if no root plugin is given)
e root_plugin -
e start_positions (int) — Cache for start positions by language
The logic of this method is the following:
1. Get bound plugins for each source plugin
2. Get the parent plugin (if it exists)
3. then get a copy of the source plugin instance

5.2. Django/Python compatibility table 185


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

django cms Documentation, Release 4.1.1

4. Set the id/pk to None to it the id of the generic plugin instance above; this will effectively change the
generic plugin created above into a concrete one

find the position in the new placeholder

save the concrete plugin (which creates a new plugin in the database)

trigger the copy relations

8. return the plugin ids

Nowm

cms.utils.plugins.downcast_plugins (plugins, placeholders=None, select_placeholder=False,
request=None)

Downcasts the given list of plugins to their respective classes. Ignores any plugins that are not available.
Parameters
e plugins (List [CMSPlugin]) — List of plugins to downcast.
* placeholders (Optional [List[Placeholder]])— List of placeholders associated

with the plugins.
¢ select_placeholder (bool)—If True, select_related the plugin queryset with place-
holder.
* request (Optional [HttpRequest])— The current request.
Returns
Generator that yields the downcasted plugins.
Return type

Generator[ CMSPlugin, None, None]

cms.utils.plugins.get_bound_plugins (plugins)

Get the bound plugins by downcasting the plugins to their respective classes. Raises a KeyError if the plugin
type is not available.

Creates a map of plugin types and their corresponding plugin IDs for later use in downcasting. Then, retrieves
the plugin instances from the plugin model using the mapped plugin IDs. Finally, iterates over the plugins and
yields the downcasted versions if they have a valid parent. Does not affect caching.

Parameters

plugins (List [CMSPlugin]) — List of CMSP1lugin instances.
Returns

Generator that yields the downcasted plugins.
Return type

Generator[ CMSPlugin, None, None]
Example:

plugins = [plugin_instancel, plugin_instance2]
for bound_plugin in get_bound_plugins(plugins):
# Do something with the bound_plugin
pass

cms.utils.plugins.get_plugin_class(plugin_type: str) — CMSPluginBase
Returns the plugin class for a given plugin_type (str)

cms.utils.plugins.get_plugin_model (plugin_type: str) — CMSPlugin

Returns the plugin model class for a given plugin_type (str)

cms.utils.plugins.get_plugin_restrictions(plugin, page=None, restrictions_cache=None)

cms.utils.plugins.get_plugins(request, placeholder, template, lang=None)

Get a list of plugins for a placeholder in a specified template. Respects the placeholder’s cache.
Parameters
* request — (HttpRequest) The HTTP request object.
¢ placeholder - (Placeholder) The placeholder object for which to retrieve plugins.
¢ template - (Template) The template object in which the placeholder resides (not used).

186 Chapter 5. Software version requirements and release notes


https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

django cms Documentation, Release 4.1.1

¢ lang — (str, optional) The language code for localization. Defaults to None.

Returns:

list: A list of plugins for the specified placeholder in the template.
Raises:

None.

Examples:

# Get plugins for a placeholder in a template
plugins = get_plugins(request, placeholder, template)

# Get plugins for a placeholder in a template with specific language
plugins = get_plugins(request, placeholder, template, lang='en')

cms.utils.plugins.get_plugins_as_layered_tree(plugins)

Given an iterable of plugins ordered by position, returns a deque of root plugins with their respective children
set in the child_plugin_instances attribute.

cms.utils.plugins.has_reached_plugin_limit (placeholder, plugin_type, language, template=None)

Checks if the global maximum limit for plugins in a placeholder has been reached. If not then it checks if it has
reached its maximum plugin_type limit.

Parameters: - placeholder: The placeholder object to check the limit for. - plugin_type: The type of plugin
to check the limit for. - language: The language code for the plugins. - template: The template object for the
placeholder. Optional.

Returns: - False if the limit has not been reached.

Raises: - PluginLimitReached: If the limit has been reached for the placeholder.

Sitemaps

class cms.sitemaps.CMSSitemap

Template Tags

CMS template tags

To use any of the following template tags you first need to load them at the top of your template:

{% load cms_tags %}

Placeholders
placeholder

The placeholder template tag defines a placeholder on a page. All placeholders in a template will be auto-detected
and can be filled with plugins when editing a page that is using said template. When rendering, the content of these
plugins will appear where the placeholder tag was.

Example:

5.2. Django/Python compatibility table 187




django cms Documentation, Release 4.1.1

{% placeholder "content" %}

Content +

» Multi Columns 3 columns v +

If you want additional content to be displayed in case the placeholder is empty, use the or argument and an additional {%
endplaceholder %} closing tag. Everything between {% placeholder "..." or %} and {% endplaceholder
%} is rendered in the event that the placeholder has no plugins or the plugins do not generate any output.

Example:

{% placeholder "content" or %}There is no content.{% endplaceholder %}

If you want to add extra variables to the context of the placeholder, you should use Django’s with tag. For instance, if
you want to re-size images from your templates according to a context variable called width, you can pass it as follows:

{% with 320 as width %}{% placeholder "content" %}{% endwith %}

If you want the placeholder to inherit the content of a placeholder with the same name on parent pages, simply pass the
inherit argument:

{% placeholder "content" inherit %}

This will walk up the page tree up until the root page and will show the first placeholder it can find with content.

It’s also possible to combine this with the or argument to show an ultimate fallback if the placeholder and none of the
placeholders on parent pages have plugins that generate content:

{% placeholder "content" inherit or %}There is no spoon.{% endplaceholder %}

See also the CMS_PLACEHOLDER_CONF setting where you can also add extra context variables and change some other
placeholder behaviour.

Important: {% placeholder %} will only work inside the template’s <body>.

static_placeholder

Changed in version 4.0.

The static_placeholder template tag does not work with django CMS 4. It will be removed in a future version.

Note: As a replacement use django CMS Alias instead. Once installed use {% load djangocms_alias_tags %}
and {% static_alias "footer" %} as areplacement for static_placeholder

In connection with django CMS Versioning you can better manage versions of page parts that appear at several instances
on your pages.

188 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/ref/templates/builtins/#std-templatetag-with
https://github.com/django-cms/djangocms-alias

django cms Documentation, Release 4.1.1

render_placeholder

{% render_placeholder %} is used if you have a PlaceholderField in your own model and want to render it in the
template.

The render_placeholder tag takes the following parameters:
* Placeholder instance
* width parameter for context sensitive plugins (optional)
* language keyword plus language-code string to render content in the specified language (optional)

* as keyword followed by varname (optional): the template tag output can be saved as a context variable for later
use.

The following example renders the my_placeholder field from the mymodel_instance and will render only the
English (en) plugins:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder language 'en' %}

New in version 3.0.2: This template tag supports the as argument. With this you can assign the result of the template
tag to a new variable that you can use elsewhere in the template.

Example:

{% render_placeholder mymodel_instance.my_placeholder as placeholder_content %}
<p>{{ placeholder_content }}</p>

When used in this manner, the placeholder will not be displayed for editing when the CMS is in edit mode.

See How to use placeholders outside the CMS or PlaceholderRelationField on how to get a specific placeholder
instance.

render_uncached_placeholder

The same as render_placeholder, but the placeholder contents will not be cached or taken from the cache.
Arguments:

* PlaceholderField instance

* width parameter for context sensitive plugins (optional)

* language keyword plus language-code string to render content in the specified language (optional)

¢ as keyword followed by varname (optional): the template tag output can be saved as a context variable for later
use.

Example:

{% render_uncached_placeholder mymodel_instance.my_placeholder language 'en' %}

5.2. Django/Python compatibility table 189




django cms Documentation, Release 4.1.1

show_placeholder

Displays a specific placeholder from a given page. This is useful if you want to have some more or less static content
that is shared among many pages, such as a footer.

Arguments:
¢ placeholder_name
* page_lookup (see page_lookup for more information)
* language (optional)
* site (optional)

Examples:

{% show_placeholder "footer" "footer_container_page" %}
{% show_placeholder "content" request.current_page.parent_id %}
{% show_placeholder "teaser" request.current_page.get_root %}

show_uncached_placeholder

The same as show_placeholder, but the placeholder contents will not be cached or taken from the cache.
Arguments:

¢ placeholder_name

* page_lookup (see page_lookup for more information)

* language (optional)

* site (optional)

Example:

{% show_uncached_placeholder "footer" "footer_container_page" %}

page_lookup

The page_lookup argument, passed to several template tags to retrieve a page, can be of any of the following types:
e str: interpreted as the reverse_id field of the desired page, which can be set in the “Advanced” section when
editing a page.
e int: interpreted as the primary key (pk field) of the desired page
e dict: adictionary containing keyword arguments to find the desired page (for instance: {'pk': 13})
» Page: you can also pass a page object directly, in which case there will be no database lookup.

If you know the exact page you are referring to, it is a good idea to use a reverse_id (a string used to uniquely name
a page) rather than a hard-coded numeric ID in your template. For example, you might have a help page that you want
to link to or display parts of on all pages. To do this, you would first open the help page in the admin interface and enter
an ID (such as help) under the ‘Advanced’ tab of the form. Then you could use that reverse_id with the appropriate
template tags:

190 Chapter 5. Software version requirements and release notes



https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

django cms Documentation, Release 4.1.1

{% show_placeholder "right-column" "help" %}
<a href="{% page_url "help" %}">Help page</a>

If you are referring to a page relative to the current page, you’ll probably have to use a numeric page ID or a page object.
For instance, if you want the content of the parent page to display on the current page, you can use:

{% show_placeholder "content" request.current_page.parent_id %}

Or, suppose you have a placeholder called teaser on a page that, unless a content editor has filled it with content
specific to the current page, should inherit the content of its root-level ancestor:

{% placeholder "teaser" or %}
{% show_placeholder "teaser" request.current_page.get_root %}
{% endplaceholder %}

page_url

Displays the URL of a page in the current language.
Arguments:
* page_lookup (see page_lookup for more information)
* language (optional)
* site (optional)

e as var_name (version 3.0 or later, optional; page_url can now be used to assign the resulting URL to a context
variable var_name)

Example:

<a href="{% page_url "help" %}">Help page</a>
<a href="{% page_url request.current_page.parent %}">Parent page</a>

If amatching page isn’t found and DEBUG is True, an exception will be raised. However, if DEBUG is False, an exception
will not be raised.

New in version 3.0: page_url now supports the as argument. When used this way, the tag emits nothing, but sets a
variable in the context with the specified name to the resulting value.

When using the as argument PageNotFound exceptions are always suppressed, regardless of the setting of DEBUG and
the tag will simply emit an empty string in these cases.

Example:

{# Emit a 'canonical' tag when the page is displayed on an alternate url #}

{% page_url request.current_page as current_url %}{% if current_url and current_url !=_
—request.get_full_path %}<link rel="canonical" href="{% page_url request.current_page %}
<">{% endif %}

5.2. Django/Python compatibility table 191



https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-DEBUG
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-DEBUG
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-DEBUG

django cms Documentation, Release 4.1.1

page_attribute

This template tag is used to display an attribute of the current page in the current language.
Arguments:

* attribute_name

* page_lookup (optional; see page_lookup for more information)

Possible values for attribute_name are: "title", ‘"menu_title", '"page_title", "slug",
"meta_description”, "changed_date", "changed_by" (note that you can also supply that argument with-
out quotes, but this is deprecated because the argument might also be a template variable).

Example:

{% page_attribute "page_title" %}

If you supply the optional page_lookup argument, you will get the page attribute from the page found by that argument.

Example:

{% page_attribute "page_title" "my_page_reverse_id" %}
{% page_attribute "page_title" request.current_page.parent_id %}
{% page_attribute "slug" request.current_page.get_root %}

New in version 2.3.2: This template tag supports the as argument. With this you can assign the result of the template
tag to a new variable that you can use elsewhere in the template.

Example:

{% page_attribute "page_title" as title %}
<title>{{ title }}</title>

It even can be used in combination with the page_lookup argument.

Example:

{% page_attribute "page_title" "my_page_reverse_id" as title %}
<a href="/mypage/">{{ title }}</a>

New in version 2.4.

render_plugin

This template tag is used to render child plugins of the current plugin and should be used inside plugin templates.
Arguments:

e plugin
Plugin needs to be an instance of a plugin model.

Example:

{% load cms_tags %}

<div class="multicolumn">

{% for plugin in instance.child_plugin_instances %}
<div style="width: {{ plugin.width }}00px;'">

(continues on next page)

192 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

{% render_plugin plugin %}
</div>
{% endfor %}
</div>

Normally the children of plugins can be accessed via the child_plugins attribute of plugins. Plugins need the
allow_children attribute to set to True for this to be enabled.

New in version 3.0.

render_plugin_block

This template tag acts like the template tag render_model_block but with a plugin instead of a model as its target.
This is used to link from a block of markup to a plugin’s change form in edit/preview mode.

This is useful for user interfaces that have some plugins hidden from display in edit/preview mode, but the CMS author
needs to expose a way to edit them. It is also useful for just making duplicate or alternate means of triggering the
change form for a plugin.

This would typically be used inside a parent-plugin’s render template. In this example code below, there is a parent
container plugin which renders a list of child plugins inside a navigation block, then the actual plugin contents inside a
DIV.contentgroup-items block. In this example, the navigation block is always shown, but the items are only shown
once the corresponding navigation element is clicked. Adding this render_plugin_block makes it significantly more
intuitive to edit a child plugin’s content, by double-clicking its navigation item in edit mode.

Arguments:
e plugin

Example:

{% load cms_tags 110n %}

{% block section_content %}
<div class="contentgroup-container">
<nav class="contentgroup'>
<div class="inner'">
<ul class="contentgroup-items">{% for child in children %}
{% if child.enabled %}
<1i class="item{{ forloop.counter®|unlocalize }}">
{% render_plugin_block child %}
<a href="#item{{ child.id|unlocalize }}">{{ child.title|safe }}</a>
{% endrender_plugin_block %}
</1i>{% endif %}
{% endfor %}
</ul>
</div>
</nav>

<div class="contentgroup-items">{% for child in children %}
<div class="contentgroup-item item{{ child.id|unlocalize }}{ f not forloop.
—counter® %} active{ ndif %}">
{% render_plugin child %}
</div>{% endfor %}

(continues on next page)

5.2. Django/Python compatibility table 193




django cms Documentation, Release 4.1.1

(continued from previous page)

</div>
</div>
{% endblock %}

New in version 3.0.

render_model

render_model is the way to add frontend editing to any Django model. It both renders the content of the given attribute
of the model instance and makes it clickable to edit the related model.

If the toolbar is not enabled, the value of the attribute is rendered in the template without further action.
If the toolbar is enabled, click to call frontend editing code is added.

By using this template tag you can show and edit page titles as well as fields in standard django models, see How to
enable frontend editing for Page and Django models for examples and further documentation.

Example:

<h1>{% render_model my_model "title" "title,abstract" %}</hl>

This will render to:

<!-- The content of the Hl1 is the active area that triggers the frontend editor -->
<hl><cms-plugin class="cms-plugin cms-plugin-myapp-mymodel-title-1">{{ my_model.title }}
—</cms-plugin></h1>

Arguments:
* instance: instance of your model in the template

e attribute: the name of the attribute you want to show in the template; it can be a context variable name; it’s
possible to target field, property or callable for the specified model; when used on a page object this argument
accepts the special titles value which will show the page title field, while allowing editing title, menu title
and page title fields in the same form;

e edit_fields (optional): a comma separated list of fields editable in the popup editor; when template tag is used
on a page object this argument accepts the special changelist value which allows editing the pages changelist
(items list);

* language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

e filters (optional): a string containing chained filters to apply to the output content; works the same way as
filter template tag;

e view_url (optional): the name of a URL that will be reversed using the instance pk and the language as
arguments;

* view_method (optional): a method name that will return a URL to a view; the method must accept request as
first parameter.

* varname (optional): the template tag output can be saved as a context variable for later use.

Note: By default this template tag escapes the content of the rendered model attribute. This helps prevent a range of
security vulnerabilities stemming from HTML, JavaScript, and CSS Code Injection.

194 Chapter 5. Software version requirements and release notes



https://github.com/kristianoellegaard/django-hvad
https://docs.djangoproject.com/en/4.2/ref/templates/builtins/#std-templatetag-filter

django cms Documentation, Release 4.1.1

To change this behaviour, the project administrator should carefully review each use of this template tag and ensure that
all content which is rendered to a page using this template tag is cleansed of any potentially harmful HTML markup,
CSS styles or JavaScript.

Once the administrator is satisfied that the content is clean, he or she can add the “safe” filter parameter to the template
tag if the content should be rendered without escaping.

Warning: render_model is only partially compatible with django-hvad: using it with hvad-translated fields (say
{% render_model object ‘translated_field’ %} return error if the hvad-enabled object does not exists in the current
language. As a workaround render_model_icon can be used instead.

New in version 3.0.

render_model_block

render_model_block is the block-level equivalent of render_model:

{% render_model_block my_model %}
<h1>{{ instance.title }}</hl1>
<div class="body">
{{ instance.date|date:"d F Y" }}
{{ instance.text }}
</div>
{% endrender_model_block %}

This will render to:

<!-- This whole block is the active area that triggers the frontend editor -->
<template class="cms-plugin cms-plugin-start cms-plugin-myapp-mymodel-1"></template>
<h1>{{ my_model.title }}</h1>
<div class="body">
{{ my_model.date|date:"d F Y" }}
{{ my_model.text }}
</div>
<template class="cms-plugin cms-plugin-end cms-plugin-myapp-mymodel-1"></template>

In the block the my_model is aliased as instance and every attribute and method is available; also template tags and
filters are available in the block.

Warning: If the {¥ render_model_block %} contains template tags or template code that rely on or ma-
nipulate context data that the {%¥ render_model_block %} also makes use of, you may experience some unex-
pected effects. Unless you are sure that such conflicts will not occur it is advised to keep the code within a {%
render_model_block %} as simple and short as possible.

Arguments:
* instance: instance of your model in the template

e edit_fields (optional): a comma separated list of fields editable in the popup editor; when template tag is used
on a page object this argument accepts the special changelist value which allows editing the pages changelist
(items list);

5.2. Django/Python compatibility table 195




django cms Documentation, Release 4.1.1

* language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

e view_url (optional): the name of a URL that will be reversed using the instance pk and the language as
arguments;

e view_method (optional): a method name that will return a URL to a view; the method must accept request as
first parameter.

* varname (optional): the template tag output can be saved as a context variable for later use.

Note: By default this template tag escapes the content of the rendered model attribute. This helps prevent a range of
security vulnerabilities stemming from HTML, JavaScript, and CSS Code Injection.

To change this behaviour, the project administrator should carefully review each use of this template tag and ensure that
all content which is rendered to a page using this template tag is cleansed of any potentially harmful HTML markup,
CSS styles or JavaScript.

Once the administrator is satisfied that the content is clean, he or she can add the “safe” filter parameter to the template
tag if the content should be rendered without escaping.

New in version 3.0.

render_model_icon

render_model_icon is intended for use where the relevant object attribute is not available for user interaction (for
example, already has a link on it, think of a title in a list of items and the titles are linked to the object detail view);
when in edit mode, it renders an edit icon, which will trigger the editing change form for the provided fields.

<h3><a href="{{ my_model.get_absolute_url }}">{{ my_model.title }}</a> {% render_model_
—icon my_model %}</h3>

It will render to something like:

<h3>
<a href="{{ my_model.get_absolute_url }}">{{ my_model.title }}</a>
<template class="cms-plugin cms-plugin-start cms-plugin-myapp-mymodel-1 cms-render-
—model-icon"></template>
<!-- The image below is the active area that triggers the frontend editor -->
<img src="/static/cms/img/toolbar/render_model_placeholder.png">
<template class="cms-plugin cms-plugin-end cms-plugin-myapp-mymodel-1 cms-render-
—model-icon"></template>
</h3>

Note: Icon and position can be customised via CSS by setting a background to the . cms-render-model-icon img
selector.

Arguments:
* instance: instance of your model in the template

e edit_fields (optional): a comma separated list of fields editable in the popup editor; when template tag is used
on a page object this argument accepts the special changelist value which allows editing the pages changelist
(items list);

* language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

196 Chapter 5. Software version requirements and release notes



https://github.com/kristianoellegaard/django-hvad
https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 4.1.1

e view_url (optional): the name of a URL that will be reversed using the instance pk and the language as
arguments;

* view_method (optional): a method name that will return a URL to a view; the method must accept request as
first parameter.

* varname (optional): the template tag output can be saved as a context variable for later use.

Note: By default this template tag escapes the content of the rendered model attribute. This helps prevent a range of
security vulnerabilities stemming from HTML, JavaScript, and CSS Code Injection.

To change this behaviour, the project administrator should carefully review each use of this template tag and ensure that
all content which is rendered to a page using this template tag is cleansed of any potentially harmful HTML markup,
CSS styles or JavaScript.

Once the administrator is satisfied that the content is clean, he or she can add the “safe” filter parameter to the template
tag if the content should be rendered without escaping.

New in version 3.0.

render_model_add

render_model_add is similar to render_model_icon but it will enable to create instances of the given instance
class; when in edit mode, it renders an add icon, which will trigger the editing add form for the provided model.

<h3><a href="{{ my_model.get_absolute_url }}">{{ my_model.title }}</a> {% render_model_
—add my_model %}</h3>

It will render to something like:

<h3>
<a href="{{ my_model.get_absolute_url }}">{{ my_model.title }}</a>
<template class="cms-plugin cms-plugin-start cms-plugin-myapp-mymodel-1 cms-render-
—model-add"></template>
<!-- The image below is the active area that triggers the frontend editor -->
<img src="/static/cms/img/toolbar/render_model_placeholder.png">
<template class="cms-plugin cms-plugin-end cms-plugin-myapp-mymodel-1 cms-render-
—model-add"></template>
</h3>

Note: Icon and position can be customised via CSS by setting a background to the .cms-render-model-add img
selector.

Arguments:
* instance: instance of your model, or model class to be added
* edit_fields (optional): a comma separated list of fields editable in the popup editor;
* language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

e view_url (optional): the name of a url that will be reversed using the instance pk and the language as argu-
ments;

5.2. Django/Python compatibility table 197



https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 4.1.1

* view_method (optional): a method name that will return a URL to a view; the method must accept request as
first parameter.

» varname (optional): the template tag output can be saved as a context variable for later use.

Note: By default this template tag escapes the content of the rendered model attribute. This helps prevent a range of
security vulnerabilities stemming from HTML, JavaScript, and CSS Code Injection.

To change this behaviour, the project administrator should carefully review each use of this template tag and ensure that
all content which is rendered to a page using this template tag is cleansed of any potentially harmful HTML markup,
CSS styles or JavaScript.

Once the administrator is satisfied that the content is clean, he or she can add the “safe” filter parameter to the template
tag if the content should be rendered without escaping.

Warning: If passing a class, instead of an instance, and using view_method, please bear in mind that the method
will be called over an empty instance of the class, so attributes are all empty, and the instance does not exists on
the database.

New in version 3.1.

render_model_add_block

render_model_add_block is similar to render_model_add but instead of emitting an icon that is linked to the add
model form in a modal dialog, it wraps arbitrary markup with the same “link”. This allows the developer to create
front-end editing experiences better suited to the project.

All arguments are identical to render_model_add, but the template tag is used in two parts to wrap the markup that
should be wrapped.

{% render_model_add_block my model_instance %}<div>New Object</div>{% endrender_model_
—add_block %}

It will render to something like:

<template class="cms-plugin cms-plugin-start cms-plugin-myapp-mymodel-1 cms-render-model-
—add"></template>

<div>New Object</div>
<template class="cms-plugin cms-plugin-end cms-plugin-myapp-mymodel-1 cms-render-model-
—add"></template>

Warning: You must pass an instance of your model as instance parameter. The instance passed could be an exist-
ing models instance, or one newly created in your view/plugin. It does not even have to be saved, it is introspected
by the template tag to determine the desired model class.

Arguments:
e instance: instance of your model in the template
* edit_fields (optional): a comma separated list of fields editable in the popup editor;

* language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

198 Chapter 5. Software version requirements and release notes



https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 4.1.1

e view_url (optional): the name of a URL that will be reversed using the instance pk and the language as
arguments;

* view_method (optional): a method name that will return a URL to a view; the method must accept request as
first parameter.

* varname (optional): the template tag output can be saved as a context variable for later use.

page_language_url

Returns the URL of the current page in an other language:

{% page_language_url "de" %}
{% page_language_url "fr" %}
{% page_language_url "en" %}

If the current URL has no CMS Page and is handled by a navigation extender and the URL changes based on the
language, you will need to set a language_changer function with the set_language_changer function in menus.
utils.

For more information, see /topics/il8n.

language_chooser

The language_chooser template tag will display a language chooser for the current page. You can modify the tem-
plate in menu/language_chooser.html or provide your own template if necessary.

Example:

{% language_chooser %}

or with custom template:

{% language_chooser "myapp/language_chooser.html" %}

113 th)

The language_chooser has three different modes in which it will display the languages you can choose from: “raw

(default), “native”, “current” and “short”. It can be passed as the last argument to the language_chooser tag as
a string. In “raw” mode, the language will be displayed like its verbose name in the settings. In “native” mode the
languages are displayed in their actual language (eg. German will be displayed “Deutsch”, Japanese as “” etc). In
“current” mode the languages are translated into the current language the user is seeing the site in (eg. if the site is
displayed in German, Japanese will be displayed as “Japanisch™). “Short” mode takes the language code (eg. “en”) to

display.

If the current URL has no CMS Page and is handled by a navigation extender and the URL changes based on the
language, you will need to set a language_changer function with the set_language_changer function in menus.
utils.

For more information, see /topics/i18n.

5.2. Django/Python compatibility table 199




django cms Documentation, Release 4.1.1

Toolbar template tags

The cms_toolbar template tag is included in the cms_tags library and will add the required CSS and javascript to
the sekizai blocks in the base template. The template tag must be placed before any {% placeholder %} occurrences
within your HTML.

Important: {% cms_toolbar %} will only work correctly inside the template’s <body>.

Example:

<body>
{% cms_toolbar %}
{% placeholder "home" %}

Note: Be aware that you cannot surround the cms_toolbar tag with block tags. The toolbar tag will render everything
below it to collect all plugins and placeholders, before it renders itself. Block tags interfere with this.

Toolbar

The toolbar can contain various items, some of which in turn can contain other items. These items are represented by
the classes listed in cms. toolbar. items, and created using the various APIs described below.

Do not instantiate these classes manually

These classes are described here for reference purposes only. It is strongly recommended that you do not create
instances yourself, but use the methods listed here.

Classes and methods

Common parameters (key, verbose_name, position, on_close, disabled, active) and options are described at
the end of this document.

class cms.toolbar.toolbar.CMSToolbar (request, request_path=None, _async=False)
Bases: CMSToolbarBase
add_ajax_item(name, action, active=False, disabled=False, extra_classes=None, data=None,
question=None, side=<object object>, position=None, on_success=None, method="POST")
Adds AjaxItem that sends a POST request to action with data, and returns it. data should be None or
a dictionary. The CSRF token will automatically be added to the item.

If a string is provided for question, it will be presented to the user to allow confirmation before the request
is sent.

add_button (name, url, active=False, disabled=False, extra_classes=None, extra_wrapper_classes=None,
side=<object object>, position=None)

Adds a Button to the toolbar.

200 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

add_button_list (identifier=None, extra_classes=None, side=<object object>, position=None)
Adds an (empty) ButtonList to the toolbar and returns it.

add_item(item, position=None)

Adds an item (which must be a subclass of BaseItem), and returns it. This is a low-level API, and you
should always use one of the built-in object-specific methods to add items in preference if possible, using
this method only for custom item classes.

add_link_item(name, url, active=False, disabled=False, extra_classes=None, side=<object object>,
position=None)
Adds a LinkItem that opens url, and returns it.
add_modal_button(name, url, active=False, disabled=Fulse, extra_classes=None,

extra_wrapper_classes=None, side=<object object>, position=None,
on_close="REFRESH_PAGE")

Adds a ModalButton to the toolbar.
add_modal_item(name, url, active=False, disabled=False, extra_classes=None,
on_close='"REFRESH_PAGE', side=<object object>, position=None)
Similar to add_sideframe_item(), but adds a ModalItem that opens the url in a modal dialog instead

of the sideframe, and returns it.

add_sideframe_button(name, url, active=False, disabled=False, extra_classes=None,
extra_wrapper_classes=None, side=<object object>, position=None,
on_close=None)

Adds a SideframeButton to the toolbar.
add_sideframe_item(name, url, active=False, disabled=False, extra_classes=None, on_close=None,
side=<object object>, position=None)
Adds a SideframeItem that opens url in the sideframe and returns it.
find_first(item_type, **attributes)
Returns the first TtemSearchResult that matches the search, or None. The search strategy is the same as
in find_items (). The return value of this method is safe to use as the position argument of the various
APIs to add items.
find_items (item_type, **attributes)
Returns a list of ItemSearchResult objects matching all items of item_type (e.g. LinkItem).
get_item_count()
Returns the number of items in the menu.
get_menu(key, verbose_name=None, side=<object object>, position=None)
Will return the Menu identified with key, or None.

get_or_create_menu(key, verbose_name=None, disabled=False, side=<object object>, position=None)

If a Menu with key already exists, this method will return that menu. Otherwise it will create a menu with
the key identifier.

populate()
Populates the toolbar with the CMS items.

content_mode_active

True if content mode is active.

edit_mode_active

True if the structure board editing mode is active.

5.2. Django/Python compatibility table 201



django cms Documentation, Release 4.1.1

preview_mode_active

True if preview mode is active.

watch_models = []

Property; a list of models that the toolbar warches for URL changes, so it can redirect to the new URL on
saving.

class cms.toolbar.items.Menu(name, csrf_token, disabled=False, side=<object object>)

Bases: SubMenu

Provides a menu in the toolbar. Use a CMSToolbar.get_or_create_menu method to create a Menu instance.
Can be added to CMSToolbar.

add_ajax_item(name, action, active=False, disabled=False, extra_classes=None, data=None,
question=None, side=<object object>, position=None, on_success=None, method="POST")
Adds AjaxItem that sends a POST request to action with data, and returns it. data should be None or
a dictionary. The CSRF token will automatically be added to the item.

If a string is provided for question, it will be presented to the user to allow confirmation before the request
is sent.

add_break (identifier=None, position=None)
Adds a visual break in the menu, at position, and returns it. identifier may be used to make this item
searchable.

add_item(item, position=None)

Adds an item (which must be a subclass of BaseItem), and returns it. This is a low-level API, and you
should always use one of the built-in object-specific methods to add items in preference if possible, using
this method only for custom item classes.

add_link_item(name, url, active=False, disabled=False, extra_classes=None, side=<object object>,
position=None)

Adds a LinkItem that opens url, and returns it.

add_modal_item(name, url, active=False, disabled=Fulse, extra_classes=None,
on_close="REFRESH_PAGE', side=<object object>, position=None)

Similar to add_sideframe_item(), but adds a ModalItem that opens the url in a modal dialog instead
of the sideframe, and returns it.

add_sideframe_item(name, url, active=False, disabled=False, extra_classes=None, on_close=None,
side=<object object>, position=None)
Adds a SideframeItem that opens url in the sideframe and returns it.
find_first(item_type, **attributes)

Returns the first TtemSearchResult that matches the search, or None. The search strategy is the same as
in find_items (). The return value of this method is safe to use as the position argument of the various
APIs to add items.

find_items (item_type, **attributes)

Returns a list of ItemSearchResult objects matching all items of item_type (e.g. LinkItem).
get_context()

Returns the context (as dictionary) for this item.
get_item_count()

Returns the number of items in the menu.

202

Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

get_or_create_menu(key, verbose_name, disabled=False, side=<object object>, position=None)
Adds a new sub-menu, at position, and returns a SubMenu.
render ()

Renders the item and returns it as a string. By default, calls get_context () and renders template with
the context returned.

template = 'cms/toolbar/items/menu.html’
Must be set by subclasses and point to a Django template

class cms.toolbar.items.SubMenu(name, csrf_token, disabled=False, side=<object object>)
Bases: ToolbarAPIMixin, BaseItem

A child of a Menu. Use a Menu. get_or_create_menu method to create a SubMenu instance. Can be added to
Menu.

add_ajax_item(name, action, active=False, disabled=False, extra_classes=None, data=None,
question=None, side=<object object>, position=None, on_success=None, method="POST")
Adds AjaxItem that sends a POST request to action with data, and returns it. data should be None or
a dictionary. The CSRF token will automatically be added to the item.

If a string is provided for question, it will be presented to the user to allow confirmation before the request
is sent.

add_break (identifier=None, position=None)

Adds a visual break in the menu, at position, and returns it. identifier may be used to make this item
searchable.

add_item(item, position=None)

Adds an item (which must be a subclass of BaseItem), and returns it. This is a low-level API, and you
should always use one of the built-in object-specific methods to add items in preference if possible, using
this method only for custom item classes.

add_link_item(name, url, active=False, disabled=False, extra_classes=None, side=<object object>,
position=None)
Adds a LinkItem that opens url, and returns it.
add_modal_item(name, url, active=False, disabled=Fulse, extra_classes=None,
on_close='"REFRESH_PAGE', side=<object object>, position=None)
Similar to add_sideframe_item(), but adds a ModalItem that opens the url in a modal dialog instead
of the sideframe, and returns it.
add_sideframe_item(name, url, active=False, disabled=False, extra_classes=None, on_close=None,
side=<object object>, position=None)
Adds a SideframeItem that opens url in the sideframe and returns it.
find_first(item_type, **attributes)

Returns the first TtemSearchResult that matches the search, or None. The search strategy is the same as
in find_items (). The return value of this method is safe to use as the position argument of the various
APIs to add items.

find_items (item_type, **attributes)
Returns a list of ItemSearchResult objects matching all items of item_type (e.g. LinkItem).

get_context()

Returns the context (as dictionary) for this item.

5.2. Django/Python compatibility table 203



django cms Documentation, Release 4.1.1

get_item_count()
Returns the number of items in the menu.
render ()

Renders the item and returns it as a string. By default, calls get_context () and renders template with
the context returned.

template = 'cms/toolbar/items/menu.html’

Must be set by subclasses and point to a Django template

class cms.toolbar.items.LinkItem(name, url, active=False, disabled=False, extra_classes=None,
side=<object object>)
Bases: BaseItem

Sends a GET request. Use an add_Iink_item method to create a LinkItem instance. Can be added to
CMSToolbar, Menu, SubMenu.

get_context()
Returns the context (as dictionary) for this item.
template = 'cms/toolbar/items/item_link.html'
Must be set by subclasses and point to a Django template
class cms.toolbar.items.SideframeItem(name, url, active=False, disabled=Fulse, extra_classes=None,

on_close=None, side=<object object>)
Bases: FrameItem

Sends a GET request; loads response in a sideframe. Use an add_sideframe_item method to create a
SideframeItem instance. Can be added to CMSToolbar, Menu, SubMenu.

template = 'cms/toolbar/items/item_sideframe.html'
Must be set by subclasses and point to a Django template
class cms.toolbar.items.ModalItem(name, url, active=False, disabled=False, extra_classes=None,
on_close=None, side=<object object>)
Bases: FrameItem

Sends a GET request; loads response in a modal window. Use an add_modal_item method to create a
ModalItem instance. Can be added to CMSToolbar, Menu, SubMenu.

template = 'cms/toolbar/items/item_modal.html'
Must be set by subclasses and point to a Django template
class cms.toolbar.items.AjaxItem(name, action, csrf_token, data=None, active=False, disabled=False,

extra_classes=None, question=None, side=<object object>,
on_success=None, method='POST")

Bases: BaseItem

Sends a POST request. Use an add_ajax_item method to create a AjaxItem instance. Can be added to
CMSToolbar, Menu, SubMenu.

get_context()
Returns the context (as dictionary) for this item.

template = 'cms/toolbar/items/item_ajax.html'

Must be set by subclasses and point to a Django template

204 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

class cms.toolbar.items.Break(identifier=None)
Bases: BaseItem

A visual break in a menu. Use an add_break method to create a Break instance. Can be added to Menu,
SubMenu.

template = 'cms/toolbar/items/break.html’
Must be set by subclasses and point to a Django template

class cms.toolbar.items.ButtonList (identifier=None, extra_classes=None, side=<object object>)

Bases: BaseItem

A visually-connected list of one or more buttons. Use an add_button_1ist () method to create a ButtonList
instance. Can be added to CMSToolbar.

add_button(name, url, active=False, disabled=False, extra_classes=None)
Adds a Button to the list of buttons and returns it.

add_modal_button(name, url, active=False, disabled=Fulse, extra_classes=None,
on_close="REFRESH_PAGE")

Adds a ModalButton to the button list and returns it.

add_sideframe_button(name, url, active=False, disabled=False, extra_classes=None, on_close=None)
Adds a SideframeButton to the button list and returns it.

get_buttons()
Yields all buttons in the button list
get_context()
Returns the context (as dictionary) for this item.
template = 'cms/toolbar/items/button_list.html'
Must be set by subclasses and point to a Django template

class cms.toolbar.items.Button(name, url, active=False, disabled=False, extra_classes=None)

Bases: BaseButton

Sends a GET request. Use a CMSToolbar.add_button or ButtonList.add_button() method to create a
Button instance. Can be added to CMSToolbar, ButtonList.

class cms.toolbar.items.SideframeButton(name, url, active=False, disabled=False, extra_classes=None,
on_close=None)

Bases: ModalButton

Sends a GET request. Use a C(MSToolbar.add_sideframe_button or ButtonList.
add_sideframe_button() method to create a SideframeButton instance. Can be added to CMSToolbar,
ButtonList.

class cms.toolbar.items.ModalButton(name, url, active=False, disabled=False, extra_classes=None,
on_close=None)

Bases: Button

Sends a GET request. Use a CMSToolbar.add_modal_button or ButtonList.add_modal_button()
method to create a ModalButton instance. Can be added to CMSToolbar, ButtonList.

class cms.toolbar.items.BaseItem(side=<object object>)

Bases: object

All toolbar items inherit from BaseItem. If you need to create a custom toolbar item, subclass BaseItem.

5.2. Django/Python compatibility table 205


https://docs.python.org/3/library/functions.html#object

django cms Documentation, Release 4.1.1

get_context()

Returns the context (as dictionary) for this item.

render ()
Renders the item and returns it as a string. By default, calls get_context () and renders template with
the context returned.

template = None
Must be set by subclasses and point to a Django template

class cms.toolbar.items.ToolbarAPIMixin
Provides APIs used by CMSToolbar and Menu.

add_ajax_item(name, action, active=False, disabled=False, extra_classes=None, data=None,
question=None, side=<object object>, position=None, on_success=None, method="POST")
Adds AjaxItem that sends a POST request to action with data, and returns it. data should be None or
a dictionary. The CSRF token will automatically be added to the item.

If a string is provided for question, it will be presented to the user to allow confirmation before the request
is sent.
add_item(item, position=None)

Adds an item (which must be a subclass of BaseItem), and returns it. This is a low-level API, and you
should always use one of the built-in object-specific methods to add items in preference if possible, using
this method only for custom item classes.

add_link_item(name, url, active=False, disabled=False, extra_classes=None, side=<object object>,
position=None)

Adds a LinkItem that opens url, and returns it.

add_modal_item(name, url, active=False, disabled=Fualse, extra_classes=None,
on_close='"REFRESH_PAGE', side=<object object>, position=None)

Similar to add_sideframe_item(), but adds a ModalItem that opens the url in a modal dialog instead
of the sideframe, and returns it.

add_sideframe_item(name, url, active=Fualse, disabled=Fulse, extra_classes=None, on_close=None,
side=<object object>, position=None)

Adds a SideframeItem that opens url in the sideframe and returns it.

find_first(item_type, **attributes)

Returns the first ItemSearchResult that matches the search, or None. The search strategy is the same as
in find_items (). The return value of this method is safe to use as the position argument of the various
APIs to add items.

find_items (item_type, **attributes)
Returns a list of ItemSearchResult objects matching all items of item_type (e.g. LinkItem).

get_item_count()

Returns the number of items in the menu.

class cms.toolbar.items.ItemSearchResult (item, index)

Bases: object
Returned by the find APIs in ToolbarAPIMixin.

An ItemSearchResult will have two useful attributes:

206 Chapter 5. Software version requirements and release notes


https://docs.python.org/3/library/functions.html#object

django cms Documentation, Release 4.1.1

item
The item found.

index

The index of the item (its position amongst the other items).

The ItemSearchResult itself can be cast to an integer, and supports addition and subtraction of numbers. See
the position parameter for more details, and Control the position of items in the toolbar for examples.

Parameters

The methods described below for creating/modifying toolbar items share a number of common parameters:

key
a unique identifier (typically a string)
verbose_name
the displayed text in the item
position
The position index of the new item in the list of items. May be:
1. None - appends the item to the list
2. an integer - inserts the item at that index in the list
3. an object already in the list - Inserts the item into the list immediately before the object; must be a sub-class
of BaseItem, and must exist in the list
4. an ItemSearchResult - inserts the item into the list immediately before the ItemSearchResult.
ItemSearchResult may be treated as an integer.
on_close:

Determines what happens after closing a frame (sideframe or modal) that has been opened by a menu item. May
be:
1. None - does nothing when the sideframe closes
2. REFRESH_PAGE - refreshes the page when the frame closes
3. a URL - opens the URLS when the frame is closed.
disabled

Greys out the item and renders it inoperable.

active
Applies to buttons only; renders the button it its ‘activated’ state.

side

Either cms. constants.LEFT or cms.constants.RIGHT (both unique objects denoted above as <object ob-
ject>). Decides to which side of the toolbar the item should be added.

django CMS constants used in toolbars

cms . constants.REFRESH_PAGE
Supplied to on_close arguments to refresh the current page when the frame is closed, for example:

from cms.constants import REFRESH_PAGE

self.toolbar.add_modal_item(

(continues on next page)

5.2. Django/Python compatibility table 207



django cms Documentation, Release 4.1.1

(continued from previous page)

'Modal item',
url=modal_url,
on_close=REFRESH_PAGE
)

cms.cms_toolbars.ADMIN_MENU_IDENTIFIER

The Site menu (that wusually shows the project’'s domain name, example.ccom by default).
ADMIN_MENU_IDENTIFIER allows you to get hold of this object easily using cms.toolbar.toolbar.
CMSToolbar.get_menu().

cms. cms_toolbars.LANGUAGE_MENU_IDENTIFIER

The Language menu. LANGUAGE_MENU_IDENTIFIER allows you to get hold of this object easily using cms.
toolbar. toolbar.CMSToolbar.get_menu().

cms . cms_toolbars.PAGE_MENU_IDENTIFIER

The Page menu. PAGE_MENU_IDENTIFIER allows you to get hold of this object easily using cms. toolbar.
toolbar.CMSToolbar.get_menu().

Utility functions

Utility functions provide functionality that is regularly used within the django CMS core and are also available to third
party packages.

Model admin
Action buttons

class cms.admin.utils.ChangeListActionsMixin
Bases: object

ChangeListActionsMixin is a mixin for the ModelAdmin class. It adds the ability to have action buttons and a
burger menu in the admin’s change list view. Unlike actions that affect multiple listed items the list action buttons
only affect one item at a time.

Use get_action_list() to register actions and admin_action_button() to define the button behavior.

To activate the actions make sure "admin_list_actions" is in the admin classes
:prop:”~django.contrib.admin.ModelAdmin.list_display" property.

static admin_action_button(uri: str, icon: str, title: str, burger_menu: bool = False, action: str = 'get’,
disabled: bool = False, keepsideframe: bool = True, name: str =") — str

Returns a generic button supported by the ChangeListActionsMixin.
Parameters

eurl (str) — Url of the action as string, typically generated by
:func:’~cms.utils.urlutils.admin_reverse" _

¢ icon (str)-Name of the icon shown in the button or before the title in the burger
menu.

e title (str)— Human-readable string describing the action.

* burger_menu (bool) — If True the action item will be part of a burger menu
right og all buttons.

208 Chapter 5. Software version requirements and release notes


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

django cms Documentation, Release 4.1.1

e action (str) — Either "get" or "post" defining the html method used for the
url. Some urls require a post method.

e disabled (bool) — If True the item is grayed out and cannot be selected.

* keepsideframe (bool)—If False the side frame (if open) will be closed before
executing the action.

* name (str)— A string that will be added to the class list of the button/menu item:
cms-action-{{ name }}
To add an action button to the change list use the following pattern in your admin class:

def my_custom_button(self, obj, request, disabled=False):
# do preparations, e.g., check permissions, get url,
url = admin_reverse("...", args=[obj.pk])
if permissions_ok:
return self.admin_action_button(url, "info", _("View usage"),.
—~disabled=disabled)
return "" # No button

get_actions_list() — List[Callable[[Model, HttpRequest], str]]

Collect list actions from implemented methods and return as list. Make sure to call it’s super () instance
when overwriting:

class MyModelAdmin(admin.ModelAdmin) :

def get_actions_list(self):
return super().get_actions_list() + [self.my_first_action, self.my_
—second_action]

get_admin_list_actions(request: HttpRequest) — Callable[[Model], str]
Method to register the admin action menu with the admin’s list display

Usage (in your model admin):

class MyModelAdmin(AdminActionsMixin, admin.ModelAdmin):

list_display = ('name', ..., 'admin_list_actions')

Grouper admin

class cms.admin.utils.GrouperModelAdmin (model, admin_site)
Bases: ChangeListActionsMixin, ModelAdmin

Easy-to-use ModelAdmin for grouper models. Usage example:

class MyGrouperAdmin(GrouperModelAdmin) :

# Add language tabs to change and add views

extra_grouping_fields = ("language",)

# Add grouper and content fields to change list view

# Add preview and settings action to change list view

list_display = ("field_in_grouper_model", "content__field_in_content_model",
~"admin_list_actions")

(continues on next page)

5.2. Django/Python compatibility table 209


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str

django cms Documentation, Release 4.1.1

(continued from previous page)

# Automatically add content fields to change form (either the standard form or.
—any form given
form = MyChangeForm

Using GrouperModelAdmin instead of ModelAdmin adds a view standard functions to your admin class to make
it more easily and more consistently customizable.
1. By adding "admin_list_actions" to the admin’s 1ist_display
attribute the change list view gets an action column as described by ChangeListActionsMixin.
2. The admin class automatically creates a method for each field of the content model form (default:

all fields)
named content__{content_model_field_name}. Those fields can be used in 1list_display

just as grouper model fields. Currently, they are not sortable, however.
3. The change form is amended with exactly those content fields also named

content__{content_model_field_name}.
As aresult, the change form can (but does not have to) contain both grouper model fields and content

model fields. The admin takes care of creating the necessary model instances.
changeform_view(request: HttpRequest, object_id: Optional[str] = None, form_url: str =", extra_context:
dict = None) — HttpResponse

Update grouping field properties for both add and change views

clear_content_cache() — None
Clear cache, e.g., for a new request

delete_view(request: HttpRequest, object_id: str, extra_context: Optional[dict] = None) — HttpResponse
Update grouping field properties for delete view

get_actions_list() — list

Collect list actions from implemented methods and return as list. Make sure to call it’s super () instance
when overwriting:

class MyModelAdmin(admin.ModelAdmin):

def get_actions_list(self):
return super().get_actions_list() + [self.my_first_action, self.my_
—second_action]

get_changelist (request: HttpRequest, **kwargs) — type
Allow for extra grouping fields as a non-filter parameter
get_changelist_instance (request: HttpRequest) — GrouperChangeListBase
Update grouping field properties and get changelist instance

get_content_field(obj: Model, field_name: str, request: Optional[ HttpRequest] = None) — Any
Retrieves the content of a field stored in the content model. If request is given extra grouping fields are
processed before.

get_extra_context (request: HitpRequest, object_id: Optional[str] = None) — Dict[str, Any]
Provide the grouping fields to the change view.

get_form(request: HttpRequest, obj: Optional[Model] = None, **kwargs) — type

Adds the language from the request to the form class

210

Chapter 5. Software version requirements and release notes


https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type

django cms Documentation, Release 4.1.1

get_grouper_obj (obj: Model) — Model
Get the admin object. If obj is a content object assume that the admin object resides in the field named after
the admin model. The admin model name must be the same as the content model name minus “Content”
at the end.

get_grouping_from_request (request: HttpRequest) — None
Retrieves the current grouping selectors from the request

get_language() — str
Hook on how to get the current language. By default, Django provides it.

get_language_from_request (request: HttpRequest) — str
Hook for get_language_from_request which by default uses the cms utility
get_language_tuple() — Tuple[Tuple[str, str], ...]
Hook on how to get all available languages for the language selector.
get_preserved_filters(request: HttpRequest) — str
Always preserve grouping get parameters! Also, add them to changelist filters: * Save and continue will
keep the grouping parameters * Save and returning to changelist will keep the grouping parameters
get_queryset (request: HttpRequest) — QuerySet
Annotates content fields with the name “content__ {field_name}” to the grouper queryset if for all content
fields that appear in the
get_readonly_fields (request: HttpRequest, obj: Optional[Model] = None)
Allow access to content fields to be controlled by a method “can_change_content”: This allows versioned
content to be protected if needed
history_view(request: HttpRequest, object_id: str, extra_context: Optional[dict] = None) — HttpResponse
Update grouping field properties for history view

save_model (request: HttpRequest, obj: Model, form: Form, change: bool) — None

Save/create both grouper and content object

view_on_site(obj: Model) — Optional[str]
bool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two
instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
content_model: Optional[Model] = None

The content model class to be used. Defaults to the model class named like the grouper model class
plus "Content" at the end from the same app as the grouper model class, e.g., BlogPostContent if the
grouper is BlogPost.

content_related_field: Optional[str] = None

Name of the inverse relation field giving the set of content models belonging to a grouper model. Defaults
to the first field found as an inverse relation. If you have more than one inverse relation please make sure
to specify this field. An example would be if the blog post content model contained a many-to-many
relationship to the grouper model for, say, related blog posts.

property current_content_filters: Dict[str, Any]
Filters needed to get the correct content model instance

5.2. Django/Python compatibility table 211


https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/models/querysets/#django.db.models.query.QuerySet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

django cms Documentation, Release 4.1.1

extra_grouping_fields: Tuple[str, ...] = QO

Indicates additional grouping fields such as "language" for example. Additional grouping fields create
tabs in the change form and a dropdown menu in the change list view.

Note: All fields serving as extra grouping fields must be part of the admin’s fieldsets setting for
GrouperModelAdmin to work properly. In the change form the fields will be invisible.

grouper_field_name: Optional[str] = None

The name of the ForeignKey in the content model that points to the grouper instance. If not given it is
assumed to be the snake case name of the grouper model class, e.g. "blog_post" for the "BlogPost"
model.

Placeholders

cms.utils.placeholder.get_placeholder_from_slot (placeholder_relation: Manager, slot: str,
template_obj=None) — Placeholder

Retrieves the placeholder instance for a PlaceholderRelationField either by scanning the template of the tem-
plate_obj (if given) or by creating or getting a Placeholder in the database

cms.utils.placeholder.get_declared_placeholders_for_obj(obj)

Returns declared placeholders for an object. The object is supposed to have a method get_template which
returns the template path as a string that renders the object. get_declared_placeholders returns a list of
placeholders used in the template by the {% placeholder %} template tag.

Plugins

cms.utils.plugins.get_plugins(request, placeholder, template, lang=None)

Get a list of plugins for a placeholder in a specified template. Respects the placeholder’s cache.
Parameters
* request — (HttpRequest) The HTTP request object.
* placeholder — (Placeholder) The placeholder object for which to retrieve plugins.
¢ template - (Template) The template object in which the placeholder resides (not used).
¢ lang — (str, optional) The language code for localization. Defaults to None.

Returns:

list: A list of plugins for the specified placeholder in the template.
Raises:

None.

Examples:

# Get plugins for a placeholder in a template
plugins = get_plugins(request, placeholder, template)

# Get plugins for a placeholder in a template with specific language
plugins = get_plugins(request, placeholder, template, lang='en')

cms.utils.plugins.assign_plugins (request, placeholders, template=None, lang=None)

Fetch all plugins for the given placeholders and cast them down to the concrete instances in one query per

type.
Parameters

212 Chapter 5. Software version requirements and release notes


https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

django cms Documentation, Release 4.1.1

» request — The current request.

¢ placeholders — An iterable of placeholder objects.

¢ template - (optional) The template object.

¢ lang - (optional) The language code.
This method assigns plugins to the given placeholders. It retrieves the plugins from the database based on the
placeholders and the language. The plugins are then downcasted to their specific plugin types.

The plugins are split up by placeholder and stored in a dictionary where the key is the placeholder ID and the
value is a list of plugins.

For each placeholder, if there are plugins assigned to it, the plugins are organized as a layered tree structure.
Otherwise, an empty list is assigned.

The list of all plugins for each placeholder is stored in the _all_plugins_cache attribute of the placeholder, while
the list of root plugins is stored in the _plugins_cache attribute

cms.utils.plugins.has_reached_plugin_limit(placeholder, plugin_type, language, template=None)

Checks if the global maximum limit for plugins in a placeholder has been reached. If not then it checks if it has
reached its maximum plugin_type limit.

Parameters: - placeholder: The placeholder object to check the limit for. - plugin_type: The type of plugin
to check the limit for. - language: The language code for the plugins. - template: The template object for the
placeholder. Optional.

Returns: - False if the limit has not been reached.
Raises: - PluginLimitReached: If the limit has been reached for the placeholder.

cms.utils.plugins.get_plugin_class(plugin_type: str) — CMSPluginBase
Returns the plugin class for a given plugin_type (str)

cms.utils.plugins.get_plugin_model (plugin_type: str) — CMSPlugin
Returns the plugin model class for a given plugin_type (str)

cms.utils.plugins.get_plugins_as_layered_tree (plugins)

Given an iterable of plugins ordered by position, returns a deque of root plugins with their respective children
set in the child_plugin_instances attribute.

cms.utils.plugins.copy_plugins_to_placeholder (plugins, placeholder, language=None,
root_plugin=None, start_positions=None)

Copies an iterable of plugins to a placeholder
Parameters
* plugins (iterable) — Plugins to be copied
¢ placeholder (cms.models.pluginmodel.CMSPlugin instance) — Target place-
holder
¢ language (str) — target language (if no root plugin is given)
e root_plugin —
e start_positions (int) — Cache for start positions by language
The logic of this method is the following:
1. Get bound plugins for each source plugin
Get the parent plugin (if it exists)
then get a copy of the source plugin instance
Set the id/pk to None to it the id of the generic plugin instance above; this will effectively change the
generic plugin created above into a concrete one
find the position in the new placeholder
save the concrete plugin (which creates a new plugin in the database)
trigger the copy relations
return the plugin ids

Sl

®© W

5.2. Django/Python compatibility table 213


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

django cms Documentation, Release 4.1.1

cms.utils.plugins.downcast_plugins (plugins, placeholders=None, select_placeholder=False,
request=None)

Downcasts the given list of plugins to their respective classes. Ignores any plugins that are not available.
Parameters
e plugins (List [CMSPlugin]) — List of plugins to downcast.
¢ placeholders (Optional [List[Placeholder]])— List of placeholders associated

with the plugins.
* select_placeholder (bool) - If True, select_related the plugin queryset with place-
holder.
* request (Optional [HttpRequest])— The current request.
Returns
Generator that yields the downcasted plugins.
Return type

Generator[ CMSPlugin, None, None]

cms.utils.plugins.get_bound_plugins (plugins)

Get the bound plugins by downcasting the plugins to their respective classes. Raises a KeyError if the plugin
type is not available.

Creates a map of plugin types and their corresponding plugin IDs for later use in downcasting. Then, retrieves
the plugin instances from the plugin model using the mapped plugin IDs. Finally, iterates over the plugins and
yields the downcasted versions if they have a valid parent. Does not affect caching.

Parameters

plugins (List [CMSPlugin]) — List of CMSP1lugin instances.
Returns

Generator that yields the downcasted plugins.
Return type

Generator[ CMSPlugin, None, None]
Example:

plugins = [plugin_instancel, plugin_instance2]
for bound_plugin in get_bound_plugins(plugins):
# Do something with the bound_plugin
pass

New in version 3.2.

Content creation wizards

See the How-to section on wizards for an introduction to creating wizards.
Wizard classes are sub-classes of cms.wizards.wizard_base.Wizard.

Before making a wizard available to the CMS it needs to be instantiated, for example:

my_app_wizard = MyAppWizard(
title="New MyApp",
weight=200,
form=MyAppWizardForm,
description="Create a new MyApp instance",

When instantiating a Wizard object, use the keywords:

214 Chapter 5. Software version requirements and release notes



https://docs.python.org/3/library/functions.html#bool

django cms Documentation, Release 4.1.1

class cms.wizards.wizard_base.WizardBase (title, weight, form, model=None, template_name=None,
description=None, edit_mode_on_success=True)

title
The title of the wizard. This will appear in a large font size on the wizard “menu”

weight
The “weight” of the wizard when determining the sort-order.

form
The form to use for this wizard. This is mandatory, but can be sub-classed from django.forms.form
or django.forms.ModelForm.

model
If a Form is used above, this keyword argument must be supplied and should contain the model class.
This is used to determine the unique wizard “signature” amongst other things.

template_name
An optional template can be supplied.

description
The description is optional, but if it is not supplied, the CMS will create one from the pattern:
“Create a new «model.verbose_name» instance.”

edit_mode_on_success
Whether the user will get redirected to object edit url after a successful creation or not. This only
works if the object is registered for toolbar enabled models.

Important: As of version 4 of django CMS wizards are no longer registered with the wizard_pool. Instead you
need to create a app config in cms_config.py to register wizards.

New in version 4.0.

Wizards are made available to the CMS by adding a cms.app_base.CMSAppConfig subclass to your apps’s
cms_config.py. As an example, here’s how the CMS itself registers its wizards:

class CMSCoreConfig(CMSAppConfig):
cms_enabled = True # Use cms core's functionality
cms_wizards = [cms_page_wizard, cms_subpage_wizard] # Namely, those wizards

For the above example the configuration might look like this:

from .cms_wizards import my_app_wizard

class MyAppConfig(CMSAppConfig):
cms_enabled = True
cms_wizards = [my_app_wizard]

5.2. Django/Python compatibility table 215




django cms Documentation, Release 4.1.1

Wizard class

class cms.wizards.wizard_base.Wizard(title, weight, form, model=None, template_name=None,

description=None, edit_mode_on_success=True)

All wizard classes should inherit from cms .wizards.wizard_base.Wizard. This class implements a number
of methods that may be overridden as required.

get_description(**kwargs)
Simply returns the description property assigned during instantiation or one derived from the model

if description is not provided during instantiation. Override this method if this needs to be determined
programmatically.

get_success_url (obj, **kwargs)
Once the wizard has completed, the user will be redirected to the URL of the new object that was created.
By default, this is done by return the result of calling the get_absolute_url method on the object. If the
object is registered for toolbar enabled models, the object edit url will be returned. This may be modified
to return the preview url instead by setting the wizard property edit_mode_on_success to False.

In some cases, the created content will not implement get_absolute_url or that redirecting the user is
undesirable. In these cases, simply override this method. If get_success_url returns None, the CMS
will just redirect to the current page after the object is created.

Parameters

* obj (object) — The created object
* kwargs (dict) — Arbitrary keyword arguments

get_title(**kwargs)

Simply returns the title property assigned during instantiation. Override this method if this needs to be
determined programmatically.

get_weight (**kwargs)

Simply returns the weight property assigned during instantiation. Override this method if this needs to
be determined programmatically.

user_has_add_permission(user, **kwargs)

Returns boolean reflecting whether the given «user» has permission to add instances of this wizard’s as-
sociated model. Can be overridden as required for more complex situations.
Parameters
user — The current user using the wizard.
Returns
True if the user should be able to use this wizard.

property id
To construct a unique ID for each wizard, we start with the module and class name for uniqueness, we hash
it because a wizard’s ID is displayed in the form’s markup, and we’d rather not expose code paths there.

216

Chapter 5. Software version requirements and release notes


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

django cms Documentation, Release 4.1.1

Helpers

cms.wizards.helpers.get_entry(entry_key)

Returns a wizard object based on its id.

cms.wizards.helpers.get_entries()
Returns a list of (wizard.id, wizard) tuples (for all registered wizards) ordered by weight
get_entries() is useful if it is required to have a list of all registered wizards. Typically, this is used to iterate

over them all. Note that they will be returned in the order of their weight: smallest numbers for weight are
returned first.:

for wizard_id, wizard in get_entries():
# do something with a wizard...

wizard_pool

Warning: The wizard pool is deprecated since version 4.0 and will be removed in a future version.

cms.wizards.wizard_pool.wizard_pool

Warning: Deprecated since version 4.0.

Using wizard_pool is deprecated. Use cms.wizards.helper functions instead. Since django CMS version 4
wizards are registered with the cms using cms. app_base. CMSAppConfigin cms_config.py.

class cms.wizards.wizard_pool.WizardPool

Deprecated since version 4.0.

get_entry(entry)

Deprecated since version 4.0: use cms.wizards.helpers.get_entry() instead

Returns the wizard from the pool identified by «entry», which may be a Wizard instance or its “id” (which
is the PK of its underlying content-type).

is_registered(entry, **kwargs)

Deprecated since version 4.0.
Returns True if the provided entry is registered.

register(entry)
Deprecated since version 4.0.

You may notice from the example above that the last line in the sample code is:

wizard_pool.register(my_app_wizard)

This sort of thing should look very familiar, as a similar approach is used for cms_apps, template tags and
even Django’s admin.

Calling the wizard pool’s register method will register the provided wizard into the pool, unless there
is already a wizard of the same module and class name. In this case, the register method will raise a
cms.wizards.wizard_pool.AlreadyRegisteredException.

5.2. Django/Python compatibility table 217



django cms Documentation, Release 4.1.1

unregister (entry)

Deprecated since version 4.0.

If «entry» is registered into the pool, remove it.

Returns True if the entry was successfully registered, else False.

Icons reusable for plugins

django CMS comes with a set of icons stored in its own icon font. The icons are based on FontAwesome4 and Bootstrap
Icons.

They are available in the frontend editor (i.e. if the toolbar is available). To use them on the admin site where all the
plugin editing etc. happens, you will have to load them explicitly.

from cms.utils.urlutils import static_with_version

class MyAdmin(admin.Admin):

class Media:

css = {"all": (static_with_version("cms/cms.icons.css"),)}

Icons are used by adding snippets like this to your templates

<span class="cms-icon cms-icon-<iconname>'"></span>

The

following icons are available:

* advanced-settings
* alias

* apphook

e archive

* bin

e comment

e compare

¢ copy

e cut

* edit

¢ edit-new

* highlight

* home

* info

* lock

* manage-versions

e moderate

218

Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

* paste

* plugins
* publish
* redo

* rename
* search
* settings
* sitemap
* undo

* unlock
 unpublish
* view

Example:

<span class="cms-icon cms-icon-edit-new me-2"></span>{% translate "Edit new..." %}

5.2.5 Release notes & upgrade information

Some versions of django CMS present more complex upgrade paths than others, and some require you to take action.
It is strongly recommended to read the release notes carefully when upgrading.

It goes without saying that you should backup your database before embarking on any process that makes changes to
your database.

4.1.1 release notes

April 20, 2024

Warning: Upgrading from previous versions

django CMS 4.1 is the first community release of django CMS 4. Django CMS 4 introduces changes that require
action if you are upgrading from a 3.x version. Please read the step-by-step guide to the process of upgrading from
3.5+ to 4 here: 4.0.0 release notes

Welcome to django CMS 4.1.1!

5.2. Django/Python compatibility table 219




django cms Documentation, Release 4.1.1

Django and Python compatibility

django CMS supports Django 3.2 to 5.0. We highly recommend and only support the latest release of each series.

It supports Python 3.8, 3.9, 3.10, 3.11, and 3.12. As for Django we highly recommend and only support the latest
release of each series.

What’s new in 4.1.1
Improved right-to-left support

* Both, the CSS assets and the JS assets have been adjusted to better support right-to-left languages (RTL).
* Besides imrpvoed ease of use, the page tree can now be fully managed with RTL admin languages

* Improved translations for Arabic

Faster menu rendering

* Improved efficiency building menus for the page tree dramatically reduces database hits

» Page menus rendered by the core both for versioned and unversioned pages

Bug Fixes

¢ Placeholders do not block deletion of custom model instances with a PlaceholderRelationField.
* Structure view respects toolbar language

* Fixed management command to delete orphaned plugins

 Faster DOM update after edition plugins

* Directly redirect to edit endpoint after creating a new page

* Allow editing page content object for apphook without root content

* Render fallback language in place if redirect_on_fallback is set to False in the CMS_LANGUAGES settings

4.1.0 release notes

December 20, 2022

Warning: Upgrading from previous versions

django CMS 4.1.0 is the first community release of django CMS 4. Django CMS 4 introduces changes that require
action if you are upgrading from a 3.x version. Please read the step-by-step guide to the process of upgrading from
3.5+ to 4 here: 4.0.0 release notes

Welcome to django CMS 4.1!

These release notes cover the new features, as well as some backwards incompatible changes you’ll want to be aware
of when upgrading from django CMS 4.0. If you are upgrading from django CMS 3.11 or earlier please urgently read
the release notes of django CMS 4.0.

220 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Django and Python compatibility

django CMS supports Django 3.2 to 5.0. We highly recommend and only support the latest release of each series.

It supports Python 3.8, 3.9, 3.10, and 3.11. As for Django we highly recommend and only support the latest release
of each series.

What’s new in 4.1
Status indicators in page tree

* Status indicators are shown in the page tree. For django CMS core only two states are available: public and
empty.

* Django CMS core provides hooks to allow other packages to patch the status indicators, e.g., djangocms-
versioning.

* Djangocms-versioning will add more functionality to the indicators (e.g., publish from page tree).

Bug Fixes

¢ In rare cases moving plugins from one placeholder to another could result in a server error and an inconsistent
plugin tree.

* Empty page contents (e.g., due to a missing translation of a page) will now render correctly in the page tree.
* Adding a page will trigger the form in the language viewd not in the browser language

e The “Empty all” menus for placeholders now works.

Backward incompatible changes in 4.1
TitleExtension

TitleExtension in cms.extensions.models has been renamed to PageContentExtension to keep a consistent
language in the page models.

Any packages using TitleExtension will need to adapt the name change in their code base.

In ExtensionToolbar the method get_title_extension_admin(language=None) has been deprecated. It is
recommended to switch to the new get_page_content_extension_admin(page_content=None).

Monkey patching

This is a purely internal change: django CMS v4.1 does not support monkey patching as for djangocms-versioning
before version 2.0. Please only use djangocms-versioning >= 2.0

5.2. Django/Python compatibility table 221



django cms Documentation, Release 4.1.1

Miscellaneous

e The Django setting SEND_BROKEN_LINK_EMAILS (removed from Django since version 1.8) was used as a
signal to send an email to the site managers if page_url could not reverse the url name. Since this ver-
sion the outdated setting is ignored. If managers want to receive mails add django.middleware.common.
BrokenLinkEmailsMiddleware to the project’s settings.MIDDLEWARE.

e cms.api.create_title has been renamed to create_page_content. A compatibility shim remains and
issues a deprecation warning.

¢ cms.models.pluginmodel.CMSPlugin.copy_plugin was removed.

4.0.0 release notes

Note: Version 4.1 is the first community release of django CMS 4. It includes all of the changes mentioned in this
section and those mentioned in 4. 1.0 release notes. django CMS 3 users seeking to upgrade should immediately go
to version 4.1.

Version 4.0 has never been released on pypi but is available on github.

This release of django CMS is a complete rewrite of the core, hugely simplifying what django-cms does out of the box.
The main reasons for the changes:

» Limitations with publishing, where only 2 versions can ever exist

* Too many “opinions” of how parts of the CMS should work baked in

Warning: Upgrading from previous versions

4.0.0 introduces some changes that require action if you are upgrading from a previous version. Please read below
for a step-by-step guide to the process of upgrading from 3.5+ to 4.0.0

The core principles of django-cms 4.0+
* The CMS core such be simplified
* The core should not force any opinions
* The app registry, plugin and wizard pools should be simplified and allow easy registration

* Allow third parties to define how publishing should work, if anyone needs the feature to work differently they
can. This is why publishing was moved to djangocms-versioning.

How to upgrade to 4.0.0

It is currently recommended to start new projects on django-cms 4.0.0. The changes from django-cms 3.x to 4.x are
so different that only 3rd party utilities can assist with the migration such as djangocms-4-migration https://pypi.org/
project/djangocms-4-migration/.

Please refer to the guidance within the aforementioned package to perform a migration between projects.

222 Chapter 5. Software version requirements and release notes


https://github.com/django-cms/django-cms/tree/release/4.0.x
https://pypi.org/project/djangocms-4-migration/
https://pypi.org/project/djangocms-4-migration/

django cms Documentation, Release 4.1.1

What’s new in 4.0.0

New features at a glance

A revised model structure, delivering huge performance improvements
Powerful versioning functionality
A new app configuration facility that allows other apps to customise / control other apps by enhancing features.

Dedicated Edit, Preview and Structure endpoints. Allows the editing interface to be used by custom models and
not just pages.

New and improved plugin architecture

New Alias Placeholders that are versioned and provide more control (replaces Static placeholders)

Improvements and new features

Do we comment on changes that have already happened in previous v3 versions, such as Github actions etc??

Feat Added pre-migrate hook to check version 4 is intentional (https://github.com/django-cms/django-cms/
commit/ffocb9bSdced92eadef62694e989d601e9475b30)

Feat Added live-url querystring parameter option for PageContent edit and preview endpoints (https://github.
com/django-cms/django-cms/commit/ee89fe4f44fb0675bbdb85a2804de5328450a184)

Fix Structure mode disappearing from the toolbar (https:/github.com/django-cms/django-cms/commit/
7dafe846a94e50e96e29f0d8909fc25f43cbcaab)

Fix pagetree and status alignment (https://github.com/django-cms/django-cms/commit/
914558d283c197b4035ae7e1a084860f486c9429)

Feat Upgrade the FE bundle to Node 16 (https:/github.com/django-cms/django-cms/commit/
£110ddb25083a19263508ccbectb0c692204245a)

Feat Allow showing the toolbar for anonymous users (https://github.com/django-cms/django-cms/commit/
2008ca8a85eaf5f875d37c2tbcabece03b2¢7b2d8)

Ported Django 32 support (https://github.com/django-cms/django-cms/commit/
bOdeaedd7d5e11086d10799445b3cd6df47c11a4)

Ported Django 3.1 support (https://github.com/django-cms/django-cms/commit/
fb0d4£235b3b80610356e9a0c89fb361ea5e27c5)

Ported Django 3.0 support (https://github.com/django-cms/django-cms/commit/
c44b6beda941b29cf964c2a2fe28f012d9b6¢c83f)

Ported Split database packages so that tests can be run with sqlite (https://github.com/django-cms/django-cms/
commit/c77b5e08a1cd2074789cbed461392bc7ac01el1d6)

Fix being able to reset the setting PageContent.limit_visibility_in_menu (https://github.com/django-cms/
django-cms/commit/66c70394c9e144281a0b47d93e3784d06318act9)

Ported Replace Travis CI with Github actions (https://github.com/django-cms/django-cms/commit/
29ae26eafa0abfdec27160ba59d890e449704316)

Feat Add CMSAppExtension.ready which is called after all cms app configs are loaded (https://github.com/
django-cms/django-cms/commit/c02308fc52610eaeec9eabb663c89b08614e4317)

Feat  Deprecate  the core  Alias  plugin  (https://github.com/django-cms/django-cms/commit/
0fec81224889a94bdb7fce6c9f1da2fb7c886ec8)

5.2.

Django/Python compatibility table 223


https://github.com/django-cms/django-cms/commit/ff6cb9b5dced92eadef62694e989d601e9475b30
https://github.com/django-cms/django-cms/commit/ff6cb9b5dced92eadef62694e989d601e9475b30
https://github.com/django-cms/django-cms/commit/ee89fe4f44fb0675bbdb85a2804de5328450a184
https://github.com/django-cms/django-cms/commit/ee89fe4f44fb0675bbdb85a2804de5328450a184
https://github.com/django-cms/django-cms/commit/7dafe846a94e50e96e29f0d8909fc25f43cbcaab
https://github.com/django-cms/django-cms/commit/7dafe846a94e50e96e29f0d8909fc25f43cbcaab
https://github.com/django-cms/django-cms/commit/914558d283c197b4035ae7e1a084860f486c9429
https://github.com/django-cms/django-cms/commit/914558d283c197b4035ae7e1a084860f486c9429
https://github.com/django-cms/django-cms/commit/f110ddb25083a19263508ccbecfb0c692204245a
https://github.com/django-cms/django-cms/commit/f110ddb25083a19263508ccbecfb0c692204245a
https://github.com/django-cms/django-cms/commit/2008ca8a85eaf5f875d37c2fbca6ce03b2c7b2d8
https://github.com/django-cms/django-cms/commit/2008ca8a85eaf5f875d37c2fbca6ce03b2c7b2d8
https://github.com/django-cms/django-cms/commit/b0deaedd7d5e11086d10799445b3cd6df47c11a4
https://github.com/django-cms/django-cms/commit/b0deaedd7d5e11086d10799445b3cd6df47c11a4
https://github.com/django-cms/django-cms/commit/fb0d4f235b3b80610356e9a0c89fb361ea5e27c5
https://github.com/django-cms/django-cms/commit/fb0d4f235b3b80610356e9a0c89fb361ea5e27c5
https://github.com/django-cms/django-cms/commit/c44b6beda941b29cf964c2a2fe28f012d9b6c83f
https://github.com/django-cms/django-cms/commit/c44b6beda941b29cf964c2a2fe28f012d9b6c83f
https://github.com/django-cms/django-cms/commit/c77b5e08a1cd2074789cbe461392bc7ac01e11d6
https://github.com/django-cms/django-cms/commit/c77b5e08a1cd2074789cbe461392bc7ac01e11d6
https://github.com/django-cms/django-cms/commit/66c70394c9e144281a0b47d93e3784d06318acf9
https://github.com/django-cms/django-cms/commit/66c70394c9e144281a0b47d93e3784d06318acf9
https://github.com/django-cms/django-cms/commit/29ae26eafa0abf4ec27160ba59d890e4497043f6
https://github.com/django-cms/django-cms/commit/29ae26eafa0abf4ec27160ba59d890e4497043f6
https://github.com/django-cms/django-cms/commit/c02308fc52610eaeec9ea6b663c89b08614e4317
https://github.com/django-cms/django-cms/commit/c02308fc52610eaeec9ea6b663c89b08614e4317
https://github.com/django-cms/django-cms/commit/0fec81224889a94bdb7fce6c9f1da2fb7c886ec8
https://github.com/django-cms/django-cms/commit/0fec81224889a94bdb7fce6c9f1da2fb7c886ec8

django cms Documentation, Release 4.1.1

Feat Replace deprecated Jquery .load() call with .on(‘load’, ... (https://github.com/django-cms/django-cms/
commit/c9cd9fbf26804{74b4df884ae67e8f90603af583)

Feat Refactor page.get_title_cache to be more straightforward (https://github.com/django-cms/django-cms/
commit/80911296bba8d263f5150cb481e925¢cdf307a363)

Feat Added Prevent JS injection in the admin add plugin url (https://github.com/django-cms/django-cms/
commit/72025947d8d3757977f0efab75bda70504a3b6c4)

Ported Fix ‘urls.W001” warning with custom apphook urls (https://github.com/django-cms/django-cms/commit/
75978fblc3ad25d1efba39a5d32215314358ba71)

Ported Override urlconf_module so that Django system checks don’t crash (https://github.com/django-cms/
django-cms/commit/f1226a57b767d4b9f66a0cfecd374b5157c49e4e)

Feat Added raise a 404 when EmptyPageContent is returned (https://github.com/django-cms/django-cms/
commit/8e7cdb12d20e63e552ea2cc010f586¢3dfbb396a)

Feat Added the ability to disable the sideframe with the setting CMS_SIDEFRAME_ENABLED (https://github.
com/django-cms/django-cms/commit/alac04d3f81777t6404af62a9¢311f74715b7028)

Feat Added dedicated edit and preview toolbar buttons (https://github.com/django-cms/django-cms/commit/
5005¢d933e12332e¢9296cdda3e0a9eecaeca3fc9a?)

Feat Added expose the sideframe in CMS.API (https://github.com/django-cms/django-cms/commit/
4dadf9flelf2cf4dabbc68£8367236b040255fbc)

Feat Removed resolve View (https://github.com/django-cms/django-cms/commit/
e3a23a7fc757892c7d58e4af6b78e853ddecab87)

Feat Removed resolve Page (https://github.com/django-cms/django-cms/commit/
0e885ca%e27367c7154cb33406725ac3b67eb170)

Feat Added toolbar persist setting CMS_TOOLBAR_URL__PERSIST (https://github.com/django-cms/
django-cms/commit/fb27c34e2adaebd2e10e1262ef1c43b69c¢79a132)

Feat Added front end editing and rendering registry (https:/github.com/django-cms/django-cms/commit/
db4f4162cfdecd36caa8bba066ec2875b472d8)

Feat Added Placeholder checks framework (https://github.com/django-cms/django-cms/commit/
53171cf2ba7e6aaecabb2a86df6ad3ffde80e965)

Feat Registered PageContent with the django admin (https://github.com/django-cms/django-cms/commit/
2e090d6c2fd9768f1e8e871dfa9f17ddb2154{7a)

Feat Added a new source field to PageContent to the Placeholder model (https://github.com/django-cms/
django-cms/commit/b075f44d3384b765c74a55947b82ba3c885b0bb1)

Feat Renamed the Title model to PageContent (https://github.com/django-cms/django-cms/commit/
28942e8bcf92092d947a097499c01ab2bbb0e6df)

Feat create_page API warning added for no longer accepting a published argument (https://github.com/
django-cms/django-cms/commit/f48b8698f23988 1 cc4ca0d593ecae20628486a04)

Feat Dedicated Edit and Preview endpoints (https://github.com/django-cms/django-cms/commit/

bflaf91bfScc6dbadb19b4762011398cf58e768f, https://github.com/django-cms/django-cms/commit/
685361d475fc4718bfOble3444a27be8505a7390, https://github.com/django-cms/django-cms/commit/
0f12156¢8ed85914d4e3b14b30bce87becefe92b, https://github.com/django-cms/django-cms/commit/

39562aeb9e61d5d3c08b1031757bel 1bc5934dfT)

Feat Refactored the plugin tree, replacing django-treebeard with custom CTE queries (https:
//github.com/django-cms/django-cms/commit/83d38dbb2eS51b4cb65aff5726alc415de7alc376, https:

224

Chapter 5. Software version requirements and release notes


https://github.com/django-cms/django-cms/commit/c9cd9fbf26804f74b4df884ae67e8f90603af583
https://github.com/django-cms/django-cms/commit/c9cd9fbf26804f74b4df884ae67e8f90603af583
https://github.com/django-cms/django-cms/commit/80911296bba8d263f5150cb481e925cdf307a363
https://github.com/django-cms/django-cms/commit/80911296bba8d263f5150cb481e925cdf307a363
https://github.com/django-cms/django-cms/commit/72025947d8d3757977f0efab75bda70504a3b6c4
https://github.com/django-cms/django-cms/commit/72025947d8d3757977f0efab75bda70504a3b6c4
https://github.com/django-cms/django-cms/commit/75978fb1c3ad25d1efba39a5d32215314358ba71
https://github.com/django-cms/django-cms/commit/75978fb1c3ad25d1efba39a5d32215314358ba71
https://github.com/django-cms/django-cms/commit/f1226a57b767d4b9f66a0cfec4374b5157c49e4e
https://github.com/django-cms/django-cms/commit/f1226a57b767d4b9f66a0cfec4374b5157c49e4e
https://github.com/django-cms/django-cms/commit/8e7cdb12d20e63e552ea2cc010f586c3dfbb396a
https://github.com/django-cms/django-cms/commit/8e7cdb12d20e63e552ea2cc010f586c3dfbb396a
https://github.com/django-cms/django-cms/commit/a1ac04d3f81777f6404af62a9c31ff74715b7028
https://github.com/django-cms/django-cms/commit/a1ac04d3f81777f6404af62a9c31ff74715b7028
https://github.com/django-cms/django-cms/commit/5005cd933e12332e9296cdda3e0a9eeaea3fc9a2
https://github.com/django-cms/django-cms/commit/5005cd933e12332e9296cdda3e0a9eeaea3fc9a2
https://github.com/django-cms/django-cms/commit/4dadf9f1e1f2cf4da6bc68f8367236b040255fbc
https://github.com/django-cms/django-cms/commit/4dadf9f1e1f2cf4da6bc68f8367236b040255fbc
https://github.com/django-cms/django-cms/commit/e3a23a7fc757892c7d58e4af6b78e853ddecab87
https://github.com/django-cms/django-cms/commit/e3a23a7fc757892c7d58e4af6b78e853ddecab87
https://github.com/django-cms/django-cms/commit/0e885ca9e27367c7154cb33406725ac3b67eb170
https://github.com/django-cms/django-cms/commit/0e885ca9e27367c7154cb33406725ac3b67eb170
https://github.com/django-cms/django-cms/commit/fb27c34e2a4aebd2e10e1262ef1c43b69c79a132
https://github.com/django-cms/django-cms/commit/fb27c34e2a4aebd2e10e1262ef1c43b69c79a132
https://github.com/django-cms/django-cms/commit/db4ff4162cf4ecd36caa8bba066ec28f75b472d8
https://github.com/django-cms/django-cms/commit/db4ff4162cf4ecd36caa8bba066ec28f75b472d8
https://github.com/django-cms/django-cms/commit/53171cf2ba7e6aaeca6b2a86df6ad3ffde80e965
https://github.com/django-cms/django-cms/commit/53171cf2ba7e6aaeca6b2a86df6ad3ffde80e965
https://github.com/django-cms/django-cms/commit/2e090d6c2fd9768f1e8e871dfa9f17ddb2154f7a
https://github.com/django-cms/django-cms/commit/2e090d6c2fd9768f1e8e871dfa9f17ddb2154f7a
https://github.com/django-cms/django-cms/commit/b075f44d3384b765c74a55947b82ba3c885b0bb1
https://github.com/django-cms/django-cms/commit/b075f44d3384b765c74a55947b82ba3c885b0bb1
https://github.com/django-cms/django-cms/commit/2894ae8bcf92092d947a097499c01ab2bbb0e6df
https://github.com/django-cms/django-cms/commit/2894ae8bcf92092d947a097499c01ab2bbb0e6df
https://github.com/django-cms/django-cms/commit/f48b8698f239881cc4ca0d593ecae20628486a04
https://github.com/django-cms/django-cms/commit/f48b8698f239881cc4ca0d593ecae20628486a04
https://github.com/django-cms/django-cms/commit/bf1af91bf5cc6dba4b19b476201f398cf58e768f
https://github.com/django-cms/django-cms/commit/bf1af91bf5cc6dba4b19b476201f398cf58e768f
https://github.com/django-cms/django-cms/commit/685361d475fc4718bf0b1e3444a27be8505a7390
https://github.com/django-cms/django-cms/commit/685361d475fc4718bf0b1e3444a27be8505a7390
https://github.com/django-cms/django-cms/commit/0f12156c8ed85914d4e3b14b30bce87becefe92b
https://github.com/django-cms/django-cms/commit/0f12156c8ed85914d4e3b14b30bce87becefe92b
https://github.com/django-cms/django-cms/commit/39562aeb9e61d5d3c08b1031757be11bc5934dff
https://github.com/django-cms/django-cms/commit/39562aeb9e61d5d3c08b1031757be11bc5934dff
https://github.com/django-cms/django-cms/commit/83d38dbb2e51b4cb65aff5726a1c415de7a1c376
https://github.com/django-cms/django-cms/commit/83d38dbb2e51b4cb65aff5726a1c415de7a1c376
https://github.com/django-cms/django-cms/commit/4dfaa1c360c2a15f6572b89fc994a254be9e961d
https://github.com/django-cms/django-cms/commit/4dfaa1c360c2a15f6572b89fc994a254be9e961d

django cms Documentation, Release 4.1.1

//github.com/django-cms/django-cms/commit/4dfaalc360c2al 5f6572b89fc994a254be9e961d, https:
/I github.com/django-cms/django-cms/commit/90bb064fa794c3cc3decd547dc9ddec5cb89d100)

» Feat Registered the Placeholder model with the django admin (https://github.com/django-cms/django-cms/
commit/5a1¢c89316f3b58c92910520000d87dbe37b3132a)

e Feat Removed Placeholder content fallbacks (https://github.com/django-cms/django-cms/commit/
a9947fed11275bae833d1efdee3e8fadbcleleaf)

» Feat Added Generic Foreignkey to Placeholder model (https://github.com/django-cms/django-cms/commit/
Oaedfbbdlaleafb750607a3d0f784fcf118c9532)

» Feat Removed publisher_publish management command (https://github.com/django-cms/django-cms/commit/
cb19c60697bbd042b973f7df88f85d2b2a22753b)

* Feat Placeholders moved from Page to the Title model (https://github.com/django-cms/django-cms/commit/
37082d074a4e37a9d2114c4236d526529daal219, https://github.com/django-cms/django-cms/commit/
d7e2d26a6c¢7c6991a8edf2883092ddff6b87c0aa)

 Feat Wizards integrated into the app registration system (https://github.com/django-cms/django-cms/commit/
c8f56a969b30b70a8795fc5c15a0aa70b2fel1ae9)

» Feat Page and Placeholder signals rewritten to group Page and Placeholder plugin operations (https:
//github.com/django-cms/django-cms/commit/03941533670ee9f8c5c078bda8e5cfdd9a639153, https://github.
com/django-cms/django-cms/commit/cal 6415b1022c984ce0525336beafacfed14bb31)

» Feat Added new cms app registration and configuration system (https://github.com/django-cms/django-cms/
commit/97515¢81da2d883055098c0a5¢3d033629ea5b15)

e Feat Removed publishing from the core (https:/github.com/django-cms/django-cms/commit/

41c4ab0dc72e2a3015cd789657924ade0979710a, https://github.com/django-cms/django-cms/commit/
14110d06779399ee9063 1dc45c2 1fa4 19tbeebof, https://github.com/django-cms/django-cms/commit/
cf442f756141d0447def9cd2a2bb4 1d7b8a53cf3, https://github.com/django-cms/django-cms/commit/
9905ca6bec986942f3acc692d10deabbcOca5768d, https://github.com/django-cms/django-cms/commit/
1d789468403f50301e413856a925b15f020a71b1, https://github.com/django-cms/django-cms/commit/

9125075455595b11a75ae5574aa4a7ad0c791670)

Bug Fixes
Removal of deprecated functionality

* Removed Page.get_draft()
¢ Removed Page.get_published()

e Removed StaticPlaceholders

Main differences to django CMS 3.x

The main differences to note in the core CMS which is now extremely simplified are:

» No concept of publishing, removed because it was limited to just draft and live. An opinionated implementation
is now accomplished through djangocms_versioning. Many new concepts exist in this application. The reason
that the publishing is external is due to the fact that it is an opinionated implementation. If it is agreed as the
way forward by the community it could potentially be brought in as an internal app that compliments the core
codebase, similar to how Django is organised internally.

* CMS app config, allows other apps to customise / control other apps by enabling or disabling features.

5.2. Django/Python compatibility table 225


https://github.com/django-cms/django-cms/commit/4dfaa1c360c2a15f6572b89fc994a254be9e961d
https://github.com/django-cms/django-cms/commit/4dfaa1c360c2a15f6572b89fc994a254be9e961d
https://github.com/django-cms/django-cms/commit/90bb064fa794c3cc3decd547dc9ddcc5cb89d100
https://github.com/django-cms/django-cms/commit/90bb064fa794c3cc3decd547dc9ddcc5cb89d100
https://github.com/django-cms/django-cms/commit/5a1c89316f3b58c92910520000d87dbe37b3132a
https://github.com/django-cms/django-cms/commit/5a1c89316f3b58c92910520000d87dbe37b3132a
https://github.com/django-cms/django-cms/commit/a9947fed11275bae833d1efdee3e8fa4bc1e0eaf
https://github.com/django-cms/django-cms/commit/a9947fed11275bae833d1efdee3e8fa4bc1e0eaf
https://github.com/django-cms/django-cms/commit/0aedfbbd1a1eafb750607a3d0f784fcf118c9532
https://github.com/django-cms/django-cms/commit/0aedfbbd1a1eafb750607a3d0f784fcf118c9532
https://github.com/django-cms/django-cms/commit/cb19c60697bbd042b973f7df88f85d2b2a22753b
https://github.com/django-cms/django-cms/commit/cb19c60697bbd042b973f7df88f85d2b2a22753b
https://github.com/django-cms/django-cms/commit/37082d074a4e37a9d2114c4236d526529daa1219
https://github.com/django-cms/django-cms/commit/37082d074a4e37a9d2114c4236d526529daa1219
https://github.com/django-cms/django-cms/commit/d7e2d26a6c7c6991a8edf2883092ddff6b87c0aa
https://github.com/django-cms/django-cms/commit/d7e2d26a6c7c6991a8edf2883092ddff6b87c0aa
https://github.com/django-cms/django-cms/commit/c8f56a969b30b70a8795fc5c15a0aa70b2fe1ae9
https://github.com/django-cms/django-cms/commit/c8f56a969b30b70a8795fc5c15a0aa70b2fe1ae9
https://github.com/django-cms/django-cms/commit/03941533670ee9f8c5c078bda8e5cfdd9a639f53
https://github.com/django-cms/django-cms/commit/03941533670ee9f8c5c078bda8e5cfdd9a639f53
https://github.com/django-cms/django-cms/commit/ca16415b1022c984ce0525336beafacfed14bb31
https://github.com/django-cms/django-cms/commit/ca16415b1022c984ce0525336beafacfed14bb31
https://github.com/django-cms/django-cms/commit/97515c81da2d883055098c0a5c3d033629ea5b15
https://github.com/django-cms/django-cms/commit/97515c81da2d883055098c0a5c3d033629ea5b15
https://github.com/django-cms/django-cms/commit/41c4ab0dc72e2a3015cd789657924ade09797f0a
https://github.com/django-cms/django-cms/commit/41c4ab0dc72e2a3015cd789657924ade09797f0a
https://github.com/django-cms/django-cms/commit/14110d06779399ee90631dc45c21fa419fbeeb9f
https://github.com/django-cms/django-cms/commit/14110d06779399ee90631dc45c21fa419fbeeb9f
https://github.com/django-cms/django-cms/commit/cf442f756f41d0447def9cd2a2bb41d7b8a53cf3
https://github.com/django-cms/django-cms/commit/cf442f756f41d0447def9cd2a2bb41d7b8a53cf3
https://github.com/django-cms/django-cms/commit/9905ca6ec986942f3acc692d10deabbc0ca5768d
https://github.com/django-cms/django-cms/commit/9905ca6ec986942f3acc692d10deabbc0ca5768d
https://github.com/django-cms/django-cms/commit/1d789468403f50301e413856a925b15f020a71b1
https://github.com/django-cms/django-cms/commit/1d789468403f50301e413856a925b15f020a71b1
https://github.com/django-cms/django-cms/commit/9f25075455595b11a75ae5574aa4a7ad0c791670
https://github.com/django-cms/django-cms/commit/9f25075455595b11a75ae5574aa4a7ad0c791670

django cms Documentation, Release 4.1.1

* Dedicated Edit, Preview and Structure endpoints, this allows any applications using Placeholders inside or outside
of the CMS (djangocms_alias) to use the same editing experience.

* New plugin architecture, simplified and no reliance on treebeard which was problematic in the past.

« Static placeholders are being replaced by djangocms_alias because static placeholders cannot be versioned or
allow moderation.

Model changes
Page, Title (now PageContent) and Placeholder refactor

There are various changes to the model structure for the Page and PageContents (formerly Title). The most notable is the
fact that plugins from different Title instances were all saved in the same Placeholder instance. This has now changed
in DjangoCMS 4, a PageContent (formerly Title) instance now contains a dedicated set of Placeholder instances.

The model structure was changed to allow flexibility in the core of the cms, this allowed a package such as djangocms-
versioning to create infinite PageContent models.

Data model of CMS < 4

¢ Page (x1 for Draft and x1 for Live)

Title Language: “EN”

Title Language: “DE”
Placeholder Slot: “header”

Placeholder Slot: ‘“contents”
% Plugin 1 Language “EN”
% Plugin 2 Language “DE”

Data model of CMS >=4

* Page
— PageContents Language: “EN”
% Placeholder Slot: “header”
% Placeholder Slot: “contents”
- Plugin 1 Language “EN”
— PageContents Language: “DE”
% Placeholder Slot: “header”
% Placeholder Slot: ‘“contents”
- Plugin 2 Language “DE”

Page, PageContents (Title) and Placeholder relation refactor: https://github.com/django-cms/django-cms/commit
/37082d074a4e37a9d2114c4236d526529daal219

226 Chapter 5. Software version requirements and release notes


https://github.com/django-cms/django-cms/commit

django cms Documentation, Release 4.1.1

Moving Title to PageContent

The model structure was changed to allow the core of the cms to be flexible and un-opinionated.
To handle the fact that the Title model is renamed in the CMS you will need to import the PageContent model.

For a djangocms 4.0 only project:

from cms.models import PageContent

For a djangocms 3.x and 4.0 compatible project:

# To handle the fact that the Title model is renamed in the CMS you will need to import.
—the PageContent model.
try:
from cms.models import PageContent
# django CMS 3.x
except ImportError:
from cms.models import Title as PageContent

For a djangocms 4.x+ only project:

from cms.models import PageContent

Settings

New or changed settings added.

CMS_TOOLBAR_ANONYMOUS_ON

default
False

This setting controls if anonymous users can see the CMS toolbar with a login button when ?toolbat_on is appended
to a URL. The default behaviour is to not show the toolbar to anonymous users.

CMS_TOOLBAR_URL__ENABLE

default
toolbar_on

This setting is used to force the toolbar to show on a page.

5.2. Django/Python compatibility table 227




django cms Documentation, Release 4.1.1

CMS_TOOLBAR_URL__DISABLE

default

toolbar_off

This setting is used to force the toolbar to be hidden on a page.

App registration

https://github.com/django-cms/django-cms/pull/6421 app registration docs in the description of the PR

Add-ons now make use of a new config system; this is to be migrated to all pools. Add-ons can now define
whether they support other addons (such as versioning) as well as provide configuration. This is useful in telling
features like versioning how to version an add-on.

Previously all add-ons would manage their own pool, now it is moving to an app registry based system that will
allow centralised control. Although all new add-ons should implement this system the new system will not be
depreciated at this time.

CMSApp is an existing term from v2.5, it is how apphooks are declared in the newer versions of the cms.

CMSAPPConfig is a class, which defines the configuration for a specific add-on, this is then passed to CM-
SAppExtension. It provides a way of telling the core that an app wants to access something from another app
config (the centralized way of handling app config). For example: Alias wants to tell versioning to version it.
This requires two components, versioning must define CMSAppExtension, all it needs to do is implement one
method, called configure_app, which takes an instance of the CMSAppConfig. In order for an alias app to be
linked to it set app_name_enabled=True. When the extension is configured like this the cms will take all the
config settings and pass them to the relevant extension, specify models that need to be versioned and which apps
need to access this config. CMSAppExtension is the way to register the add-ons and in the future plugins (or
plugin_pools) with have their configs defined in CMSAPPConfig.

App configuration example

An application that defines an app extension can be used by other apps by registering as “enabled” in the CMSApp-
Config by adding: “package_with_extension_enabled”:

# A package that defines an app extension for other apps to register with
# myapp/cms_config.py
class MyappCMSExtension(CMSAppExtension):

def __init__(self):
self.mylist = []

def configure_app(self, cms_config):
if hasattr(cms_config, "myapp_attribute™):
self.mylist.append(cms_config.myapp_attribute)

# A package that defines a value to add to the extension
# someotherapp/cms_config.py
class SomeotherappCMSConfig(CMSAppConfig):

# By enabling the someotherapp with myapp, the extension will be used for the.

—»someotherapp

myapp_enabled = True

(continues on next page)

228

Chapter 5. Software version requirements and release notes



https://github.com/django-cms/django-cms/pull/6421

django cms Documentation, Release 4.1.1

(continued from previous page)

# Supply a value to ‘myapp_attribute’ to be added to the myapp cms_config.mylist.
—attribute.
myapp_attribute = "A string value"

App configuration usage examples in djangocms-url-manager and djangocms-alias

It is configurable in v4 so you can have another Content Type that you want to work with url man-
ager. here is an example of how url does this for the cms Page, shows you the power of the cms
config: https://github.com/django-cms/djangocms-url-manager/blob/acftbeedd3950b9d91f971e7a190b2789d2fe9d9/
djangocms_url_manager/cms_config.py#L14

If you had a new Content Type and a new application , you can add the config entry in your third party application and
url manager would start to use your model.

Here is an example of djangocms-alias configuring itself for versioning: https://github.com/django-cms/
djangocms-alias/blob/7d90b7763278t74ebe49t70420ecb9f0e2dc4c6/djangocms_alias/cms_config.py#L.26 version-
ing knows nothing about Alias, Alias tells versioning how to use it. No more other apps embedding logic. Obviously
Page is configured in url manager by default because it depends on django-cms.

Publishing has been moved to djangocms-versioning

* There is no longer the concept of publishing baked into the core of the CMS. By default any content changes are
instantly live with no option to unpublish other than to remove altogether.

 To enable publishing the package djangocms-versioning or other similar package that is Django CMS 4.0+ com-
patible should be installed.

* The reason that publishing was removed from the core is because the solution baked in made a lot of assumptions
that enforced various limitations on developers. By not providing a publishing method it allows developers to
provide their own solutions to the publishing paradigm.

* Goal is to migrate the monkey patching of versioning into the core to allow a “simple” mode in djangocms-
versioning that replaces the 3.x draft/live mode when installing (default option).

See here for the djangocms-versioning documentation.

djangocms-versioning overrides queries from PageContent

* django CMS Versioning overrides the standard query manager for PageContent by adding the query
manager:  PublishedContentManagerMixin. https://github.com/django-cms/djangocms- versioning/blob/
429e50d4de6d14£1088cbdba2be63b20c2885be9/djangocms_versioning/managers.py#L4

* By default only published versions are returned from PageContents.objects.all().

To get all versions regardless of versioning state you can use the “_base_manager”:

PageContent._base_manager.all()::
# Get only published PageContents PageContent.objects.all()

# Get all PageContents regardless of the versioning status, be careful with this as it can return archived, draft and
published versions! PageContent._base_manager.all()

# Get only draft PageContents from djangcms-versioning.constants import DRAFT PageCon-
tent._base_manager.filter(versions__state=DRAFT)

5.2. Django/Python compatibility table 229



https://github.com/django-cms/djangocms-url-manager/blob/acffbeedd3950b9d91f971e7a190b2789d2fe9d9/djangocms_url_manager/cms_config.py#L14
https://github.com/django-cms/djangocms-url-manager/blob/acffbeedd3950b9d91f971e7a190b2789d2fe9d9/djangocms_url_manager/cms_config.py#L14
https://github.com/django-cms/djangocms-alias/blob/7d90b7763278ff74ebe49f70420ecb9f0e2dc4c6/djangocms_alias/cms_config.py#L26
https://github.com/django-cms/djangocms-alias/blob/7d90b7763278ff74ebe49f70420ecb9f0e2dc4c6/djangocms_alias/cms_config.py#L26
https://divio-djangocms-versioning.readthedocs-hosted.com/en/latest/
https://github.com/django-cms/djangocms-versioning/blob/429e50d4de6d14f1088cbdba2be63b20c2885be9/djangocms_versioning/managers.py#L4
https://github.com/django-cms/djangocms-versioning/blob/429e50d4de6d14f1088cbdba2be63b20c2885be9/djangocms_versioning/managers.py#L4

django cms Documentation, Release 4.1.1

Disabling the admin sideframe

¢ The CMS sideframe in the Django admin caused many issues when navigating through different plugins admin
views, the experience it offered left the user confused at the page they were currently on after making various
changes, it was also buggy at times. Disable the sideframe by adding the following setting in the settings.py file,
it is enabled by default. CMS_SIDEFRAME_ENABLED = False

Plugin refactor

* Plugins used to utilise Treebeard. The Treebeard implementation was not coping with this, it was prone to
breakage and tree corruption. The refactor simplifies and avoids this by utilising a parent child relationship
with plugins. The main issue when replacing the Treebeard implementation was performance, here the standard
Django ORM could not provide the query complexity and performance required, individual implementations for
the different SQL dialects was implemented to aid performance of plugin queries.

* Initial plugin refactor: https://github.com/django-cms/django-cms/commit/
83d38dbb2e51b4cb65aff5726alc415de7alc376

* Support for other SQL dialects for the plugin tree structure: https://github.com/django-cms/django-cms/commit
/4dfaalc360c2al15f6572b89fc994a254be9e961d

Signals

Page signals have been merged into pre_obj and post_obj signals for operations on Page. Publishing signals have been
removed as of DjangoCMS 4.0 but are available in djangocms-versioning: https://github.com/django-cms/django-cms/
commit/03941533670ee9f8cS5c078bda8eScfdd9a639153

Log Operations

Previously the logs created were inconsistent and were not created for all page and placeholder operations. Now
all page and placeholder operations are logged in the Django Admin model LogEntry. The logs can also be trig-
gered by external apps via using the signals provided in the CMS. https://github.com/django-cms/django-cms/commit/
03941533670ee9f8c5c078bda8e5cfdd9a639f53

Placeholder Admin

The placeholder is now responsible for the edit, structure and preview endpoints. This was previously taken care of by
appending ?edit, ?structure and ?preview, This change was made to allow objects that weren’t pages to be viewed and
edited in their own way (Alias is an example of this).

» The views to render the endpoints: render_object_structure, render_object_edit, render_object_preview located
at: https://github.com/django-cms/django-cms/blob/release/4.0.x/cms/views.py#L. 195 The endpoint is deter-
mined by using a reverse look up to the registered admin instance using the toolbar utils: (get_object_preview_url,
get_object_structure_url, get_object_edit_url) https://github.com/django-cms/django-cms/blob/release/4.0.x/
cms/toolbar/utils.py#L122 This is due to the addition of versioning. Previously every add-on was responsi-
ble for their edit end points which made it impossible for versioning to bring the correct end point for a specific
version. You need to specify cms_toolbar_enabled_models attribute, which is a list of tuples in the following
format: (model, render function). model - model you want to be editable

« render function - a function that takes django.http.HttpRequest object and an object of the model specified above,
and returns a django.http.HttpResponse (or any subclass, like TemplateResponse) object based on provided data.
Please note that the preview/edit endpoint has changed. Appending ?edit no longer works. There’s a separate

230 Chapter 5. Software version requirements and release notes


https://github.com/django-cms/django-cms/commit/83d38dbb2e51b4cb65aff5726a1c415de7a1c376
https://github.com/django-cms/django-cms/commit/83d38dbb2e51b4cb65aff5726a1c415de7a1c376
https://github.com/django-cms/django-cms/commit
https://github.com/django-cms/django-cms/commit/03941533670ee9f8c5c078bda8e5cfdd9a639f53
https://github.com/django-cms/django-cms/commit/03941533670ee9f8c5c078bda8e5cfdd9a639f53
https://github.com/django-cms/django-cms/commit/03941533670ee9f8c5c078bda8e5cfdd9a639f53
https://github.com/django-cms/django-cms/commit/03941533670ee9f8c5c078bda8e5cfdd9a639f53
https://github.com/django-cms/django-cms/blob/release/4.0.x/cms/views.py#L195
https://github.com/django-cms/django-cms/blob/release/4.0.x/cms/toolbar/utils.py#L122
https://github.com/django-cms/django-cms/blob/release/4.0.x/cms/toolbar/utils.py#L122

django cms Documentation, Release 4.1.1

endpoint for editing (that the toolbar is aware of and links to when clicking Edit button). One also needs to
include cms_enabled = True in the cms config, otherwise that cms_toolbar_enabled_models config won’t be
passed to the cms.

* PlaceholderAdminMixin is deprecated and has a deprecation notice that it will be removed in the next major re-
lease: CMS 5.0. https://github.com/django-cms/django-cms/blob/release/4.0.x/cms/admin/placeholderadmin.
py#L178

Placeholder relations

The PlaceholderField has been replaced by the PlaceholderRelationField, the built-in migrations will automatically
take care of the replacement, but it can’t however replace the code.

You need to replace your fields such as:

class Post(models.Model):

media = PlaceholderField("media", related_name="media")

with:

class Post(models.Model):

placeholders = PlaceholderRelationField()

The above you may think is very strange, and you are completely correct. This is because the placeholder relationship
is now a GenericForeignKey relationship, so it can handle many different placeholders at once.

To be able to use media again, we can create a property like the below example:

class Post(models.Model):

def _get_placeholder_from_slotname(self, slotname):
try:
return self.placeholders.get(slot=slotname)
except Placeholder.DoesNotExist:
from cms.utils.placeholder import rescan_placeholders_for_obj
rescan_placeholders_for_obj(self)
return self.placeholders.get(slot=slotname)

@cached_property
def media(self):
return self._get_placeholder_from_slotname("media")

Placeholder endpoints

The Placeholder endpoints are designed in a way that allows other third party packages to reuse the edit and preview
modes. The major benefit of the reuse is that a third party package can use the views to manage plugins.

5.2. Django/Python compatibility table 231



https://github.com/django-cms/django-cms/blob/release/4.0.x/cms/admin/placeholderadmin.py#L178
https://github.com/django-cms/django-cms/blob/release/4.0.x/cms/admin/placeholderadmin.py#L178

django cms Documentation, Release 4.1.1

Preview end-point

The preview endpoint replaces what was the ?preview feature in django-cms 3.x

To generate a preview url you can reuse the following snippet, replacing my_page_content_instance with an instance
of PageContent:

from cms.toolbar.utils import get_object_preview_url

edit_url = get_object_preview_url(my_page_content_instance)

Edit end-point

The edit endpoint replaces what was the ?edit feature in django-cms 3.x

To generate an edit url you can reuse the following snippet, replacing my_page_content_instance with an instance of
PageContent:

from cms.toolbar.utils import get_object_edit_url

edit_url = get_object_edit_url(my_page_content_instance)

Structure end-point

The structure endpoint is a endpoint used by the plugin sidebar used when viewing the edit endpoint. It’s where the
plugins are rendered and can be dragged & dropped, added and removed.

Configuring you application to use Placeholder endpoint

We can use djangocms-alias as an example here because this is a very good example of a package that “reuses” the
django-cms placeholder endpoints.

Your app should have a placeholder field, djangocms-alias adds this manually. The core CMS has a more advanced
technique of adding placeholders by the templates, for django-cms alias we only need one placeholder. Please refer to
how the core django-cms package implements this for PageContent if you need more advanced control of Placeholder
creation.

It is important that your app uses the concept for djangocms-versioning of a grouper and content model:

# models.py
class AliasContent(models.Model):

placeholders = PlaceholderRelationField()
placeholder_slotname = 'content'

Within your packages cms_config add the following entry:

# cms_config.py

class AliasCMSConfig(CMSAppConfig):

(continues on next page)

232 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

cms_enabled = True
cms_toolbar_enabled_models = [(AliasContent, render_alias_content)]

Static Placeholders

Static Placeholders have been superseded by djangocms-alias, because they cannot be versioned.

3.11.1 release notes

This release focuses on support for django 4 and dark mode.

What’s new in 3.11.1
Features:

* add Python 3.11 support for Django CMS (#7422) (3fe1449e6) — Vinit Kumar
* Support for Django 4.1 (#7404) (777864af3) — Fabian Braun

* Add support for tel: and mailto: URIs in Advanced Page Settings redirect field (#7370) (0fd058ed3) — Mark
Walker

* Improved dutch translations — Stefan van den Eertwegh

Bug Fixes:

* Prefer titles matching request language (#7144) (06c9a85df) — Micah Denbraver

* Adds a deprecation warning for SEND_BROKEN_LINK_EMAILS (#7420) (d38f4alcc) — Fabian Braun
» Added deprecation warning to get_current_language() (#7410) (2788f75e6) — Mark Walker

* CMS check management command fixed [#7412] (#7413) (dcf394bdS) — ton77v

» Changing color scheme resets session settings to defaults (#7407) (fcfe77f63) — Fabian Braun

* Clear page permission cache on page create (#6866) (e59c179dd) — G3RB3N

* Unlocalize page and node ids when rendering the page tree in the admin (#7188) (9e3¢c57946) — Marco Bonetti
* Allow partially overriding CMS_CACHE_DURATIONS (#7339) (162{f8dd8) — Qijia Liu

CMS check management command fixed [#7386] (cdcf260aa) — Marco Bonetti

default light mode (#7381) (abc6e6c5b) — viliammihalik

Added language to page cache key (#7354) (d5a9f49e6) — Mark Walker

5.2. Django/Python compatibility table 233




django cms Documentation, Release 4.1.1

Refactoring and Cleanups:

e Move js API functions to CMS.Helpers to make them available also to the admin site (#7384) (a7f8cd44f) —
Fabian Braun

Statistics:

This release includes 40 pull requests, and was created with the help of the following contributors (in alphabetical
order):

* Cage Johnson (1 pull request)
¢ Christian Clauss (1 pull request)
* Dapo Adedire (1 pull request)
 Fabian Braun (11 pull requests)
* G3RB3N (1 pull request)
* Hussein Srour (1 pull request)
e Marco Bonetti (2 pull requests)
* Mark Walker (10 pull requests)
* Micah Denbraver (1 pull request)
¢ Qijia Liu (1 pull request)
* Shivan Sivakumaran (1 pull request)
* Vinit Kumar (1 pull request)
¢ code-review-doctor (1 pull request)
* dependabot[bot] (0 pull request)
* ton77v (1 pull request)
e viliammihalik (1 pull request)
* wesleysima (1 pull request)
With the review help of the following contributors:
¢ Christian Clauss
* Conrad
* Fabian Braun
* Florian Delizy
* Marco Bonetti
* Mark Walker
* Pankrat
* Patrick Mazulo
e Simon Krull
* Vinit Kumar

* dependabot[bot]

234 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

* jefe

Thanks to all contributors for their efforts!

How to upgrade to

We assume you are upgrading from django CMS 3.11.0.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Check your settings of CMS_LANGUAGES (if used), as it was ignored by default in preceding versions. For more
information, please see: https://github.com/django-cms/django-cms/pull/6795

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.

Run:

python manage.py migrate

to apply the new migrations.

3.11.0 release notes

This release focuses on support for django 4 and dark mode.

What’s new in 3.11.0
Features:

¢ Add pre commit functionality (#7204) (d1ecb6359) — Mark Walker

* Run workflows in concurrency groups (#7211) (04e843337) — Mark Walker

* Added concurrency option to github workflows (#7205) (546b36827) — Mark Walker

* Add support for django 4 (#7268) (9e8eb17) — Vinit Kumar

¢ Make Plugin Confirm Template configurable (#7267) (bable6e) — Jacob Rief

* Add support for dark mode for toolbar, page tree, structure tree, modals (#7245) (b2d9a08) — Fabian Braun

5.2. Django/Python compatibility table 235



https://github.com/django-cms/django-cms/pull/6795

django cms Documentation, Release 4.1.1

Bug Fixes:

* release script version number (#7322) (8ffc6488d) — Mark Walker

* add support for custom user model in cms permission signals (#7281) (c10b8ffc3) — Vinit Kumar

* publishing static placeholders outside of CMS (#7253) (bdb50b650) — Adrien Delhorme

* Toolbar bug in 3.10 (#7232) (b12d07989) — Mark Walker

* Disable workflow concurrency to bring stability back to the CI (#7209) (fdad05756) — Mark Walker

How to upgrade to 3.11.0

We assume you are upgrading from django CMS 3.10.0.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Check your settings of CMS_LANGUAGES (if used), as it was ignored by default in preceding versions. For more
information, please see: https://github.com/django-cms/django-cms/pull/6795

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.

Run:

python manage.py migrate

to apply the new migrations.

3.10.1 release notes

This release focuses on Python 3.10, node 16 (for build system), and bug fixes.

What’s new in 3.10.1
Features:

* Add support for Django 3.2 LTS version

» Page changed_date added to the Page tree admin actions dropdown template #6701 (#7046) (73cbbdb00) —
Vladimir Kuvandjiev

* Allow recursive template extending in placeholders (#6564) (fed6fe54d) — Stefan Wehrmeyer

» Added ability to set placeholder global limit on children only (#6847) (18e146495) — G3RB3N
* Replaced Travis.CI with Github Actions (#7000) (0f33b5839) — Vinit Kumar

* Added support for Github Actions based CI.

236 Chapter 5. Software version requirements and release notes



https://github.com/django-cms/django-cms/pull/6795

django cms Documentation, Release 4.1.1

Added Support for testing frontend, docs, test and linting in different/parallel CI pipelines.

Added django-treebeard 4.5.1 support, previously pinned django-treebeard<4.5 to avoid breaking changes intro-
duced

Improved performance of cms list plugins command

Page changed date added to the Page tree admin actions dropdown

Bug Fixes:

using .nvmrc to target the right nvm version (3e5227def) — Florian Delizy

Fixed an issue where the wrong page title was returned (#6466) (3a0c4d26e) — Alexandre Joly

Add toolbar fix for broken CMS in the release 3.10.x — Vinit Kumar

Fixed #6413: migrations 0019 and 0020 on multi db setups (#6708) (826d57f0f) — Petr Glotov

Added fix to migrations to handle multi database routing (#6721) (98658a909) — Michael Anckaert

Fixed issue where default fallbacks is not used when it’s an empty list (#6795) (5d21faSeb) — Arjan de Pooter
Fixed prefix_default_language = False redirect behavior (#6851) (34a26bd1b) — Radek Stepien

Fix not checking slug uniqueness on page move (#6958) (5976d393a) — Iacopo Spalletti

Fixed DontUsePageAttributeWarning message (#6734) (45383888¢e) — carmenkow

Fixed Cache not invalidated when using a PlaceholderField outside the CMS #6912 (#6956) (3ce63d7d3) —
Benjamin PIERRE

Fixed unexpected behavior get_page_from_request (#6974) (#6073) (52f926e0d) — Yuriy Mamaev
Fixed django treebeard 4.5.1 compatibility (#6988) (eeb86fd70) — Aiky30

Fixed bad Title.path in Multilanguage sites if parent slug is created or modified (#6968) (6e7b0ae48) — fp4code
Fixed redirect issues when i18n_patterns had prefix_default_language = False

Fixed not checking slug uniqueness when moving a page

Fixed builds on RTD

Fixed the cache not being invalidated when updating a PlaceholderField in a custom model

Fixed 66622 bad Title.path in multilingual sites when parent slug is created or modified

Fixed 6973 bag with unexpected behavior get_page_from_request

Fixed migrations with multiple databases

Fix styles issues, caused by switching to the display: flex on the page tree renderer.

Fixed missing builtin arguments on main cms management command causing it to crash

Fixed template label nested translation

Fixed a bug where the fallback page title would be returned instead of the one from the current language

Fixed an issue when running migrations on a multi database project

5.2.

Django/Python compatibility table 237



django cms Documentation, Release 4.1.1

How to upgrade to 3.10.1

We assume you are upgrading from django CMS 3.10.0.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Check your settings of CMS_LANGUAGES (if used), as it was ignored by default in preceding versions. For more
information, please see: https://github.com/django-cms/django-cms/pull/6795

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.
Run:

python manage.py migrate

to apply the new migrations.

3.10.0 release notes

This release focuses on Python 3.10, node 16 (for build system), and bug fixes.

What’s new in 3.10.0
Features:

* Add support for Django 3.2 LTS version

» Page changed_date added to the Page tree admin actions dropdown template #6701 (#7046) (73cbbdb00) —
Vladimir Kuvandjiev

* Allow recursive template extending in placeholders (#6564) (fed6fe54d) — Stefan Wehrmeyer

* Added ability to set placeholder global limit on children only (#6847) (18e146495) — G3RB3N
* Replaced Travis.CI with Github Actions (#7000) (0f33b5839) — Vinit Kumar

¢ Added support for Github Actions based CI.

* Added Support for testing frontend, docs, test and linting in different/parallel CI pipelines.

* Added django-treebeard 4.5.1 support, previously pinned django-treebeard<4.5 to avoid breaking changes intro-
duced

 Improved performance of cms list plugins command

 Page changed date added to the Page tree admin actions dropdown

238 Chapter 5. Software version requirements and release notes



https://github.com/django-cms/django-cms/pull/6795

django cms Documentation, Release 4.1.1

Bug Fixes:

* using .nvmrc to target the right nvm version (3e5227def) — Florian Delizy

* Fixed an issue where the wrong page title was returned (#6466) (3a0c4d26e) — Alexandre Joly

* Add toolbar fix for broken CMS in the release 3.10.x — Vinit Kumar

* Fixed #6413: migrations 0019 and 0020 on multi db setups (#6708) (826d57{0f) — Petr Glotov

* Added fix to migrations to handle multi database routing (#6721) (98658a909) — Michael Anckaert

* Fixed issue where default fallbacks is not used when it’s an empty list (#6795) (5d21faSeb) — Arjan de Pooter
* Fixed prefix_default_language = False redirect behavior (#6851) (34a26bd1b) — Radek Stepient

* Fix not checking slug uniqueness on page move (#6958) (5976d393a) — Iacopo Spalletti

* Fixed DontUsePageAttributeWarning message (#6734) (45383888e) — carmenkow

* Fixed Cache not invalidated when using a PlaceholderField outside the CMS #6912 (#6956) (3ce63d7d3) —
Benjamin PIERRE

* Fixed unexpected behavior get_page from_request (#6974) (#6073) (52f926e0d) — Yuriy Mamaev

* Fixed django treebeard 4.5.1 compatibility (#6988) (eeb86fd70) — Aiky30

* Fixed Bad Title.path in Multilanguage sites if parent slug is created or modified (#6968) (6e7b0ae48) — fp4code
* Fixed redirect issues when i18n_patterns had prefix_default_language = False

* Fixed not checking slug uniqueness when moving a page

* Fixed builds on RTD

» Fixed the cache not being invalidated when updating a PlaceholderField in a custom model

* Fixed 66622 bad Title.path in multilingual sites when parent slug is created or modified

* Fixed 6973 bag with unexpected behavior get_page_from_request

* Fixed migrations with multiple databases

* Fix styles issues, caused by switching to the display: flex on the page tree renderer.

¢ Fixed missing builtin arguments on main cms management command causing it to crash

* Fixed template label nested translation

* Fixed a bug where the fallback page title would be returned instead of the one from the current language

* Fixed an issue when running migrations on a multi database project

How to upgrade to 3.10.0

We assume you are upgrading from django CMS 3.9.0.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Check your settings of CMS_LANGUAGES (if used), as it was ignored by default in preceding versions. For more
information, please see: https://github.com/django-cms/django-cms/pull/6795

Then run:

5.2. Django/Python compatibility table 239


https://github.com/django-cms/django-cms/pull/6795

django cms Documentation, Release 4.1.1

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.
Run:

python manage.py migrate

to apply the new migrations.

3.9.0 release notes

This release of django CMS (first community driven release) introduces support for Django 3.2, and bugfix. We tried
to catch up with as many long waited feature/bugfix requests as possible.

What’s new in 3.9.0
Features:

* Add support for Django 3.2 LTS version

» Page changed_date added to the Page tree admin actions dropdown template #6701 (#7046) (73cbbdb00) —
Vladimir Kuvandjiev

» Allow recursive template extending in placeholders (#6564) (fed6fe54d) — Stefan Wehrmeyer

* Added ability to set placeholder global limit on children only (#6847) (18e146495) — G3RB3N
* Replaced Travis.CI with Github Actions (#7000) (0f33b5839) — Vinit Kumar

* Added support for Github Actions based CI.

* Added Support for testing frontend, docs, test and linting in different/parallel CI pipelines.

¢ Added django-treebeard 4.5.1 support, previously pinned django-treebeard<4.5 to avoid breaking changes intro-
duced

* Improved performance of cms list plugins command

* Page changed date added to the Page tree admin actions dropdown

Bug Fixes:

* Fixed an issue where the wrong page title was returned (#6466) (3a0c4d26e) — Alexandre Joly

* Fixed #6413: migrations 0019 and 0020 on multi db setups (#6708) (826d57f0f) — Petr Glotov

* Added fix to migrations to handle multi database routing (#6721) (98658a909) — Michael Anckaert

* Fixed issue where default fallbacks is not used when it’s an empty list (#6795) (5d21faSeb) — Arjan de Pooter
* Fixed prefix_default_language = False redirect behavior (#6851) (34a26bd1b) — Radek Stepiefi

* Fix not checking slug uniqueness on page move (#6958) (5976d393a) — Iacopo Spalletti

240 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

* Fixed DontUsePageAttributeWarning message (#6734) (45383888e) — carmenkow

* Fixed Cache not invalidated when using a PlaceholderField outside the CMS #6912 (#6956) (3ce63d7d3) —
Benjamin PIERRE

* Fixed unexpected behavior get_page from_request (#6974) (#6073) (52f926e0d) — Yuriy Mamaev

* Fixed django treebeard 4.5.1 compatibility (#6988) (eeb86fd70) — Aiky30

* Fixed Bad Title.path in Multilanguage sites if parent slug is created or modified (#6968) (6e7b0ae48) — fp4code
* Fixed redirect issues when i18n_patterns had prefix_default_language = False

* Fixed not checking slug uniqueness when moving a page

* Fixed builds on RTD

* Fixed the cache not being invalidated when updating a PlaceholderField in a custom model

* Fixed 66622 bad Title.path in multilingual sites when parent slug is created or modified

* Fixed 6973 bag with unexpected behavior get_page_from_request

* Fixed migrations with multiple databases

* Fix styles issues, caused by switching to the display: flex on the page tree renderer.

¢ Fixed missing builtin arguments on main cms management command causing it to crash

* Fixed template label nested translation

* Fixed a bug where the fallback page title would be returned instead of the one from the current language

* Fixed an issue when running migrations on a multi database project

How to upgrade to 3.9.0

We assume you are upgrading from django CMS 3.8.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Check your settings of CMS_LANGUAGES (if used), as it was ignored by default in preceding versions. For more
information, please see: https://github.com/django-cms/django-cms/pull/6795

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.
Run:

python manage.py migrate

to apply the new migrations.

5.2. Django/Python compatibility table 241



https://github.com/django-cms/django-cms/pull/6795

django cms Documentation, Release 4.1.1

3.8.0 release notes

This release of django CMS concentrates on introducing support for Django 3.1 and dropps support for Python 2.7 and
3.4. It also removes support for Django versions below 2.2.

What’s new in 3.8.0
Improvements and new features

¢ Introduced Django 3.1 support.
* Dropped support for Python 2.7 and Python 3.4
* Dropped support for Django < 2.2

Bug Fixes

¢ Removed djangocms-column from the manual installation instructions
* Removed duplicate attr declaration from the documentation
* Fixed a reference to a wrong variable in log messages in utils/conf.py

* Fixed an issue in wizards/create.html where the error message did not use the plural form

How to upgrade to 3.8

We assume you are upgrading from django CMS 3.7.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.

Run:

python manage.py migrate

to apply the new migrations.

242 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

3.7.4 release notes

What’s new in 3.7.4

Bug Fixes

* Fixed a security vulnerability in the plugin_type url parameter to insert JavaScript code.

3.7.3 release notes

What’s new in 3.7.3
Bug Fixes

* Fixed apphooks config select in Firefox
* Fixed compatibility errors on python 2

* Fixed long page titles in Page tree/list view to prevent horizontal scrolling

3.7.2 release notes

What’s new in 3.7.2
Bug Fixes

* migrated from django.utils.six to the six package

* migrated from django.utils.lru_cache to functools.lru_cache

* migrated from render_to_response to render in cms.views

e added cms.utils.compat.dj.available_attrs

* added --force-color and --skip-checks in base commands when using Django 3
* replaced staticfiles and admin_static with static

* replaced djangocms-helper with django-app-helper

Improvements and new features

¢ Added support for Django 3.0
* Added support for Python 3.8

5.2. Django/Python compatibility table

243



django cms Documentation, Release 4.1.1

How to upgrade to 3.7.2

Django 3.0 changed the default behaviour of the XFrameOptionsMiddleware from SAMEORIGIN to DENY. In order
for django CMS to function, X_FRAME_OPTIONS needs to be set to SAMEORIGIN in the settings.py:

X_FRAME_OPTIONS = 'SAMEORIGIN'

3.7.1 release notes

What’s new in 3.7.1
Bug Fixes

* Fixed a bug where creating a page via the cms.api.create_page ignores left/right positions.
* Fixed documentation example for urls.py when using multiple languages.

 Fixed a bug where request.current_page would always be the public page, regardless of the toolbar status
(draft / live). This only affected custom urls from an apphook.

* Fixed a bug where the menu would render draft pages even if the page on the request was a public page. This
happens when a user without change permissions requests edit mode.

* Fixed the ‘urls.W001’ warning with custom apphook urls
* Fixed missing {% trans %} to toolbar shortcuts.

* Fixed a simple typo in the docstring for cms.utils.helpers.normalize_name.

Improvements and new features

* Added code of conduct reference file to the root directory

* Moved contributing file to the root directory

* Added better templates for new issue requests

* Mark public static placeholder dirty when published.

* Prevent non-staff users to login with the django CMS toolbar
* Improved and simplified permissions documentation.

* Improved apphooks documentation.

e Improved CMSPluginBase documentation.

* Improved documentation related to nested plugins.

» Updated installation tutorial.

» Updated branch and release policy.

244 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

3.7.0 release notes

This release of django CMS concentrates on introducing support for Django 2.2 LTS and Python 3.7.

What’s new in 3.7.0
Improvements and new features

¢ Introduced Django 2.2 support.

Introduced Python 3.7 support.
* Fixed test suite.

* Fixed override urlconf_module so that Django system checks don’t crash.

How to upgrade to 3.7

We assume you are upgrading from django CMS 3.6.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.
Run:

python manage.py migrate

to apply the new migrations.

Create a new django CMS 3.7 project

On the Divio Cloud

The Divio Cloud offers an easy way to set up django CMS projects. In the Divio Cloud Control Panel, create a new
django CMS project and Deploy it.

5.2. Django/Python compatibility table 245



https://control.divio.com

django cms Documentation, Release 4.1.1

Using the django CMS Installer

Note: The django CMS Installer is not yet available for django CMS 3.6 or Django 2 or later.

This section will be updated or removed before the final release of django CMS 3.6.

Contributors to this release

Daniele Procida
Vadim Sikora
Paulo Alvarado
Bartosz Pt6ciennik
Katie McLaughlin
Krzysztof Socha
Mateusz Kamycki
Sergey Fedoseev
Aliaksei Urbanski
heppstux
Chematronix
Frank

Jacob Rief

Julz

Angelo Dini

3.6.1 release notes

What’s new in 3.6.1

Bug Fixes

3.6.0 release notes

* Fixed a security vulnerability in the plugin_type url parameter to insert JavaScript code.

This release of django CMS concentrates on introducing support for Django 2.0 and Django 2.1, and dropping support

for Django versions lower than 1.11.

246

Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

What’s new in 3.6.0
Improvements and new features

* introduced support for Django 2.0

* introduced support for Django 2.1

» removed support for Django versions older than 1.11

* added page_title parameter for cms.api.create_page() and cms.api.create_title()

¢ length restriction for Title.meta_description was moved from model to form; field length was increased to
320 characters.

Removal of deprecated functionality

Previously deprecated functionality has been removed:
 Signal handlers for Page, Title, Placeholder and CMSPlugin models was removed.
¢ Removed the cms moderator command.

¢ Removed the translatable content get/set methods from CMSPlugin model.

How to upgrade to 3.6

We assume you are upgrading from django CMS 3.5.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.

Run:

python manage.py migrate

to apply the new migrations.

5.2. Django/Python compatibility table 247




django cms Documentation, Release 4.1.1

Create a new django CMS 3.6 project
On the Divio Cloud

The Divio Cloud offers an easy way to set up django CMS projects. In the Divio Cloud Control Panel, create a new
django CMS project and Deploy it.

Using the django CMS Installer

Note: The django CMS Installer is not yet available for django CMS 3.6 or Django 2 or later.

This section will be updated or removed before the final release of django CMS 3.6.

Contributors to this release

* Daniele Procida

* Vadim Sikora

* Paulo Alvarado

* Bartosz Pl6ciennik
» Katie McLaughlin
¢ Krzysztof Socha

* Mateusz Kamycki
» Sergey Fedoseev
» Aliaksei Urbanski
* heppstux

* Chematronix

e Frank

* Jacob Rief

e Julz

3.5.4 release notes

What’s new in 3.5.4
Bug Fixes

* Fixed a security vulnerability in the plugin_type url parameter to insert JavaScript code.

248 Chapter 5. Software version requirements and release notes


https://control.divio.com

django cms Documentation, Release 4.1.1

3.5.3 release notes

What’s new in 3.5.3
Bug Fixes

* Fixed TreeNode.DoesNotExist exception raised when exporting and loading database contents via dumpdata
and loaddata.

* Fixed a bug where request.current_page would always be the public page, regardless of the toolbar status
(draft / live). This only affected custom urls from an apphook.

* Removed extra quotation mark from the sideframe button template
* Fixed a bug where structureboard tried to preload markup when using legacy renderer

* Fixed a bug where updates on other tab are not correctly propagated if the operation was to move a plugin in the
top level of same placeholder

* Fixed a bug where xframe options were processed by clickjacking middleware when page was served from cache,
rather then get this value from cache

» Fixed a bug where cached page permissions overrides global permissions

* Fixed a bug where plugins that are not rendered in content wouldn’t be editable in structure board
* Fixed a bug with expanding static placeholder by clicking on “Expand All” button

* Fixed a bug where descendant pages with a custom url would lose the overwritten url on save.

* Fixed a bug where setting the on_delete option on PlaceholderField and PageField fields would be ig-
nored.

* Fixed a bug when deleting a modal from changelist inside a modal

3.5.2 release notes

What’s new in 3.5.2
Bug Fixes

* Fixed a bug where short-cuts menu entry would stop working after toolbar reload
* Fixed a race condition in frontend code that could lead to sideframe being opened with blank page

* Fixed a bug where the direct children of the homepage would get a leading / character when the homepage was
moved or published.

* Fixed a bug where non-staff user would be able to open empty structure board
* Fixed a bug where a static file from Django admin was referenced that no longer existed in Django 1.9 and up.

* Fixed a bug where the migration 0018 would fail under certain databases.

5.2. Django/Python compatibility table 249



django cms Documentation, Release 4.1.1

3.5.1 release notes

What’s new in 3.5.1
Bug Fixes

* Fixed a bug where editing pages with primary keys greater than 999 would throw an exception.

» Fixed aMultipleObjectsReturned exception raised on the page types migration with multiple page types per
site.

* Fixed a bug which prevented toolbar js from working correctly when rendered before toolbar.
* Fixed a bug where CMS would incorrectly highlight plugin content when plugin contains invisible elements

* Fixed a regression where templates which inherit from a template using an {% extends %} tag with a default
would raise an exception.

3.5.0 release notes
This release of django CMS concentrates on usability and user-experience, by improving its responsiveness while
performing editing operations, particularly those that involve updates to plugin trees.

It also continues our move to decouple logical layers in the system. Most significant in this release is the new separation
of the structure board from page rendering, which allows the structure board to be updated without requiring the page
to be re-rendered. This vastly speeds up page editing, especially when dealing with complex plugin structures.

Another significant example is that the Page model has been decoupled from the site navigation hierarchy. The navi-
gation tree now exists independently, offering further speed advantages, as well as future benefits for development and
extensibility.

Our work to improve separation of concerns can also be seen in the renaming of publishing controls, so that they no
longer refer to specifically to pages. Ultimately, publishing actions could apply to any kind of content, and this is a step
in that direction.

What’s new in 3.5.0
Improvements and new features

* structure board now decoupled from page rendering

* Page model decoupled from the site navigation

* Page copy between sites

* better behaviour of the language chooser for published/unpublished languages
 improved handling, refactored code for language fallbacks

 improved repr for Page, Title, Placeholder and CMSPlugin models

* generic publishing controls no longer refer to “page”

 improved documentation

250 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Bug Fixes

This release fixes:

a Page template settings permission issue (failed to check for “Change advanced settings permission”)
a bug allowing Pages to be pasted without the correct translations for the target site

a bug that prevented users from seeing the welcome screen when debug is off

a bug allowing aliased plugins to render even if their host page was unpublished

a bug where focusing inputs in modal would require two clicks in some browsers

minor issues with initialisation of interface widgets.

minor clipboard bugs

Removal of deprecated functionality

Previously deprecated functionality has been removed:

Menu modules can no longer be named menus . py (use cms_menus . py).
The cms.utils.django_load.py module has been removed (in favour of standard Django helpers)
Support for Django Reversion has been removed.

The urls and menus attributes are no longer supported on CMSApp (apphook) classes. All apphook subclasses
now need a get_urls() method. In addition, if your apphook has a menus attribute, that will need to be replaced
by a get_menus () method.

Page.revision_id has been removed

Deprecated content creation wizard settings have been removed.

Backward-incompatible changes

The home page is no longer automatically the root page in the tree (since there is no longer a page tree). Instead,
the home page is set manually in the page list admin.

Previously, ordered pages could be obtained via Page.object.order_by('path'); the equivalent is now
Page.object.order_by('node__path').

Pages are no longer ordered by path. For ordering, use order_by('node__path').

Pages no longer have a site field. Whereas previously you could use filter(site=id), now use
filter(node__site==id).

Pages no longer have a parent field. Instead a parent property now returns the new parent_page attribute,
which relies on the node tree.

Never-published pages can no longer have a ‘pending’ publishing state. A data migration, cms/migrations/
0018_pagenode. py, removes this.

Using self.request.path or self.request.path_info in a CMSToolbar subclass method is no longer
reliable and is discouraged. Instead, use self.toolbar.request_path.

5.2.

Django/Python compatibility table 251



django cms Documentation, Release 4.1.1

How to upgrade to 3.5

We assume you are upgrading from django CMS 3.4.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or APIs (see above).
Some third-party components may need to be updated.

Install the new version of django CMS from GitHub.

Run:

python manage.py migrate

to apply the new migrations.

Create a new django CMS 3.5 project
On the Divio Cloud

The Divio Cloud offers an easy way to set up django CMS projects. In the Divio Cloud Control Panel, create a new
django CMS project and Deploy it.

Using the django CMS Installer

See our installation guide in the tutorial. However, make sure that you:
* have installed the latest version of django CMS Installer (at least version 0.9.8)
* specify the version to install as develop: djangocms --cms-version=develop mysite

The user name and password will both be admin.

Contributors to this release

* Alexander Paramonov
e Andras Gyomrey

* Daniele Procida

¢ Gianluca Guarini

¢ Tacopo Spalletti

* Jacob Rief

* Jens Diemer

e Jidlio R. Lucchese

252 Chapter 5. Software version requirements and release notes



https://control.divio.com

django cms Documentation, Release 4.1.1

Leon Smith
Ludwig Hihne
Mark Walker
Nicolas PASCAL
Nina Zakharenko
Paulo Alvarado
Robert Stein
Salmanul Farzy
Sergey Fedoseev
Shaun Brady
Stefan Foulis
Tim Graham
Vadim Sikora
alskgj

3.4.7 release notes

What’s new in 3.4.7

Bug Fixes

Removed extra quotation mark from the sideframe button template

Fixed a bug where xframe options were processed by clickjacking middleware when page was served from cache,

rather then get this value from cache

Fixed a bug where cached page permissions overrides global permissions

Fixed a bug where editing pages with primary keys greater than 9999 would throw an exception.

Fixed broken wizard page creation when no language is set within the template context (see #5828).

Fixed a security vulnerability in the plugin_type url parameter to insert JavaScript code.

3.4.6 release notes

What’s new in 3.4.6

Bug Fixes

Changed the way drag and drop works in the page tree. The page has to be selected first before moving.

Fixed a bug where the cms alias plugin leaks context into the rendered aliased plugins.

Fixed a bug where users without the “Change advanced settings” permission could still change a page’s template.

Added on_delete to ForeignKey and OneToOneField to silence Django deprecation warnings.

5.2. Django/Python compatibility table

253



django cms Documentation, Release 4.1.1

* Fixed a bug where the sitemap would ignore the public setting of the site languages and thus display hidden
languages.

* Fixed an AttributeError raised when adding or removing apphooks in Django 1.11.

* Fixed an InconsistentMigrationHistory error raised when the contenttypes app has a pending migration
after the user has applied the 0010_migrate_use_structure migration.

3.4.5 release notes

This version of django CMS is the first to introduce compatibility with Django 1.11, itself also a Long-Term Support
release.

What’s new in 3.4.5
Bug Fixes

* Fixed a bug where slug wouldn’t be generated in the creation wizard

* Fixed a bug where the add page endpoint rendered Change page as the html title.

* Fixed an issue where non-staff users could request the wizard create endpoint.

* Fixed an issue where the Edit page toolbar button wouldn’t show on non-cms pages with placeholders.

* Fixed a bug where placeholder inheritance wouldn’t work if the inherited placeholder is cached in an ancestor
page.

* Fixed a regression where the code following a {% placeholder x or %} declaration, was rendered before
attempting to inherit content from parent pages.

» Changed page/placeholder cache keys to use shal hash instead of md5 to be FIPS compliant.
* Fixed a bug where the change of a slug would not propagate to all descendant pages

 Fixed a ValueError raised when using ManifestStaticFilesStorage or similar for static files. This only
affects Django >=1.10

Improvements and new features

¢ Introduced Django 1.11 compatibility
3.4.4 release notes
What’s new in 3.4.4
Bug Fixes
Improvements and new features
Deprecations

Backward incompatible changes

254 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Page methods

The following methods have been removed from the Page model:

* reset_to_live This internal method was removed and replaced with revert_to_live.

Placeholder utilities

Because of a performance issue with placeholder inheritance, we’ve altered the return value for the following internal
placeholder utility functions:

e cms.utils.placeholder._scan_placeholders This will now return a list of Placeholder tag instances
instead of a list of placeholder slot names. You can get the slot name by calling the get_name () method on the
Placeholder tag instance.

e cms.utils.placeholder.get_placeholders This will now return a list of DeclaredPlaceholder in-
stances instead of a list of placeholder slot names. You can get the slot name by accessing the slot attribute on
the DeclaredPlaceholder instance.

3.4.3 release notes

What’s new in 3.4.3
Security Fixes

* Fixed a security vulnerability in the page redirect field which allowed users to insert JavaScript code.

* Fixed a security vulnerability where the next parameter for the toolbar login was not sanitised and could point
to another domain.

Thanks

Thanks to Mark Walker and Anthony Steinhauser for reporting the security issues.

3.4.2 release notes

django CMS 3.4.2 introduces two key new features: Revert to live for pages, and support for Django 1.10

Revert to live is in fact being reintroduced in a new form following a complete rewrite of our revision handling system,
that was removed in django CMS 3.4 to make possible a greatly-improved new implementation from scratch.

Revert to live is the first step in fully re-implementing revision management on a new basis.

The full set of changes is listed below.

5.2. Django/Python compatibility table 255



django cms Documentation, Release 4.1.1

What’s new in 3.4.2

Bug Fixes

Escaped strings in close_frame JS template.

Fixed a bug with fext-transform styles on inputs affecting CMS login

Fixed a typo in the confirmation message for copying plugins from a different language

Fixed a bug which prevented certain migrations from running in a multi-db setup.

Fixed a regression which prevented the Page model from rendering correctly when used in a raw_id_field.

Fixed a regression which caused the CMS to cache the toolbar when CMS_PAGE_CACHE was set to True and an
anonymous user had cms_edit set to True on their session.

Fixed a regression which prevented users from overriding content in an inherited placeholder.

Fixed a bug affecting Firefox for Macintosh users, in which use of the Command key later followed by Return
would trigger a plugin save.

Fixed a bug where template inheritance setting creates spurious migration (see #3479)

Fixed a bug which prevented the page from being marked as dirty (pending changes) when changing the value
of the overwrite url field.

Fixed a bug where the page tree would not update correctly when a sibling page was moved from left to right or
right to left.

Improvements and new features

Added official support for Django 1.10.

Rewrote manual installation how-to documentation

Re-introduced the “Revert to live” menu option.

Added support for django-reversion >= 2 (see #5830)

Improved the fix-tree command so that it also fixes non-root nodes (pages).

Introduced placeholder operation signals.

Deprecations

Removed the deprecated add_url (), edit_url (), move_url(), delete_url(), copy_url() properties of
CMSPlugin model.

Added a deprecation warning to method render_plugin() in class CMSPlugin.
Deprecated frontend_edit_template attribute of CMSPluginBase.

The post_ methods in "PlaceholderAdminMixin have been deprecated in favour of placeholder operation
signals.

256

Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Other changes

* Adjusted Ajax calls triggered when performing a placeholder operation (add plugin, etc..) to include a GET
query called cms_path. This query points to the path where the operation originates from.

* Changed CMSPlugin.get_parent_classes() from method to classmethod.

3.4.1 release notes

What’s new in 3.4.1
Bug Fixes

* Fixed a regression when static placeholder was uneditable if it was present on the page multiple times

* Removed globally unique constraint for Apphook configs.

* Fixed a bug when keyboard short-cuts were triggered when form fields were focused

* Fixed a bug when shift + space shortcut wouldn’t correctly highlight a plugin in the structure board

* Fixed a bug when plugins that have top-level svg element would break structure board

* Fixed a bug where output from the show_admin_menu_for_pages template tag was escaped in Django 1.9
* Fixed a bug where plugins would be rendered as editable if toolbar was shown but user was not in edit mode.

¢ Fixed CSS reset issue with short-cuts modal

3.4 release notes
The most significant change in this release is the removal of revision support (i.e. undo/redo/recover functionality on

pages) from the core django CMS. This functionality will be reinstated as an optional addon in due course, but in the
meantime, that functionality is not available.

What’s new in 3.4

Changed the way CMS plugins are rendered. The HTML div with cms-plugin class is no longer rendered
around every CMS plugin. Instead a combination of template tags and JavaScript is used to add event handlers
and plugin data directly to the plugin markup. This fixes most of the rendering issues caused by the extra markup.

Changed asset cache-busting implementation, which is now handled by a path change, rather than the GET pa-
rameter.

Added the option to copy pages in the page tree using the drag and drop interface.

Made it possible to use multi-table inheritance for Page/Title extensions.

Refactored plugin rendering functionality to speed up loading time in both structure and content modes.

Added a new Shift + Space shortcut to switch between structure and content mode while highlighting the
current plugin, revealing its position.

Improved keyboard navigation

Added help modal about available short-cuts

Added fuzzy matching to the plugin picker.

5.2. Django/Python compatibility table 257



django cms Documentation, Release 4.1.1

* Changed the downcast_plugins utility to return a generator instead of a list.
* Fixed a bug that caused an aliased placeholder to show in structure mode.
* Fixed a bug that prevented aliased content from showing correctly without publishing the page first.

¢ Added help text to an Alias plugin change form when attached to a page to show the content editor where the
content is aliased from.

* Removed revision support from django CMS core. As a result both CMS_MAX_PAGE_HISTORY_REVERSIONS
and CMS_MAX_PAGE_PUBLISH_REVERSIONS settings are no longer supported, as well as the with_revision
parameter in cms.api.create_page and cms.api.create_title.

¢ In cms.plugin_base.CMSPluginBase methods get_child_classes and get_parent_classes now are
implemented as a @classmethod.

Upgrading to 3.4

A database migration is required because the default value of CMSPlugin.position was set to 0 instead of null.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Then run:

python manage.py migrate
python manage.py cms fix-tree

Backward incompatible changes
Apphooks & Toolbars

As per our deprecation policy we’ve now removed the backwards compatible shim for cms_app . py and cms_toolbar.
py. If you have not done so already, please rename these to cms_apps.py and cms_toolbars.py.

Permissions

The permissions system was heavily refactored. As a result, several internal functions and methods have been removed
or changed.

Functions removed:
e user_has_page_add_perm
¢ has_page_add_permission
¢ has_page_add_permission_from_request
¢ has_any_page_change_permissions
¢ has_auth_page_permission
* has_page_change_permission
* has_global_page_permission
¢ has_global_change_permissions_permission

* has_generic_permission

258 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

e load_view_restrictions

e get_any_page_view_permissions

The following methods were changed to require a user parameter instead of a request:

* Page.has_view_permission

These are also deprecated in favour of their counterparts in cms.utils.page_permissions.

Page.
Page.
Page.
Page.
Page.
Page.
Page.

Page

has_add_permission
has_change_permission
has_delete_permission
has_delete_translation_permission
has_publish_permission
has_advanced_settings_permission

has_change_permissions_permission

.has_move_page_permission

To keep consistency with both django CMS permissions and Django permissions, we’ve modified the vanilla permis-
sions system (CMS_PERMISSIONS = False) to require users to have certain Django permissions to perform an action.

Here’s an overview:

Action Permission required

Add Page Can Add Page & Can Change Page
Change Page | Can Change Page

Delete Page | Can Change Page & Can Delete Page
Move Page Can Change Page

Publish Page | Can Change Page & Can Publish Page

This change will only affect non-superuser staff members.

Warning: If you have a custom Page extension with a configured toolbar, please see the updated example. It uses
the new permission internals.

Manual plugin rendering

We’ve rewritten the way plugins and placeholders are rendered. As a result, if you’re manually rendering plugins and
placeholders you’ll have to adapt your code to match the new rendering mechanism.

To render a plugin programmatically, you will need a context and request object.

Warning: Manual plugin rendering is not a public API, and as such it’s subject to change without notice.

from django.template import RequestContext
from cms.plugin_rendering import ContentRenderer

def render_plugin(request, plugin):

renderer = ContentRenderer(request)
context = RequestContext(request)

5.2. Django/Python compatibility table

259



django cms Documentation, Release 4.1.1

# Avoid errors if plugin require a request object
# when rendering.

context['request'] = request

return renderer.render_plugin(plugin, context)

Like a plugin, to render a placeholder programmatically, you will need a context and request object.

Warning: Manual placeholder rendering is not a public API, and as such it’s subject to change without notice.

from django.template import RequestContext
from cms.plugin_rendering import ContentRenderer

def render_placeholder(request, placeholder):

renderer = ContentRenderer(request)

context = RequestContext(request)

# Avoid errors if plugin require a request object

# when rendering.

context['request'] = request

content = renderer.render_placeholder(
placeholder,
context=context,

)

return content

3.3 release notes

django CMS 3.3 has been planned largely as a consolidation release, to build on the progress made in 3.2 and pave the

way for the future ones.

The largest major change is dropped support for Django 1.6 and 1.7, and Python 2.6 followed by major code cleanup

to remove compatibility shims.

What’s new in 3.3

* Removed support for Django 1.6, 1.7 and python 2.6

¢ Changed the default value of CMSPIlugin.position to 0 instead of null
 Refactored the language menu to allow for better integration with many languages
* Refactored management commands completely for better consistency

¢ Fixed “failed to load resource” for favicon on welcome screen

e Changed behaviour of toolbar CSS classes: cms-toolbar-expanded class is only added now when
toolbar is fully expanded and not at the beginning of the animation. cms-toolbar-expanding and

cms-toolbar-collapsing classes are added at the beginning of their respective animations.
* Added unit tests for CMS JavaScript files
¢ Added frontend integration tests (written with Casper JS)

* Removed frontend integration tests (written with Selenium)

260 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Added the ability to declare cache expiration periods on a per-plugin basis
Improved Ul of page tree
Improved Ul in various minor ways

Added a new setting CMS_INTERNAL_IPS for defining a set of IP addresses for which the toolbar will appear
for authorized users. If left unset, retains the existing behaviour of allowing toolbar for authorized users at any
IP address.

Changed behaviour of sideframe; is no longer resizable, opens to 90% of the screen or 100% on small screens.
Removed some unnecessary reloads after closing sideframe.

Added the ability to make pagetree actions work on currently picked language

Removed deprecated CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE setting

Introduced the method get_cache_expiration on CMSPluginBase to be used by plugins for declaring their
rendered content’s period of validity.

Introduced the method get_vary_cache_on on CMSPluginBase to be used by plugins for declaring VARY
headers.

Improved performance of plugin moving; no longer saves all plugins inside the placeholder.
Fixed breadcrumbs of recently moved plugin reflecting previous position in the tree
Refactored plugin adding logic to no longer create the plugin before the user submits the form.
Improved the behaviour of the placeholder cache

Improved fix-tree command to sort by position and path when rebuilding positions.

Fixed several regressions and tree corruptions on page move.

Added new class method on CMSPlugin requires_parent_plugin

Fixed behaviour of get_child_classes; now correctly calculates child classes when not configured in the
placeholder.

Removed internal ExtraMenuItems tag.
Removed internal PluginChildClasses tag.
Modified RenderPlugin tag; no longer renders the content.html template and instead just returns the results.

Added a get_cached_template method to the Toolbar () main class to reuse loaded templates per request.
It works like Django’s cached template loader, but on a request basis.

Added a new method get_urls() on the appbase class to get CMSApp.urls, to allow passing a page object to
it.

Changed JavaScript linting from JSHint and JSCS to ESLint

Fixed a bug when it was possible to drag plugin into clipboard

Fixed a bug where clearing clipboard was closing any open modal
Added CMS_WIZARD_CONTENT_PLACEHOLDER setting
Renamed the CMS_WIZARD_* settings to CMS_PAGE_WIZARD_*
Deprecated the old-style wizard-related settings

Improved documentation further

Improved handling of uninstalled apphooks

5.2.

Django/Python compatibility table 261



django cms Documentation, Release 4.1.1

* Fixed toolbar placement when foundation is installed

* Fixed an issue which could lead to an apphook without a slug

* Fixed numerous frontend issues

* Added contribution policies documentation

* Corrected an issue where someone could see and use the internal placeholder plugin in the structure board
* Fixed a regression where the first page created was not automatically published

¢ Corrected the instructions for using the delete-orphaned-plugins command

* Re-pinned django-treebeard to >=4.0.1

Upgrading to 3.3

A database migration is required because the default value of CMSPlugin.position was set to 0 instead of null.

Please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Then run:

python manage.py migrate
python manage.py cms fix-tree

Deprecation of Old-Style Page Wizard Settings

In this release, we introduce a new naming scheme for the Page Wizard settings that better reflects that they effect the
CMS’s Page Wizards, rather than all wizards. This will also allow future settings for different wizards with a smaller
chance of confusion or naming-collision.

This release simultaneously deprecates the old naming scheme for these settings. Support for the old naming scheme
will be dropped in version 3.5.0.

Action Required

Developers using any of the following settings in their projects should rename them as follows at their earliest conve-
nience.

CMS_WIZARD_DEFAULT_TEMPLATE => CMS_PAGE_WIZARD_DEFAULT_TEMPLATE
CMS_WIZARD_CONTENT_PLUGIN => CMS_PAGE_WIZARD_CONTENT_PLUGIN
CMS_WIZARD_CONTENT_PLUGIN_BODY => CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY
CMS_WIZARD_CONTENT_PLACEHOLDER => CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER

The CMS will accept both-schemes until 3.5.0 when support for the old scheme will be dropped. During this transition
period, the CMS prefers the new-style naming if both schemes are used in a project’s settings.

262 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Backward incompatible changes
Management commands

Management commands uses now argparse instead of optparse, following the Django deprecation of the latter API.
The commands behaviour has remained untouched.
Detailed changes:

* commands now use argparse subcommand API which leads to slightly different help output and other internal
differences. If you use the commands by using Django’s call_command function you will have to adapt the
command invocation to reflect this.

* some commands have been rename replacing underscores with hyphens for consistency

e all arguments are now non-positional. If you use the commands by using Django’s call_command function you
will have to adapt the command invocation to reflect this.

Signature changes

The signatures of the toolbar methods get_or_create_menu have a new kwarg disabled inserted (not appended).
This was done to maintain consistency with other, existing toolbar methods. The signatures are now:

e cms.toolbar.items.Menu.get_or_create_menu(key, verbose_name, disabled=False,
side=LEFT, position=None)

e cms.toolbar.toolbar.CMSToolbar.get_or_create_menu(key, verbose_name=None,
disabled=False, side=LEFT, position=None)

It should only affect developers who use kwargs as positional args.

3.2.5 release notes

What’s new in 3.2.5

Note: This release is identical to 3.2.4, but had to be released also as 3.2.4 due to a Python wheel packaging issue.

Bug Fixes

* Fix cache settings

* Fix user lookup for view restrictions/page permissions when using raw id field

* Fixed regression when page couldn’t be copied if CMS_PERMISSION was False

* Fixes an issue relating to uninstalling a namespaced application

* Adds “Can change page” permission

* Fixes a number of page-tree issues the could lead data corruption under certain conditions

» Addresses security vulnerabilities in the render_model template tag that could lead to escalation of privileges or
other security issues.

* Addresses a security vulnerability in the cms’ usage of the messages framework

5.2. Django/Python compatibility table 263



django cms Documentation, Release 4.1.1

* Fixes security vulnerabilities in custom FormFields that could lead to escalation of privileges or other security
issues.

Important: This version of django CMS introduces a new setting: CMS_UNESCAPED_RENDER_MODEL_TAGS with a
default value of True. This default value allows upgrades to occur without forcing django CMS users to do anything,
but, please be aware that this setting continues to allow known security vulnerabilities to be present. Due to this, the
new setting is immediately deprecated and will be removed in a near-future release.

To immediately improve the security of your project and to prepare for future releases of django CMS and related
addons, the project administrator should carefully review each use of the render_model template tags provided by
django CMS. He or she is encouraged to ensure that all content which is rendered to a page using this template tag is
cleansed of any potentially harmful HTML markup, CSS styles or JavaScript. Once the administrator or developer is
satisfied that the content is clean, he or she can add the “safe” filter parameter to the render_model template tag if the
content should be rendered without escaping. If there is no need to render the content un-escaped, no further action is
required.

Once all template tags have been reviewed and adjusted where necessary, the administrator should set
CMS_UNESCAPED_RENDER_MODEL_TAGS = False in the project settings. At that point, the project is more secure
and will be ready for any future upgrades.

DjangoCMS Text CKEditor
Action required

CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1. If you're using djangocms-text-ckeditor, please
upgrade to 2.8.1 or later.

3.2.4 release notes

What'’s new in 3.2.4
Bug Fixes

* Fix cache settings

* Fix user lookup for view restrictions/page permissions when using raw id field

* Fixed regression when page couldn’t be copied if CMS_PERMISSION was False

* Fixes an issue relating to uninstalling a namespaced application

¢ Adds “Can change page” permission

* Fixes a number of page-tree issues the could lead data corruption under certain conditions

» Addresses security vulnerabilities in the render_model template tag that could lead to escalation of privileges or
other security issues.

* Addresses a security vulnerability in the cms’ usage of the messages framework

* Fixes security vulnerabilities in custom FormFields that could lead to escalation of privileges or other security
issues.

264 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Important: This version of django CMS introduces a new setting: CMS_UNESCAPED_RENDER_MODEL_TAGS with a
default value of True. This default value allows upgrades to occur without forcing django CMS users to do anything,
but, please be aware that this setting continues to allow known security vulnerabilities to be present. Due to this, the
new setting is immediately deprecated and will be removed in a near-future release.

To immediately improve the security of your project and to prepare for future releases of django CMS and related
addons, the project administrator should carefully review each use of the render_model template tags provided by
django CMS. He or she is encouraged to ensure that all content which is rendered to a page using this template tag is
cleansed of any potentially harmful HTML markup, CSS styles or JavaScript. Once the administrator or developer is
satisfied that the content is clean, he or she can add the “safe” filter parameter to the render_model template tag if the
content should be rendered without escaping. If there is no need to render the content unescaped, no further action is
required.

Once all template tags have been reviewed and adjusted where necessary, the administrator should set
CMS_UNESCAPED_RENDER_MODEL_TAGS = False in the project settings. At that point, the project is more secure
and will be ready for any future upgrades.

DjangoCMS Text CKEditor
Action required

CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1. If you're using djangocms-text-ckeditor, please
upgrade to 2.8.1 or later.

3.2.3 release notes

What’s new in 3.2.3
Bug Fixes

* Fix the display of hyphenated language codes in the page tree

» Fix a family of issues relating to unescaped translations in the page tree

3.2.2 release notes

What’s new in 3.2.2
Improvements

* Substantial “under-the-hood” improvements to the page tree resulting in significant reduction of page-tree reloads
and generally cleaner code

» Update jsTree version to 3.2.1 with slight adaptations to the page tree
» Improve the display and usability of the language menu, especially in cases where there are many languages

* Documentation improvements

5.2. Django/Python compatibility table 265



django cms Documentation, Release 4.1.1

Bug Fixes

* Fix an issue relating to search fields in plugins

* Fix an issue where the app-resolver would trigger locales into migrations
* Fix cache settings

* Fix ToolbarMiddleware.is_cms_request logic

* Fix numerous Django 1.9 deprecations

* Numerous other improvements to overall stability and code quality

Model Relationship Back-References and Django 1.9

Django 1.9 is lot stricter about collisions in the related_names of relationship fields than previous versions of Django.
This has brought to light issues in django CMS relating to the private field CMSP1lugin.cmsplugin_ptr. The issue
becomes apparent when multiple packages are installed that provide plugins with the same model class name. A good
example would be if you have the package djangocms-£file installed, which has a poorly named CMSPlugin model
subclass called File, then any other package that has a plugin with a field named “file” would most likely cause an
issue. Considering that djangocms-file is a very common plugin to use and a field name of “file” is not uncommon
in other plugins, this is less than ideal.

Fortunately, developers can correct these issues in their own projects while they await improvements in django CMS.
There is an internal field that is created when instantiating plugins: CMSPlugin.cmsplugin_ptr. This private field
is declared in the CMSPlugin base class and is populated on instantiation using the lower-cased model name of the
CMSPlugin subclass that is being registered.

A subclass to CMSPlugin can declare their own cmsplugin_ptr field to immediately fix this issue. The easiest solution
is to declare this field with a related_name of “+”. In typical Django fashion, this will suppress the back-reference
and prevent any collisions. However, if the back-reference is required for some reason (very rare), then we recommend
using the pattern %(app_label)s_%(class_name)s. In fact, in version 3.3 of django CMS, this is precisely the
string-template that the reference setup will use to create the name. Here’s an example:

class MyPlugin(CMSPlugin):
class Meta:
app_label = 'my_package'

cmsplugin_ptr = models.OneToOneField(
CMSPlugin,
related_name="my_package_my_plugin',
parent_link=True

)

# other fields, etc.
# ...

Please note that CMSPlugin.cmsplugin_ptr will remain a private field.

266 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Notice of Upcoming Change in 3.3

As outlined in the section immediately above, the pattern currently used to derive a related_name for the private
field CMSPlugin.cmsplugin_ptr may result in frequent collisions. In django CMS 3.3, this string-template will
be changed to utilise both the app_label and the model class name. In the majority of cases, this will not affect
developers or users, but if your project uses these back-references for some reason, please be aware of this change and
plan accordingly.

Treebeard corruption

Prior to 3.2.1 moving or pasting nested plugins could lead to some non-fatal tree corruptions, raising an error when
adding plugins under the newly pasted plugins.

To fix these problems, upgrade to 3.2.1 or later and then run manage.py cms fix-tree command to repair the tree.

DjangoCMS Text CKEditor
Action required

CMS 3.2.2 is not compatible with djangocms-text-ckeditor < 2.8.1. If you're using djangocms-text-ckeditor, please
upgrade to 2.8.1 or up.

3.2.1 release notes

What’s new in 3.2.1
Improvements

* Add support for Django 1.9 (with some deprecation warnings).

* Add support for django-reversion 1.10+ (required by Django 1.9+).
* Add placeholder name to the edit tooltip.

e Add attr['is_page']=True to CMS Page navigation nodes.

* Add Django and Python versions to debug bar info tooltip

Bug Fixes

* Fix an issue with refreshing the UI when switching CMS language.

* Fix an issue with sideframe urls not being remembered after reload.

¢ Fix breadcrumb in page revision list.

* Fix clash with Foundation that caused “Add plugin” button to be unusable.
* Fix a tree corruption when pasting a nested plugin under another plugin.

* Fix message with CMS version not showing up on hover in debug mode.

* Fix messages not being positioned correctly in debug mode.

* Fix an issue where plugin parent restrictions where not respected when pasting a plugin.

5.2. Django/Python compatibility table 267



django cms Documentation, Release 4.1.1

* Fix an issue where “Copy all” menu item could have been clicked on empty placeholder.
* Fix a bug where page tree styles didn’t load from STATIC_URL that pointed to a different host.
* Fix an issue where the side-frame wouldn’t refresh under some circumstances.

* Honour CMS_RAW_ID_USERS in GlobalPagePermissionAdmin.

Treebeard corruption

Prior to 3.2.1 moving or pasting nested plugins would lead to some non-fatal tree corruptions, raising an error when
adding plugins under the newly pasted plugins.

To fix these problems, upgrade to 3.2.1 and then run manage.py cms fix-tree command to repair the tree.

DjangoCMS Text CKEditor
Action required

CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1. If you're using djangocms-text-ckeditor, please
upgrade to 2.8.1 or up.

3.2 release notes

django CMS 3.2 introduces touch-screen support, significant improvements to the structure-board, and numerous other
updates and fixes for the frontend. Behind the scenes, auto-reloading following apphook configuration changes will
make life simpler for all users.

Warning: Upgrading from previous versions

3.2 introduces some changes that require action if you are upgrading from a previous version. Please read Upgrad-
ing django CMS 3.1 to 3.2 for a step-by-step guide to the process of upgrading from 3.1 to 3.2.

What’s new in 3.2

* New welcome page to help new users

* touch-screen support for most editing interfaces, for sizes from small tablets to table-top devices

 enhanced and polished user interface

* much-needed improvements to the structure-board

* enhancements to components such as the pop-up plugin editor, sideframe (now called the overlay) and the toolbar
* significant speed improvements on loading, HTTP requests and file sizes

* restarts are no longer required when changing apphook configurations

* anew content wizard system, adaptable to arbitrary content types

268 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Changes that require attention
Touch interface support

For general information about touch interface support, see the touch screen device notes in the documentation.

Important: These notes about touch interface support apply only to the django CMS admin and editing interfaces.
The visitor-facing published site is wholly independent of this, and the responsibility of the site developer. A good
site should already work well for its visitors, whatever interface they use!

Numerous aspects of the CMS and its interface have been updated to work well with touch-screen devices. There are
some restrictions and warnings that need to be borne in mind.

Device support

Smaller devices such as most phones are too small to be adequately usable. For example, your Apple Watch is sadly
unlikely to provide a very good django CMS editing experience.

Older devices will often lack the performance to support a usefully responsive frontend editing/administration interface.

There are some device-specific issues still to be resolved. Some of these relate to the CKEditor (the default django
CMS text editor). We will continue to work on these and they will be addressed in a future release.

See Device support for information about devices that have been tested and confirmed to work well, and about known
issues affecting touch-screen device support.

Feedback required

We’ve tested the CMS interface extensively, but will be very keen to have feedback from other users - device reports,
bug reports and general suggestions and opinions are very welcome.

Bug-fixes

* Anissue in which {% placeholder %} template tags ignored the 1lang parameter has been fixed.

However this may affect the behaviour of your templates, as now a previously-ignored parameter will be recog-
nised. If you used the 1lang parameter in these template tags you may be affected: check the behaviour of your
templates after upgrading.

Content wizards

Content creation wizards can help simplify production of content, and can be created to handle non-CMS content too.

For a quick introduction to using a wizard as a content editor, see the user tutorial.

5.2. Django/Python compatibility table 269



django cms Documentation, Release 4.1.1

Renaming cms_app, cms_toolbar, menu modules

cms_app.py, cms_toolbar.py and menu.py have been renamed to cms_apps.py, cms_toolbars.py and
cms_menus . py for consistency.

Old names are still supported but deprecated; support will be removed in 3.4.

Action required

In your own applications that use these modules, rename cms_app.py to cms_apps.py, cms_toolbar.py to
cms_toolbars.py and menu. py to cms_menus.py.

New ApphookReloadMiddleware

Until now, changes to apphooks have required a restart of the server in order to take effect. A new optional middleware
class, cms.middleware.utils. ApphookReloadMiddleware, makes this automatic.

For developers

Various improvements have been implemented to make developing with and for django CMS easier. These include:
* improvements to frontend code, to comply better with aldryn-boilerplate-bootstrap3
* changes to directory structure for frontend related components such as JavaScript and SASS.

* We no longer use develop.py; we now use manage . py for all development tasks. See contributing_patch for
examples.

* We’ve moved our widgets.py JavaScript to static/cms/js/widgets.

Code formatting

We’ve switched from tabs (in some places) to four spaces everywhere. See Contributing code for more on formatting.

gulp.js

We now use gulp.js for linting, compressing and bundling of frontend files.

Sass-related changes

We now use LibSass rather than Compass for building static files (this only affects frontend developers of django CMS
- contributors to it, not other users or developers). We’ve also adopted CSSComb.

270 Chapter 5. Software version requirements and release notes


https://github.com/aldryn/aldryn-boilerplate-bootstrap3
https://github.com/sass/libsass
http://csscomb.com

django cms Documentation, Release 4.1.1

.editorconfig file

We’ve added a . editorconfig (at the root of the project) to provide cues to text editors.

Automated spelling checks for documentation

Documentation is now checked for spelling. A make spelling command is available now when working on docu-
mentation, and our Travis Continuous Integration server also runs these checks.

See the Spelling section in the documentation.

New structure board

The structure board is cleaner and easier to understand. It now displays its elements in a tree, rather than in a series of
nested boxes.

You can optionally enable the old appearance and behaviour with the CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE set-
ting (this option will be removed in 3.3).

Replaced the sideframe with an overlay

The sideframe that could be expanded and collapsed to reveal a view of the admin and other controls has been replaced
by a simpler and more elegant overlay mechanism.

The API documentation still refers to the sideframe, because it is invoked in the same way, and what has changed is
merely the behaviour in the user’s browser.

In other words, sideframe and the overlay refer to different versions of the same thing.

New startup page

A new startup mode makes it easier for users (especially new users) to dive straight into editing when launching a new
site.

Known issues

The sub-pages of a page with an apphook will be unreachable (404 page not found), due to internal URL resolution
mechanisms in the CMS. Though it’s unlikely that most users will need sub-pages of this kind (typically, an apphooked
page will create its own sub-pages) this issue will be addressed in a forthcoming release.

Backward-incompatible changes

See the Frontend code documentation.

There are no other known backward-incompatible changes.

5.2. Django/Python compatibility table 271


https://travis-ci.com/django-cms/django-cms
https://github.com/django-cms/django-cms/issues/4758

django cms Documentation, Release 4.1.1

Upgrading django CMS 3.1 to 3.2

Please note any changes that require action above, and take action accordingly.

A database migration is required (a new model, UrlconfRevision has been added as part of the apphook reload
mechanism):

Note also that any third-party applications you update may have their own migrations, so as always, before upgrading,
please make sure that your current database is consistent and in a healthy state, and make a copy of the database
before proceeding further.

Then run:

python manage.py migrate

to migrate.

Otherwise django CMS 3.2 represents a fairly easy upgrade path.

Pending deprecations

In django CMS 3.3:

Django 1.6, 1.7 and Python 2.6 will no longer be supported. If you still using these versions, you are
strongly encouraged to begin exploring the upgrade process to a newer version.

The CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE setting will be removed.

3.1.5 release notes

What’s new in 3.1.5
Bug Fixes

* Fixed a tree corruption when pasting a nested plugin under another plugin.

* Improve CMSPluginBase.render documentation

» Fix CMSEditableObject context generation which generates to errors with django-classy-tags 0.7.1
* Fix error in toolbar when LocaleMiddleware is not used

* Move templates validation in app.ready

» Fix ExtensionToolbar when language is removed but titles still exists

* Fix pages menu missing on fresh install 3.1

» Fix incorrect language on placeholder text for redirect field

* Fix PageSelectWidget JS syntax

¢ Fix redirect when disabling toolbar

* Fix CMS_TOOLBAR_HIDE causes ‘WSGIRequest’ object has no attribute ‘toolbar’

272 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Treebeard corruption

Prior to 3.1.5 moving or pasting nested plugins would lead to some non-fatal tree corruptions, raising an error when
adding plugins under the newly pasted plugins.

To fix these problems, upgrade to 3.1.5 and then run manage.py cms fix-tree command to repair the tree.

DjangoCMS Text CKEditor
Action required

CMS 3.1.5 is not compatible with djangocms-text-ckeditor < 2.7.1. If you're using djangocms-text-ckeditor, please
upgrade to 2.7.1 or up. Keep in mind that djangocms-text-ckeditor >= 2.8 is compatible only with

3.1.4 release notes

What’s new in 3.1.4
Bug Fixes

* Fixed a problem in 0010_migrate_use_structure.py that broke some migration paths to Django 1.8
* Fixed fix_tree command

* Removed some warnings for Django 1.9

* Fixed issue causing plugins to move when using scroll bar of plugin menu in Firefox & IE

* Fixed JavaScript error when using PageSelectWidget

* Fixed whitespace markup issues in draft mode

* Added plugin migrations layout detection in tests

* Fixed some treebeard corruption issues

Treebeard corruption

Prior to 3.1.4 deleting pages could lead to some non-fatal tree corruptions, raising an error when publishing, deleting,
or moving pages.

To fix these problems, upgrade to 3.1.4 and then run manage.py cms fix-tree command to repair the tree.
3.1.3 release notes

What’s new in 3.1.3

Bug Fixes

* Add missing migration
* Exclude PageUser manager from migrations

* Fix check for template instance in Django 1.8.x

5.2. Django/Python compatibility table 273



django cms Documentation, Release 4.1.1

* Fix error in PageField for Django 1.8

* Fix some Page tree bugs

* Declare Django 1.6.9 dependency in setup.py

* Make sure cache version returned is an int

* Fix issue preventing migrations to run on a new database (django 1.8)
* Fix get User model in 0010 migration

* Fix support for unpublished language pages

* Add documentation for plugins data migration

* Fix getting request in _show_placeholder_for_page on Django 1.8
* Fix template inheritance order

* Fix xframe options inheritance order

* Fix placeholder inheritance order

» Fix language chooser template

* Relax html5lib versions

* Fix redirect when deleting a page

* Correct South migration error

* Correct validation on numeric fields in modal pop-up dialogs

* Exclude scssc from manifest

* Remove unpublished pages from menu

* Remove page from menu items for performance reason

* Fix access to pages with expired ancestors

* Don’t try to modify an immutable QueryDict

* Only attempt to delete cache keys if there are some to be deleted
» Update documentation section

 Fix language chooser template

* Cast to int cache version

* Fix extensions copy when using duplicate page/create page type

Thanks

Many thanks community members who have submitted issue reports and especially to these GitHub users who have
also submitted pull requests: basilelegal, gigaroby, ikudryavtsev, jokerejoker, josjevv, tomwardill.

274 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

3.1.2 release notes

What’s new in 3.1.2
Bug Fixes

* Fix placeholder cache invalidation under some circumstances

» Update translations

3.1.1 release notes

What’s new in 3.1.1

¢ Add Django 1.8 support

* Tutorial updates and improvements

* Add copy_site command

* Add setting to disable toolbar for anonymous users

* Add setting to hide toolbar when a URL is not handled by django CMS

* Add editor configuration

Bug Fixes

* Fixed an issue where privileged users could be tricked into performing actions without their knowledge via a
CSREF vulnerability.

* Fix issue with causes menu classes to be duplicated in advanced settings
* Fix issue with breadcrumbs not showing

* Fix issues with show_menu template tags

* Fix an error in placeholder cache

* Fix get_language_from_request if POST and GET exists

* Minor documentation fixes

» Revert whitespace clean-up on flash player to fix it

* Correctly restore previous status of drag bars

* Fix an issue related to “Empty all” Placeholder feature

* Fix plugin sorting in Python 3

* Fix language-related issues when retrieving page URL

* Fix search results number and items alignment in page changelist

* Preserve information regarding the current view when applying the CMS decorator
* Fix errors with toolbar population

* Fix error with watch_models type

* Fix error with plugin breadcrumbs order

5.2. Django/Python compatibility table 275



django cms Documentation, Release 4.1.1

* Change the label “Save and close” to “Save as draft”

 Fix X-Frame-Options on top-level pages

* Fix order of which application URLSs are injected into urlpatterns
* Fix delete non existing page language

* Fix language fallback for nested plugins

* Fix render_model template tag doesn’t show correct change list

* Fix Scanning for placeholders fails on include tags with a variable as an argument
* Fix handling of plugin position attribute

* Fix for some structureboard issues

* Pin South version to 1.0.2

* Pin html5lib version to 0.999 until a current bug is fixed

* Make shift tab work correctly in sub-menu

» Fix language chooser template

Potentially backward incompatible changes

The order in which the applications are injected is now based on the page depth, if you use nested apphooks, you
might want to check that this does not change the behaviour of your applications depending on applications urlconf
greediness.

Thanks

Many thanks community members who have submitted issue reports and especially to these GitHub users who have
also submitted pull requests: astagi, dirtycoder, doctormo, douwevandermeij, driesdesmet, furiousdave, ldgarcia, magq-
nouch, nikolas, northben, olarcheveque, pa0lin082, peterfarrell, sam-m888, sephii, stefanw, timgraham, vstoykov.

A special thank you to vad and nostalgiaz for their support on Django 1.8 support

A special thank to Matt Wilkes and Sylvain Fankhauser for reporting the security issue.

3.1 release notes
django CMS 3.1 has been planned largely as a consolidation release, to build on the progress made in 3.0 and establish
a safe, solid base for more ambitious work in the future.

In this release we have tried to maintain maximum backwards-compatibility, particularly for third-party applications,
and endeavoured to identify and tidy loose ends in the system wherever possible.

Warning: Upgrading from previous versions

3.1 introduces some changes that require action if you are upgrading from a previous version. Please read Upgrad-
ing django CMS 3.0 to 3.1 for a step-by-step guide to the process of upgrading from 3.0 to 3.1.

276 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

What’s new in 3.1
Switch from MPTT to MP

Since django CMS 2.0 we have relied on MPTT (Modified Pre-order Tree Traversal) for efficiently handling tree struc-
tures in the database.

In 3.1, Django MPTT has been replaced by django-treebeard, to improve performance and reliability.

Over the years MPTT has proved not to be fast enough for big tree operations (>1000 pages); tree corruption, because
of transactional errors, has also been a problem.

django-treebeard uses MP (Materialised Path). MP is more efficient and has more error resistance then MPTT. It should
make working with and using django CMS better - faster and reliable.

Other than this, end users should not notice any changes.

Note: User feedback required

We require as much feedback as possible about the performance of django-treebeard in this release. Please let us know
your experiences with it, especially if you encounter any problems.

Note: Backward incompatible change

While most of the low-level interface is very similar between django-mptt and django-treebeard they are not
exactly the same. If any custom code needs to make use of the low-level interfaces of the page or plugins tree, please
see the django-treebeard documentation for information on how to use equivalent calls in django-treebeard.

Note: Handling plugin data migrations

Please check plugin-datamigrations-3.1 for information on how to create migrations compatible with django CMS 3.0
and 3.1

Action required

Run manage.py cms fix-mptt before you upgrade.

Developers who use django CMS will need to run the schema and data migrations that are part of this release. Devel-
opers of third-party applications that relied on the Django MPTT that shipped with django CMS are advised to update
their own applications so that they install it independently.

Dropped support for Django 1.4 and 1.5

Starting from version 3.1, django CMS runs on Django 1.6 (specifically, 1.6.9 and later) and 1.7.

Warning: Django security support

Django 1.6 support is provided as an interim measure only. In accordance with the Django Project’s security
policies, 1.6 no longer receives security updates from the Django Project team. Projects running on Django 1.6
have known vulnerabilities, so you are advised to upgrade your installation to 1.7 or 1.8 as soon as possible.

5.2. Django/Python compatibility table 277


https://github.com/django-mptt/django-mptt
https://github.com/django-treebeard/django-treebeard
http://django-treebeard.readthedocs.io/en/latest/
https://docs.djangoproject.com/en/dev/internals/security/
https://docs.djangoproject.com/en/dev/internals/security/

django cms Documentation, Release 4.1.1

Action required

If you’re still on an earlier version, you will need to install a newer one, and make sure that your third-party applications
are also up-to-date with it before attempting to upgrade django CMS.

South is now an optional dependency

As Django South is now required for Django 1.6 only, it’s marked as an optional dependency.

Action required

To install South along with django CMS use pip install django-cms[south].

Changes to PlaceholderAdmin.add_plugin

Historically, when a plugin was added to django CMS, a POST request was made to the PlaceholderAdmin.
add_plugin endpoint (and going back into very ancient history before PlaceholderAdmin existed, it was
PageAdmin.add_plugin). This would create an instance of CMSPlugin, but not an instance of the actual plugin
model itself. It would then let the user agent edit the created plugin, which when saved would put the database back in
to a consistent state, with a plugin instance connected to the otherwise empty and meaningless CMSP1lugin.

In some cases, “ghost plugins” would be created, if the process of creating the plugin instance failed or were interrupted,
for example by the browser window’s being closed.

This would leave orphaned CMSP1lugin instances in the database without any data. This could result pages not working
at all, due to the resulting database inconsistencies.

This issue has now been solved. Calling CMSPluginBase.add_plugin with a GET request now serves the form for
creating a new instance of a plugin. Then on submitting that form via POST, the plugin is created in its entirety, ensuring
a consistent database and an end to ghost plugins.

However, to solve it some backwards incompatible changes to non-documented APIs that developers might have used
have had to be made.

CMSPIluginBase permission hooks

Until now, CMSPluginBase.has_delete_permission, CMSPluginBase.has_change_permission and
CMSPluginBase.has_add_permission were handled by a single method, which used an undocumented and
unreliable property on CMSPluginBase instances (or subclasses thereof) to handle permission management.

In 3.1, CMSP1luginBase.has_add_permission is its own method that implements proper permission checking for
adding plugins.

If you want to work with those APIs, see the Django documentation for more on the permission methods.

278 Chapter 5. Software version requirements and release notes


https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#django.contrib.admin.ModelAdmin.has_add_permission

django cms Documentation, Release 4.1.1

CMSPIuginBase.get_form

Prior to 3.1, this method would only ever be called with an actual instance available.

As of 3.1, this method will be called without an instance (the obj argument to the method will be None) if the form is
used to add a plugin, rather than editing it. Again, this is in line with how Django’s ModelAdmin works.

If you need access to the Placeholder object to which the plugin will be added, the request object is guaranteed
to have a placeholder_id key in request.GET, which is the primary key of the Placeholder object to which the
plugin will be added. Similarly, plugin_language in request.GET holds the language code of the plugin to be
added.

CMSPlugin.add_view

This method used to never be called, but as of 3.1 it will be. Should you need to hook into this method, you may want
to use the CMSPluginBase.add_view_check_request method to verify that a request made to this view is valid.
This method will perform integrity and permission checks for the GET parameters of the request.

Migrations moved

Migrations directories have been renamed to conform to the new standard layout:
e Django 1.7 migrations: in the default cms/migrations and menus/migrations directories

* South migrations: in the cms/south_migrations and menus/south_migrations directories

Action required

South 1.0.2 or newer is required to handle the new layout correctly, so make sure you have that installed.

If you are upgrading from django CMS 3.0.x running on Django 1.7 you need to remove the old migration path from
MIGRATION_MODULES settings.

Plugins migrations moving process

Core plugins are being changed to follow the new convention for the migration modules, starting with djan-
gocms_text_ckeditor 2.5 released together with django CMS 3.1.

Action required

Check the readme file of each plugin when upgrading to know the actions required.

5.2. Django/Python compatibility table 279


https://docs.djangoproject.com/en/1.7/ref/settings/#migration-modules

django cms Documentation, Release 4.1.1

Structure mode permission

A new Can use Structure mode* permission has been added.

Without this permission, a non-superuser will no longer have access to structure mode. This makes possible a more
strict workflow, in which certain users are able to edit content but not structure.

This change includes a data migration that adds the new permission to any staff user or group with cms.change_page
permission.

Action required

You may need to adjust these permissions once you have completed migrating your database.

Note that if you have existing users in your database, but are installing django CMS and running its migrations for the
first time, you will need to grant them these permissions - they will not acquire them automatically.

Simplified loading of view restrictions in the menu

The system that loads page view restrictions into the menu has been improved, simplifying the queries that are generated,
in order to make it faster.

Note: User feedback required

We require as much feedback as possible about the performance of this feature in this release. Please let us know your
experiences with it, especially if you encounter any problems.

Toolbar API extension

The toolbar API has been extended to permit more powerful use of it in future development, including the use of
“clipboard-like” items.

Per-namespace apphook configuration

django CMS provides a new API to define namespaced Apphook configurations.

Aldryn Apphooks Config has been created and released as a standard implementation to take advantage of this, but
other implementations can be developed.

Improvements to the toolbar user interface

Some minor changes have been implemented to improve the toolbar user interface. The old Draft/Live switch has been
replaced to achieve a more clear distinction between page states, and Edit and Save as draft buttons are now available
in the toolbar to control the page editing workflow.

280 Chapter 5. Software version requirements and release notes


https://github.com/aldryn/aldryn-apphooks-config

django cms Documentation, Release 4.1.1

Placeholder language fallback default to True

language_fallback in CMS_PLACEHOLDER_CONF is True by default.

New template tags
render_model_add_block

The family of render_model template tags that allow Django developers to make any Django model editable in the
frontend has been extended with render_model_add_block, which can offer arbitrary markup as the Edit icon (rather
than just an image as previously).

render_plugin_block

Some user interfaces have some plugins hidden from display in edit/preview mode. render_plugin_block provides
a way to expose them for editing, and also more generally provides an alternative means of triggering a plugin’s change
form.

Plugin table naming

Old-style plugin table names (for example, cmsplugin_<plugin name> are no longer supported. Relevant code has
been removed.

Action required

Any plugin table name must be migrated to the standard (<application name>_<table name> layout.

cms.context_processors.media replaced by cms.context_processors.cms_settings
Action required

Replace the cms.context_processors.media with cms.context_processors.cms_settings in settings.
py.

Upgrading django CMS 3.0 to 3.1
Preliminary steps

Before upgrading, please make sure that your current database is consistent and in a healthy state.
To ensure this, run two commands:

e python manage.py cms delete_orphaned_plugins

e python manage.py cms fix-mptt

Make a copy of the database before proceeding further.

5.2. Django/Python compatibility table 281



django cms Documentation, Release 4.1.1

Settings update

¢ Change cms.context_processors.media to cms.context_processors.cms_settings in
TEMPLATE_CONTEXT_PROCESSORS.

* Add treebeard to INSTALLED_APPS, and remove mptt if not required by other applications.
e If using Django 1.7 remove cms and menus from MIGRATION_MODULES to support the new migration layout.
¢ If migrating from Django 1.6 and below to Django 1.7, remove south from installed_apps.

* Eventually set language_fallbackto False in CMS_PLACEHOLDER_CONF if you do not want language fallback
behaviour for placeholders.

Update the database

* Rename plugin table names, to conform to the new naming scheme (see above). Be warned that not all third-
party plugin applications may provide these migrations - in this case you will need to rename the table manually.
Following the upgrade, django CMS will look for the tables for these plugins under their new name, and will
report that they don’t exist if it can’t find them.

e The migration for MPTT to django-treebeard is handled by the django CMS migrations, thus apply migra-
tions to update your database:

python manage.py migrate

3.0.16 release notes

Bug-fixes

* Fixed JavaScript error when using PageSelectWidget
* Fixed whitespace markup issues in draft mode

* Added plugin migrations layout detection in tests

3.0.15 release notes

What’s new in 3.0.15
Bug Fixes

* Relax html5lib versions

* Fix redirect when deleting a page

* Correct South migration error

 Correct validation on numeric fields in modal pop-up dialogs
* Exclude scssc from manifest

* Remove unpublished pages from menu

* Remove page from menu items for performance reason

* Fix access to pages with expired ancestors

282 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Don’t try to modify an immutable QueryDict

Only attempt to delete cache keys if there are some to be deleted
Update documentation section

Fix language chooser template

Cast to int cache version

Fix extensions copy when using duplicate page/create page type

Thanks

Many thanks community members who have submitted issue reports and especially to these GitHub users who have
also submitted pull requests: basilelegal.

3.0.14 release notes

What’s new in 3.0.14

Bug Fixes

Fixed an issue where privileged users could be tricked into performing actions without their knowledge via a
CSRF vulnerability.

Fix issue with causes menu classes to be duplicated in advanced settings

Fix issue with breadcrumbs not showing

Fix issues with show_menu template tags

Minor documentation fixes

Fix an issue related to “Empty all” Placeholder feature

Fix plugin sorting in Python 3

Fix search results number and items alignment in page changelist

Preserve information regarding the current view when applying the CMS decorator
Fix X-Frame-Options on top-level pages

Fix order of which application URLSs are injected into urlpatterns

Fix delete non existing page language

Fix language fallback for nested plugins

Fix render_model template tag doesn’t show correct change list

Fix Scanning for placeholders fails on include tags with a variable as an argument
Pin South version to 1.0.2

Pin html5lib version to 0.999 until a current bug is fixed

Fix language chooser template

5.2.

Django/Python compatibility table 283



django cms Documentation, Release 4.1.1

Potentially backward incompatible changes

The order in which the applications are injected is now based on the page depth, if you use nested apphooks, you
might want to check that this does not change the behaviour of your applications depending on applications urlconf
greediness.

Thanks

Many thanks community members who have submitted issue reports and especially to these GitHub users who have
also submitted pull requests: douwevandermeij, furiousdave, nikolas, olarcheveque, sephii, vstoykov.

A special thank to Matt Wilkes and Sylvain Fankhauser for reporting the security issue.

3.0.13 release notes

What’s new in 3.0.13

Bug Fixes

Numerous documentation including installation and tutorial updates
Numerous improvements to translations

Improves reliability of apphooks

Improves reliability of Advanced Settings on page when using apphooks
Allow page deletion after template removal

Improves upstream caching accuracy

Improves CMSAttachMenu registration

Improves handling of mis-typed URLs

Improves redirection as a result of changes to page slugs, etc.

Improves performance of “watched models”

Improves frontend performance relating to re-sizing the sideframe
Corrects an issue where items might not be visible in structure mode menus
Limits version of django-mptt used in CMS for 3.0.x

Prevent accidental upgrades to Django 1.8, which is not yet supported

Many thanks community members who have submitted issue reports and especially to these GitHub users who have
also submitted pull requests: elpaso, jedie, jrief, jsma, treavis.

284

Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

3.0.12 release notes

What’s new in 3.0.12
Bug Fixes

* Fixes a regression caused by extra whitespace in JavaScript

3.0.11 release notes

What’s new in 3.0.11

» Core support for multiple instances of the same apphooked application

¢ The template tag render_model_add can now accept a model class as well as a model instance

Bug Fixes

* Fixes an issue with reverting to Live mode when moving plugins

 Fixes a missing migration issue

* Fixes an issue when using the PageField widget

* Fixes an issue where duplicate page slugs is not prevented in some cases
« Fixes an issue where copying a page didn’t copy its extensions

* Fixes an issue where translations where broken when operating on a page
* Fixes an edge-case SQLite issue under Django 1.7

* Fixes an issue where a confirmation dialog shows only some of the plugins to be deleted when using the “Empty
All” context-menu item

* Fixes an issue where deprecated mimetype was used instead of contenttype
* Fixes an issue where cms check erroneous displays warnings when a plugin uses class inheritance

* Documentation updates

Other

 Updated test CI coverage

3.0.10 release notes
What’s new in 3.0.10
* Improved Python 3 compatibility

* Improved the behaviour when changing the operator’s language

* Numerous documentation updates

5.2. Django/Python compatibility table 285



django cms Documentation, Release 4.1.1

Bug Fixes

* Revert a change that caused an issue with saving plugins in some browsers

* Fix an issue where URLs were not refreshed when a page slug changes

* Fix an issue with FR translations

* Fixed an issue preventing the correct rendering of custom contextual menu items for plugins

* Fixed an issue relating to recovering deleted pages

* Fixed an issue that caused the uncached placeholder tag to display cached content

* Fixed an issue where extra slashed would appear in apphooked URLs when APPEND_SILASH=False

* Fixed issues relating to the logout function

3.0.9 release notes

What’s new in 3.0.9
Bug Fixes

* Revert a change that caused a regression in toolbar login
* Fix an error in a translated phrase

* Fix error when moving items in the page tree

3.0.8 release notes

What’s new in 3.0.8

* Add require_parent option to CMS_PLACEHOLDER_CONF

Bug Fixes

* Fix django-mptt version dependency to be PEP440 compatible

* Fix some Django 1.4 compatibility issues

* Add toolbar sanity check

* Fix behaviour with CMSPluginBase.get_render_template()

* Fix issue on django >= 1.6 with page form fields.

* Resolve jQuery namespace issues in admin page tree and change form
* Fix issues for PageField in Firefox/Safari

* Fix some Python 3.4 compatibility issue when using proxy modules

* Fix corner case in plugin copy

* Documentation fixes

* Minor code clean-ups

286 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Warning: Fix for plugin copy patches a reference leak in cms.models.pluginmodel.CMSPlugin.
copy_plugins, which caused the original plugin object to be modified in memory. The fixed code leaves the
original unaltered and returns a modified copy.

Custom plugins that called cms.utils.plugins.copy_plugins_to or cms.models.pluginmodel.
CMSPlugin.copy_plugins may have relied on the incorrect behaviour. Check your code for calls to these
methods. Correctly implemented calls should expect the original plugin instance to remain unaltered.

3.0.7 release notes

What’s new in 3.0.7

* Numerous updates to the documentation
* Numerous updates to the tutorial
 Updates to better support South 1.0

* Adds some new, user-facing documentation

Bug Fixes

* Fixes an issue with placeholderadmin permissions

* Numerous fixes for minor issues with the frontend Ul

* Fixes issue where the CMS would not reload pages properly if the URL contained a # symbol
* Fixes an issue relating to limit_choices_to in forms.MultiValueFields

* Fixes PageField to work in Django 1.7 environments

Project & Community Governance

e Updates to community and project governance documentation
* Added list of retired core developers

* Added branch policy documentation

3.0.6 release notes

What’s new in 3.0.6
Django 1.7 support

As of version 3.0.6 django CMS supports Django 1.7.

Currently our migrations for Django 1.7 are in cms/migrations_django to allow better backward compatibility; in
future releases the Django migrations will be moved to the standard migrations directory, with the South migrations
in south_migrations.

To support the current arrangement you need to add the following to your settings:

5.2. Django/Python compatibility table 287



django cms Documentation, Release 4.1.1

MIGRATION_MODULES = {

cms': 'cms.migrations_django',
'menus': 'menus.migrations_django’',

Warning: Applications migrations

Any application that defines a django CMS plugin or a model that uses a PlaceholderField or depends in any way
on django CMS models must also provide Django 1.7 migrations.

Extended Custom User Support

If you are using custom user models and use CMS_PERMISSION = True then be sure to check that PageUserAdmin
and PageUserGroup is still in working order.

The PageUserAdmin class now extends dynamically from the admin class that handles the user model. This allows us
to use the same search_fields and filters in PageUserAdmin as in the custom user model admin.

CMSPlugin.get_render_template

A new method on plugins, that returns the template during the render phase, allowing you to change the template based
on any plugin attribute or context status. See /how_to/custom_plugins for more.

Simplified toolbar API for page extensions

A simpler, more compact way to extend the toolbar for page extensions: Simplified Toolbar API.

3.0.3 release notes
What’s new in 3.0.3

New Alias Plugin

A new Alias plugin has been added. You will find in your plugins and placeholders context menu in structure mode a
new entry called “Create alias”. This will create a new Alias plugin in the clipboard with a reference to the original. It
will render this original plugin/placeholder instead. This is useful for content that is present in more then one place.

New Context Menu API

Plugins can now change the context menus of placeholders and plugins. For more details have a look at the docs:

Extending context menus of placeholders or plugins

288 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Apphook Permissions

Apphooks have now by default the same permissions as the page they are attached to. This means if a page has for
example a login required enabled all views in the apphook will have the same behaviour.

Docs on how to disable or customise this behaviour have a look here:

Managing permissions on apphooks

3.0 release notes

What’s new in 3.0

Warning: Upgrading from previous versions

3.0 introduces some changes that require action if you are upgrading from a previous version.

Note: See the quick upgrade guide

New Frontend Editing

django CMS 3.0 introduces a new frontend editing system as well as a customisable Django admin skin (djan-
gocms_admin_style).

In the new system, Placeholders and their plugins are no longer managed in the admin site, but only from the frontend.
In addition, the system now offer two editing views:

* content view, for editing the configuration and content of plugins.

e structure view, in which plugins can be added and rearranged.

Page titles can also be modified directly from the frontend.

New Toolbar

The toolbar’s code has been simplified and its appearance refreshed. The toolbar is now a more consistent management
tool for adding and changing objects. See /how_to/toolbar.

Warning: Upgrading from previous versions

3.0 now requires the django.contrib.messages application for the toolbar to work.

5.2. Django/Python compatibility table 289


https://github.com/django-cms/djangocms-admin-style
https://github.com/django-cms/djangocms-admin-style

django cms Documentation, Release 4.1.1

New Page Types

You can now save pages as page types. If you then create a new page you may select a page type and all plugins and
contents will be pre-filled.

Experimental Python 3.3 support

We’ve added experimental support for Python 3.3. Support for Python 2.5 has been dropped.

Better multilingual editing

Improvements in the django CMS environment for managing a multi-lingual site include:
* a built-in language chooser for languages that are not yet public.

* configurable behaviour of the admin site’s language when switching between languages of edited content.

CMS_SEO_FIELDS

The setting has been removed, along with the SEO fieldset in admin.
* meta_description field’s max_length is now 155 for optimal Google integration.
* page_title is default on top.

» meta_keywords field has been removed, as it no longer serves any purpose.

CMS_MENU_TITLE_OVERWRITE

New default for this setting is True.

Plugin fallback languages

It’s now possible to specify fallback languages for a placeholder if the placeholder is empty for the current language.
This must be activated in CMS_PLACEHOLDER_CONF per placeholder. It defaults to Fal se to maintain pre-3.0 behaviour.

language_chooser

The language_chooser template tag now only displays languages that are public. Use the toolbar language chooser
to change the language to non-public languages.

290 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Undo and Redo

If you have django-reversion installed you now have undo and redo options available directly in the toolbar. These
can now revert plugin content as well as page content.

Plugins removed

We have removed plugins from the core. This is not because you are not expected to use them, but because django
CMS should not impose unnecessary choices about what to install upon its adopters.

The most significant of these removals is cms.plugins. text.

We provide djangocms-text-ckeditor, a CKEditor-based Text Plugin. It’s available from https://github.com/
django-cms/djangocms-text-ckeditor. You may of course use your preferred editor; others are available.

Furthermore, we removed the following plugins from the core and moved them into separate repositories.

Note: In order to update from the old cms.plugins.X to the new djangocms_X plugins, simply install the new
plugin, remove the old cms.plugins.X from settings.INSTALLED_APPS and add the new one to it. Then run the
migrations (python manage.py migrate djangocms_X).

File Plugin

We removed the file plugin (cms.plugins. file). Its new location is at:
* https://github.com/django-cms/djangocms-file

As an alternative, you could also use the following (yet you will not be able to keep your existing files from the old
cms.plugins. file!)

* https://github.com/divio/django-filer

Flash Plugin

We removed the flash plugin (cms.plugins. flash). Its new location is at:

e https://github.com/divio/djangocms-flash

Googlemap Plugin

We removed the Googlemap plugin (cms.plugins.googlemap). Its new location is at:

* https://github.com/django-cms/djangocms-googlemap

5.2. Django/Python compatibility table 291


https://github.com/django-cms/djangocms-text-ckeditor
https://github.com/django-cms/djangocms-text-ckeditor
https://github.com/django-cms/djangocms-file
https://github.com/divio/django-filer
https://github.com/divio/djangocms-flash
https://github.com/django-cms/djangocms-googlemap

django cms Documentation, Release 4.1.1

Inherit Plugin

We removed the inherit plugin (cms.plugins.inherit). Its new location is at:

* https://github.com/divio/djangocms-inherit

Picture Plugin

We removed the picture plugin (cms.plugins.picture). Its new location is at:

* https://github.com/django-cms/djangocms-picture

Teaser Plugin

We removed the teaser plugin (cms.plugins.teaser). Its new location is at:

* https://github.com/divio/djangocms-teaser

Video Plugin

We removed the video plugin (cms.plugins.video). Its new location is at:

* https://github.com/django-cms/djangocms-video

Link Plugin

We removed the link plugin (cms.plugins.link). Its new location is at:

e https://github.com/django-cms/djangocms-link

Snippet Plugin

We removed the snippet plugin (cms.plugins.snippet). Its new location is at:
* https://github.com/django-cms/djangocms-snippet

As an alternative, you could also use the following (yet you will not be able to keep your existing files from the old
cms.plugins. snippet!)

* https://github.com/pbs/django-cms-smartsnippets

Twitter Plugin

Twitter disabled V1 of their API, thus we’ve removed the twitter plugin (cms.plugins.twitter) completely.
For alternatives have a look at these plugins:
* https://github.com/nephila/djangocms_twitter

* https://github.com/changer/cmsplugin-twitter

292 Chapter 5. Software version requirements and release notes


https://github.com/divio/djangocms-inherit
https://github.com/django-cms/djangocms-picture
https://github.com/divio/djangocms-teaser
https://github.com/django-cms/djangocms-video
https://github.com/django-cms/djangocms-link
https://github.com/django-cms/djangocms-snippet
https://github.com/pbs/django-cms-smartsnippets
https://github.com/nephila/djangocms_twitter
https://github.com/changer/cmsplugin-twitter

django cms Documentation, Release 4.1.1

Plugin Context Processors take a new argument

Plugin Context have had an argument added so that the rest of the context is available to them. If you have existing
plugin context processors you will need to change their function signature to add the extra argument.

Apphooks

Apphooks have moved from the title to the page model. This means you can no longer have separate apphooks for each
language. A new application instance name field has been added.

Note: The reverse id is not used for the namespace any more. If you used namespaced apphooks before, be sure to
update your pages and fill out the namespace fields.

If you use apphook apps with app_name for app namespaces, be sure to fill out the instance namespace field
application instance name as it’s now required to have a namespace defined if you use app namespaces.

For further reading about application namespaces, please refer to the Django documentation on the subject at https:
//docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces

request.current_app has been removed. If you relied on this, use the following code instead in your views:

def my_view(request):
current_app = resolve(request.path_info) .namespace
context = RequestContext(request, current_app=current_app)
return render_to_response("my_templace.html"”, context_instance=context)

Details can be found in Attaching an application multiple times.

PlaceholderAdmin

PlaceholderAdmin now is deprecated. Instead of deriving from admin.ModelAdmin, a new mixin class
PlaceholderAdminMixin has been introduced which shall be used together with admin.ModelAdmin. Therefore
when defining a model admin class containing a placeholder, now add PlaceholderAdminMixin to the list of parent
classes, together with admin.ModelAdmin.

PlaceholderAdmin doesn’t have language tabs any more and the plugin editor is gone. The plugin API has changed
and is now more consistent. PageAdmin uses the same API as PlaceholderAdminMixin now. If your app talked with
the Plugin API directly be sure to read the code and the changed parameters. If you use PlaceholderFields you
should add the mixin PlaceholderAdminMixin as it delivers the API for editing the plugins and the placeholders.

The workflow in the future should look like this:
1. Create new model instances via a toolbar entry or via the admin.

2. Go to the view that represents the model instance and add content via frontend editing.

5.2. Django/Python compatibility table 293



https://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces
https://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces

django cms Documentation, Release 4.1.1

Placeholder object permissions

In addition to model level permissions, Placeholder now checks if a user has permissions on a specific object of that
model. Details can be found here in Permissions.

Placeholders are pre-fillable with default plugins

In CMS_PLACEHOLDER_CONEF, for each placeholder configuration, you can specify via ‘default_plugins’ a list of
plugins to automatically add to the placeholder if empty. See default _plugins in CMS_PLACEHOLDER_CONF.

Custom modules and plugin labels in the toolbar Ul

It’s now possible to configure module and plugins labels to show in the toolbar UI. See CMS_PLACEHOLDER_CONF for
details.

New copy-lang subcommand

Added a management command to copy content (titles and plugins) from one language to another.

The command can be run with:

manage.py cms copy_lang from_lang to_lang

Please read cms copy lang before using.

Frontend editor for Django models

Frontend editor is available for any Django model; see documentation for details.

New Page related_name to Site

The Page object used to have the default related_name (page) to the Site model which may cause clashing with
other Django apps; the related_name is now djangocms_pages.

Warning: Potential backward incompatibility

This change may cause you code to break, if you relied on Site.page_set to access cms pages from a Site model
instance: update it to use Site.djangocms_pages

294 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

Moved all template tags to cms_tags

All template tags are now in the cms_tags namespace so to use any cms template tags you can just do:

{% load cms_tags %}

getter and setter for translatable plugin content

A plugin’s translatable content can now be read and set through get_translatable_content() and
set_translatable_content (). See Custom Plugins for more info.

No more DB table-name magic for plugins

Since django CMS 2.0 plugins had their table names start with cmsplugin_. We removed this behaviour in 3.0 and will
display a deprecation warning with the old and new table name. If your plugin uses south for migrations create a new
empty schema migration and rename the table by hand.

Warning: When working in the django shell or coding at low level, you must trigger the backward compatible
behaviour (a.k.a. magical rename checking), otherwise non migrated plugins will fail. To do this execute the
following code:

>>> from cms.plugin_pool import plugin_pool
>>> plugin_pool.set_plugin_meta()

This code can be executed both in the shell or in your python modules.

Added support for custom user models

Since Django 1.5 it has been possible to swap out the default User model for a custom user model. This is now fully
supported by DjangoCMS, and in addition a new option has been added to the test runner to allow specifying the user
model to use for tests (e.g. --user=customuserapp.User)

Page caching

Pages are now cached by default. You can disable this behaviour with CMS_PAGE_CACHE

Placeholder caching

Plugins have a new default property: cache=True. If all plugins in a placeholder have set this to True the whole
placeholder will be cached if the toolbar is not in edit mode.

Warning: If your plugin is dynamic and processes current user or request data be sure to set cache=False

5.2. Django/Python compatibility table 295




django cms Documentation, Release 4.1.1

Plugin caching

Plugins have a new attribute: cache=True. Its default value can be configured with CMS_PLUGIN_CACHE.

Per-page Clickjacking protection

An advanced option has been added which controls, on a per-page basis, the X-Frame-Options header. The default
setting is to inherit from the parent page. If no ancestor specifies a value, no header will be set, allowing Django’s own
middleware to handle it (if enabled).

CMS_TEMPLATE context variable

A new CMS_TEMPLATE variable is now available in the context: it contains the path to the current page template. See
CMS_TEMPLATE reference for details.

Upgrading from 2.4

Note: There are reports that upgrading the CMS from 2.4 to 3.0 may fail if Django Debug Toolbar is installed. Please
remove/disable Django Debug Toolbar and other non-essential apps before attempting to upgrade, then once complete,
re-enable them following the “Explicit setup” instructions.

If you want to upgrade from version 2.4 to 3.0, there’s a few things you need to do. Start of by updating the cms’
package:

pip install django-cms==3.0

Next, you need to make the following changes in your settings.py
e settings.INSTALLED_APPS
— Remove cms.plugin. twitter. This package has been deprecated, see Tiwitter Plugin.
— Rename all the other cms.plugins.X to djangocms_X, see Plugins removed.
* settings. CONTEXT_PROCESSORS
— Replace cms. context_processors.media with cms.context_processors.cms_settings

Afterwards, install all your previously renamed ex-core plugins (djangocms-whatever). Here’s a full list, but you
probably don’t need all of them:

pip install djangocms-file

pip install djangocms-flash
pip install djangocms-googlemap
pip install djangocms-inherit
pip install djangocms-picture
pip install djangocms-teaser
pip install djangocms-video

pip install djangocms-link

pip install djangocms-snippet

296 Chapter 5. Software version requirements and release notes



https://django-debug-toolbar.readthedocs.io/en/1.0/installation.html#explicit-setup

django cms Documentation, Release 4.1.1

Also, please check your templates to make sure that you haven’t put the {% cms_toolbar %} tag into a {% block
%} tag. This is not allowed in 3.0 any more.

To finish up, please update your database:

python manage.py syncdb
python manage.py migrate (answer yes if your prompted to delete stale content types)

Finally, your existing pages will be unpublished, so publish them with the publisher command:

python manage.py publisher_publish

That’s it!

Pending deprecations
placeholder_tags

placeholder_tags is now deprecated, the render_placeholder template tag can now be loaded from the
cms_tags template tag library.

Using placeholder_tags will cause a DeprecationWarning to occur.

placeholder_tags will be removed in version 3.1.

cms.context_processors.media

cms.context_processors.media is now deprecated, please use cms.context_processors.cms_settings by
updating TEMPLATE_CONTEXT_PROCESSORS in the settings

Using cms. context_processors.media will cause a DeprecationWarning to occur.

cms.context_processors.media will be removed in version 3.1.

2.4 release notes

What’s new in 2.4

Warning: Upgrading from previous versions
2.4 introduces some changes that require action if you are upgrading from a previous version.

You will need to read the sections Migrations overhaul and Added a check command below.

Introducing Django 1.5 support, dropped support for Django 1.3 and Python 2.5

Django CMS 2.4 introduces Django 1.5 support.

In django CMS 2.4 we dropped support for Django 1.3 and Python 2.5. Django 1.4 and Python 2.6 are now the minimum
required versions.

5.2. Django/Python compatibility table 297




django cms Documentation, Release 4.1.1

Migrations overhaul

In version 2.4, migrations have been completely rewritten to address issues with newer South releases.

To ease the upgrading process, all the migrations for the cms application have been consolidated into a single migration
file, 0001 _initial.py.

» migration 0001 is a real migration, that gets you to the same point migrations 0001-0036 used to
¢ the migrations 0002 to 0036 inclusive still exist, but are now all dummy migrations

* migrations 0037 and later are new migrations

How this affects you

If you're starting with a new installation, you don’t need to worry about this. Don’t even bother reading this section;
it’s for upgraders.

If you’re using version 2.3.2 or newer, you don’t need to worry about this either.
If you’re using version 2.3.1 or older, you will need to run a two-step process.

First, you'll need to upgrade to 2.3.3, to bring your migration history up-to-date with the new scheme. Then you’ll need
to perform the migrations for 2.4.

For the two-step upgrade process do the following in your project main directory:

pip install django-cms==2.3.3
python manage.py syncdb
python manage.py migrate

pip install django-cms==2.4
python manage.py migrate

Added delete orphaned plugins command

Added a management command for deleting orphaned plugins from the database.

The command can be run with:

manage.py cms delete_orphaned_plugins

Please read cms delete-orphaned-plugins before using.

Added a check command

Added a management command to check your configuration and environment.
To use this command, simply run:
manage.py cms check

This replaces the old at-runtime checks.

298 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

CMS_MODERATOR

Has been removed since it is no longer in use. From 2.4 onward, all pages exist in a public and draft version. Users
with the publish_page permission can publish changes to the public site.

Management command required

To bring a previous version of your site’s database up-to-date, you’ll need to run manage.py cms moderator on.
Never run this command without first checking for orphaned plugins, using the cms list plugins command.
If it reports problems, run manage.py cms delete_orphaned_plugins. Running cms moderator with orphaned
plugins will fail and leave bad data in your database. See cms list and cms delete-orphaned-plugins.

Also, check that all your plugins define a copy_relations () method if required. You can do this by running manage.
py cms check and read the Presence of “copy_relations” section. See Handling Relations for guidance on this topic.

Added Fix MPTT Management command

Added a management command for fixing MPTT tree data.

The command can be run with:

manage.py cms fix-mptt

Removed the MultilingualMiddleware

We removed the MultilingualMiddleware. This removed rather some unattractive monkey-patching of the reverse ()
function as well. As a benefit we now support localisation of URLs and apphook URLs with standard Django helpers.

For django 1.4 more information can be found here:
https://docs.djangoproject.com/en/dev/topics/il8n/translation/#internationalization-in-url-patterns

If you are still running django 1.3 you are able to achieve the same functionality with django-il8nurl. It is a backport
of the new functionality in django 1.4 and can be found here:

https://github.com/brocaar/django-il 8nurls
What you need to do:
* Remove cms.middleware.multilingual.MultilingualURLMiddleware from your settings.

* Be sure django.middleware.locale.LocaleMiddleware is in your settings, and that it comes after the
SessionMiddleware.

Be sure that the cms.urls is included in a 118n_patterns:

from django.conf.urls.il8n import il8n_patterns
from django.contrib import admin

from django.conf import settings

from django.urls import *

admin.autodiscover()

urlpatterns = i18n_patterns('',
re_path(r'+admin/', include(admin.site.urls)),

(continues on next page)

5.2. Django/Python compatibility table 299


https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns
https://github.com/brocaar/django-i18nurls

django cms Documentation, Release 4.1.1

(continued from previous page)

re_path(r'A', include('cms.urls')),

)

if settings.DEBUG:
urlpatterns = patterns('',
re_path(r'*media/(?P<path>.*)$', 'django.views.static.serve',
{'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
re_path(r'', include('django.contrib.staticfiles.urls")),
) + urlpatterns

* Change your url and reverse calls to language namespaces. We now support the django way of calling other
language urls either via {% language %} template tag or via activate("de™) function call in views.

Before:

{% url "de:myview" %}

After:

{% load 118n %}{% language "de" %}
{% url "myview_name" %}
{% endlanguage %}

* reverse urls now return the language prefix as well. So maybe there is some code that adds language prefixes.
Remove this code.

Added LanguageCookieMiddleware

To fix the behaviour of django to determine the language every time from new, when you visit / on a page, this mid-
dleware saves the current language in a cookie with every response.

To enable this middleware add the following to your MIDDLEWARE_CLASSES setting:

cms.middleware.language.LanguageCookieMiddleware

CMS_LANGUAGES

CMS_LANGUAGES has be overhauled. It is no longer a list of tuples like the LANGUAGES settings.

An example explains more than thousand words:

CMS_LANGUAGES = {

1: [

{
'code': 'en',
'name': gettext('English'),
'fallbacks': ['de', "fr'],
'public': True,
'hide_untranslated': True,
'redirect_on_fallback':False,

1,

{

(continues on next page)

300 Chapter 5. Software version requirements and release notes




django cms Documentation, Release 4.1.1

(continued from previous page)

'code': 'de',

'name': gettext('Deutsch'),
'fallbacks': ['en', '"fr'],
'public': True,

1,
{
'code': 'fr',
'name': gettext('French'),
'public': False,
1,
1,
2: [
{
'code': 'nml',
'name': gettext('Dutch'),
'public': True,
'fallbacks': ['en'],
1,
1,
"default': {
'fallbacks': ['en', 'de', 'fr'],
'redirect_on_fallback':True,
'public': False,
'hide_untranslated': False,
}

}

For more details on what all the parameters mean please refer to the CMS_LANGUAGES docs.
The following settings are not needed any more and have been removed:

e CMS_HIDE UNTRANSLATED

* CMS_LANGUAGE_FALLBACK

* CMS_LANGUAGE_CONF

* CMS_SITE_LANGUAGES

* CMS_FRONTEND_LANGUAGES

Please remove them from your settings.py.

5.2. Django/Python compatibility table 301



django cms Documentation, Release 4.1.1

CMS_FLAT URLS

Was marked deprecated in 2.3 and has now been removed.

Plugins in Plugins

We added the ability to have plugins in plugins. Until now only the TextPlugin supported this. For demonstration
purposes we created a MultiColumn Plugin. The possibilities for this are endless. Imagine: StylePlugin, TablePlugin,
GalleryPlugin etc.

The column plugin can be found here:
https://github.com/divio/djangocms-column
At the moment the limitation is that plugins in plugins is only editable in the frontend.

Here is the MultiColumn Plugin as an example:

class MultiColumnPlugin(CMSPluginBase):
model = MultiColumns
name = _("Multi Columns")
render_template = "cms/plugins/multi_column.html"
allow_children = True
child_classes = ["ColumnPlugin"]

There are 2 new properties for plugins:
allow_children

Boolean If set to True it allows adding Plugins.
child_classes

List A List of Plugin Classes that can be added to this plugin. If not provided you can add all plugins that are available
in this placeholder.

How to render your child plugins in the template

We introduce a new template tag in the cms_tags called {% render_plugin %} Here is an example of how the Mul-
tiColumn plugin uses it:

{% load cms_tags %}

<div class="multicolumn'>

{% for plugin in instance.child_plugins %}
{% render_plugin plugin %}

{% endfor %}

</div>

As you can see the children are accessible via the plugins children attribute.

302 Chapter 5. Software version requirements and release notes



https://github.com/divio/djangocms-column

django cms Documentation, Release 4.1.1

New way to handle django CMS settings

If you have code that needs to access django CMS settings (settings prefixed with CMS_ or PLACEHOLDER_) you would
have used for example from django.conf import settings; settings.CMS_TEMPLATES. This will no longer
guarantee to return sane values, instead you should use cms.utils.conf.get_cms_setting which takes the name
of the setting without the CMS_ prefix as argument and returns the setting.

Example of old, now deprecated style:

from django.conf import settings

settings.CMS_TEMPLATES
settings.PLACEHOLDER_FRONTEND_EDITING

Should be replaced with the new API:

from cms.utils.conf import get_cms_setting

get_cms_setting (' TEMPLATES")
get_cms_setting('PLACEHOLDER_FRONTEND_EDITING')

Added cms.constants module

This release adds the cms . constants module which will hold generic django CMS constant values. Currently it only
contains TEMPLATE_INHERITANCE_MAGIC which used to live in cms.conf.global_settings but was moved to the
new cms.constants module in the settings overhaul mentioned above.

django-reversion integration changes

django-reversion integration has changed. Because of huge databases after some time we introduce some changes to
the way revisions are handled for pages.

1. Only publish revisions are saved. All other revisions are deleted when you publish a page.

2. By default only the latest 25 publish revisions are kept. You can change this behaviour with the new
CMS_MAX_PAGE_PUBLISH_REVERSIONS setting.

Changes to the show_sub_menu template tag

The show_sub_menu has received two new parameters. The first stays the same and is still: how many levels of menu
should be displayed.

The second: root_level (default=None), specifies at what level, if any, the menu should root at. For example, if
root_level is 0 the menu will start at that level regardless of what level the current page is on.

The third argument: nephews (default=100), specifies how many levels of nephews (children of siblings) are shown.

5.2. Django/Python compatibility table 303



https://github.com/etianen/django-reversion

django cms Documentation, Release 4.1.1

PlaceholderAdmin support i18n

If you use placeholders in other apps or models we now support more than one language out of the box. If you just use
PlaceholderAdmin it will display language tabs like the cms. If you use django-hvad it uses the hvad language tabs.

If you want to disable this behaviour you can set render_placeholder_language_tabs = False on your Admin
class that extends PlaceholderAdmin. If you use a custom change_form_template be sure to have a look at cms/
templates/admin/placeholders/placeholder/change_form.html for how to incorporate language tabs.

Added CMS_RAW_ID_USERS

If you have a lot of users (500+) you can set this setting to a number after which admin User fields are displayed in a
raw Id field. This improves performance a lot in the admin as it has not to load all the users into the html.

Backwards incompatible changes
New minimum requirements for dependencies

* Django 1.3 and Python 2.5 are no longer supported.

Pending deprecations

* simple_language_changer will be removed in version 3.0. A bug-fix makes this redundant as every non-
managed URL will behave like this.

2.3.4 release notes
What’s new in 2.3.4
WymEditor fixed

2.3.4 fixes a critical issue with WymEditor that prevented it from load it’s JavaScript assets correctly.

Moved Norwegian translations

The Norwegian translations are now available as nb, which is the new (since 2003) official language code for Norwegian,
replacing the older and deprecated no code.

If your site runs in Norwegian, you need to change your LANGUAGES settings!

304 Chapter 5. Software version requirements and release notes


https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 4.1.1

Added support for time zones

On Django 1.4, and with USE_TZ=True the django CMS now uses time zone aware date and time objects.

Fixed slug clashing

In earlier versions, publishing a page that has the same slug (URL) as another (published) page could lead to errors.
Now, when a page which would have the same URL as another (published) page is published, the user is shown an
error and they’re prompted to change the slug for the page.

Prevent unnamed related names for PlaceholderField

cms.models. fields.PlaceholderField no longer allows the related name to be suppressed. Trying to do so will
lead to a ValueError. This change was done to allow the django CMS to properly check permissions on Placeholder
Fields.

Two fixes to page change form

The change form for pages would throw errors if the user editing the page does not have the permission to publish this
page. This issue was resolved.

Further the page change form would not correctly pre-populate the slug field if DEBUG was set to False. Again, this
issue is now resolved.

2.3.3 release notes

What’s new in 2.3.3
Restored Python 2.5 support

2.3.3 restores Python 2.5 support for the django CMS.

Pending deprecations

Python 2.5 support will be dropped in django CMS 2.4.
2.3.2 release notes

What’s new in 2.3.2

Google map plugin

Google map plugin now supports width and height fields so that plugin size can be modified in the page admin or
frontend editor.

Zoom level is now set via a select field which ensure only legal values are used.

5.2. Django/Python compatibility table 305


https://docs.python.org/3/library/exceptions.html#ValueError

django cms Documentation, Release 4.1.1

Warning: Due to the above change, level field is now marked as NOT NULL, and a data migration has been
introduced to modify existing Googlemap plugin instance to set the default value if level if is NULL.

2.3 release notes

What’s new in 2.3
Introducing Django 1.4 support, dropped support for Django 1.2

In django CMS 2.3 we dropped support for Django 1.2. Django 1.3.1 is now the minimum required Django version.
Django CMS 2.3 also introduces Django 1.4 support.

Lazy page tree loading in admin

Thanks to the work by Andrew Schoen the page tree in the admin now loads lazily, significantly improving the perfor-
mance of that view for large sites.

Toolbar isolation

The toolbar JavaScript dependencies should now be properly isolated and no longer pollute the global JavaScript names-
pace.

Plugin cancel button fixed

The cancel button in plugin change forms no longer saves the changes, but actually cancels.

Tests refactor

Tests can now be run using setup.py test or runtests.py (the latter should be done in a virtualenv with the proper
dependencies installed).

Check runtests.py -h for options.

Moving text plugins to different placeholders no longer loses inline plugins

A serious bug where a text plugin with inline plugins would lose all the inline plugins when moved to a different
placeholder has been fixed.

306 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Minor improvements

* The or clause in the placeholder tag now works correctly on non-cms pages.

* The icon source URL for inline plugins for text plugins no longer gets double escaped.
* PageSelectWidget correctly orders pages again.

* Fixed the file plugin which was sometimes causing invalid HTML (unclosed span tag).
* Migration ordering for plugins improved.

¢ Internationalised strings in JavaScript now get escaped.

Backwards incompatible changes
New minimum requirements for dependencies

¢ django-reversion must now be at version 1.6
¢ django-sekizai must be at least at version 0.6.1

* django-mptt version 0.5.1 or 0.5.2 is required

Registering a list of plugins in the plugin pool

This feature was deprecated in version 2.2 and removed in 2.3. Code like this will not work any more:

plugin_pool.register_plugin([FooPlugin, BarPlugin])

Instead, use multiple calls to register_plugin:

plugin_pool.register_plugin(FooPlugin)
plugin_pool.register_plugin(BarPlugin)

Pending deprecations

The CMS_FLAT_URLS setting is deprecated and will be removed in version 2.4. The moderation feature
(CMS_MODERATOR = True) will be deprecated in 2.4 and replaced with a simpler way of handling unpublished changes.

2.2 release notes
What’s new in 2.2
django-mptt now a proper dependency

django-mptt is now used as a proper dependency and is no longer shipped with the django CMS. This solves the version
conflict issues many people were experiencing when trying to use the django CMS together with other Django apps
that require django-mptt. django CMS 2.2 requires django-mptt 0.5.1.

5.2. Django/Python compatibility table 307



https://github.com/django-mptt/django-mptt/

django cms Documentation, Release 4.1.1

Warning: Please remove the old mptt package from your Python site-packages directory before upgrading. The
setup.py file will install the django-mptt package as an external dependency!

Django 1.3 support

The django CMS 2.2 supports both Django 1.2.5 and Django 1.3.

View permissions

You can now give view permissions for django CMS pages to groups and users.

Backwards incompatible changes
django-sekizai instead of PluginMedia

Due to the sorry state of the old plugin media framework, it has been dropped in favour of the more stable and more
flexible django-sekizai, which is a new dependency for the django CMS 2.2.

The following methods and properties of cms.plugin_base.CMSPluginBase are affected:
e cms.plugins_base.CMSPluginBase.PluginMedia
e cms.plugins_base.CMSPluginBase.pluginmedia
e cms.plugins_base.CMSPluginBase.get_plugin_media

Accessing those attributes or methods will raise a cms . exceptions.Deprecated error.

The cms.middleware.media.PlaceholderMediaMiddleware middleware was also removed in this process and is
therefore no longer required. However you are now required to have the sekizai.context_processors.sekizai
context processor in your TEMPLATE_CONTEXT_PROCESSORS setting.

All templates in CS_TEMPLATES must at least contain the js and css sekizai namespaces.

Please refer to the documentation on Handling media in custom CMS plugins and the django-sekizai documentation
for more information.

Toolbar must be enabled explicitly in templates

The toolbar no longer hacks itself into responses in the middleware, but rather has to be enabled explicitly using the {%
cms_toolbar %} template tag from the cms_tags template tag library in your templates. The template tag should be
placed somewhere within the body of the HTML (within <body>. . .</body>).

This solves issues people were having with the toolbar showing up in places it shouldn’t have.

308 Chapter 5. Software version requirements and release notes


https://github.com/django-mptt/django-mptt/
https://django-sekizai.readthedocs.io/

django cms Documentation, Release 4.1.1

Static files moved to /static/

The static files (CSS/JavaScript/images) were moved from /media/ to /static/ to work with the new django.
contrib.staticfiles app in Django 1.3. This means you will have to make sure you serve static files as well as
media files on your server.

Warning: If you use Django 1.2.x you will not have a django.contrib.staticfiles app. Instead you need
the django-staticfiles backport.

Features deprecated in 2.2

django-dbgettext support

The django-dbgettext support has been fully dropped in 2.2 in favour of the built-in multi-lingual support mechanisms.
Upgrading from 2.1.x and Django 1.2.x

Upgrading dependencies

Upgrade both your version of django CMS and Django by running the following commands.

pip install --upgrade django-cms==2.2 django==1.3.1

If you are using django-reversion make sure to have at least version 1.4 installed

pip install --upgrade django-reversion==1.4

Also, make sure that django-mptt stays at a version compatible with django CMS

pip install --upgrade django-mptt==0.5.1

Updates to settings.py

The following changes will need to be made in your settings.py file:

ADMIN_MEDIA_PREFIX = '/static/admin'
STATIC_ROOT = os.path.join(PROJECT_PATH, 'static')
STATIC_URL = "/static/"

Note: These are not django CMS settings. Refer to the Django documentation on staticfiles for more information.

Note: Please make sure the static sub-folder exists in your project and is writeable.

Note: PROJECT_PATH is the absolute path to your project.

5.2. Django/Python compatibility table 309



https://pypi.python.org/pypi/django-staticfiles/
http://readthedocs.org/docs/django/en/latest/ref/contrib/staticfiles.html

django cms Documentation, Release 4.1.1

Remove the following from TEMPLATE_CONTEXT_PROCESSORS:
django.core.context_processors.auth

Add the following to TEMPLATE_CONTEXT_PROCESSORS:

django.contrib.auth.context_processors.auth
django.core.context_processors.static
sekizai.context_processors.sekizai

Remove the following from MIDDLEWARE_CLASSES:

cms.middleware.media.PlaceholderMediaMiddleware

Remove the following from INSTALLED_APPS:

publisher

Add the following to INSTALLED_APPS:

sekizai
django.contrib.staticfiles

Template Updates

Make sure to add sekizai tags and cms_toolbar to your CMS templates.

Note: cms_toolbar is only needed if you wish to use the front-end editing. See Backwards incompatible changes
for more information

Here is a simple example for a base template called base.html:

{% load cms_tags sekizai_tags %}

<html>
<head>
{% render_block "css" %}
</head>
<body>

{% cms_toolbar %}
{% placeholder base_content %}
{% block base_content%}{% endblock %}
{% render_block "js" %}
</body>
</html>

310 Chapter 5. Software version requirements and release notes



https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-INSTALLED_APPS
https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-INSTALLED_APPS

django cms Documentation, Release 4.1.1

Database Updates

Run the following commands to upgrade your database

python manage.py syncdb
python manage.py migrate

Static Media

Add the following to urls.py to serve static media when developing:

if settings.DEBUG:
urlpatterns = patterns('',
re_path(r'*media/(?P<path>.*)$', 'django.views.static.serve',
{'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
re_path(r'', include('django.contrib.staticfiles.urls')),
) + urlpatterns

Also run this command to collect static files into your STATIC_ROOT:

python manage.py collectstatic

5.2.6 Contribute

django CMS is an open-source project, and relies on its community of users to keep getting better.

The contributors to django CMS come from across the world, and have a wide range and levels of skills and expertise.
Every contribution, however small, is valued.

As an open source project, anyone is welcome to contribute in whatever form they are able, which can include taking
part in discussions, filing bug reports, proposing improvements, contributing code or documentation, and testing the

Contribute to django CMS

As an open source project, django CMS is only as strong as its community. Without the donation of time and skill of
our contributors and the financial support of our association members it would not be possible to maintain the django
CMS project. The community is the backbone of django CMS.

Our contributors come from all over the world and have different levels of skills and expertise. No matter if you
are a developer, usability enthusiast, designer or copywriter. Young or old. Experienced or inexperienced. Every
contribution, however small, is valued.

You don’t need to be an expert developer to make a valuable contribution - all you need is a little knowledge of the
system, and a willingness to follow the contribution guidelines.

Open source contribution can include taking part in discussions, filing bug reports, proposing improvements, contribut-
ing code or writing documentation.

Remember that contributions to the documentation are highly prized, and key to the success of the django CMS project.

All activity in the community is governed by our Code of Conduct.

5.2. Django/Python compatibility table 311



https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-STATIC_ROOT
https://www.django-cms.org/en/our-members/

django cms Documentation, Release 4.1.1

3 Reasons Why You Should Contribute
1. Boost your reputation

Through your involvement as a contributor, other people become aware of your work. In this way, you make a name
for yourself in the community and your reputation grows. This can also help you in your professional career. Add your
contribution to your resume or LinkedIn profile.

2. Find a mentor and improve your skills

When you join a workgroup, you will receive guidance and support from the workgroup leader. Our working group
leaders are professionals in their field and often in leading positions in their respective companies. Take advantage of
this unique opportunity for personal development!

3. Meet new people and increase your network

Let’s face it: Ultimately, it’s the people who bring the django CMS project to life and fill it with joy. Through your
involvement, you’ll meet new people and maybe even make new friends. As a community, it’s important to us to create
a pleasant atmosphere where everyone feels welcome!

Are you new to django CMS?

If you are new to django CMS, then we recommend you to first familiarize yourself with the CMS and start with the
install section. After that, you can have a go at issues on Github that are marked Good first issue. These issues are
especially good if you’re just starting out but still want to contribute.

Contributor Community

But before you start getting your hands dirty, you should make sure to join us online in order to stay updated with the
latest news and to connect with other users across the world.

You can join us online through our support channels

You should make sure to join our Discord server. It is our main communication platform. Users from all over the world
use Discord to talk about django CMS and to support each other in answering support requests. StackOverflow is a
very popular, community-based space to find and contribute answers to technical challenges

You can also follow:
* the django CMS Youtube account

¢ the django CMS Association LinkedIn account

312 Chapter 5. Software version requirements and release notes


https://docs.django-cms.org/en/latest/introduction/01-install.html
https://github.com/django-cms/django-cms/labels/good%20first%20issues
https://www.django-cms.org/support/
https://www.youtube.com/c/djangocms
https://www.linkedin.com/company/django-cms-association

django cms Documentation, Release 4.1.1

How to contribute

Contributing code

Like every open-source project, django CMS is always looking for motivated individuals to contribute to its source
code.

In a nutshell

Here’s what the contribution process looks like in brief:
1. Fork our GitHub repository, https://github.com/django-cms/django-cms
2. Work locally and push your changes to your repository.
3. When you feel your code is good enough for inclusion, send us a pull request.
4

. After that, please join our Discord server (#contributors). This group of friendly community members is dedi-
cated to reviewing pull requests. Report your PR and find a “pr review buddy” who is going to review your pull
request.

5. Get acknowledged by the django CMS community for your contribution

See the contributing_patch how-to document for a walk-through of this process.

Basic requirements and standards

If you're interested in developing a new feature for the CMS, it is recommended that you first discuss it on Discord so
as not to do any work that will not get merged in anyway.

* Code will be reviewed and tested by at least one core developer, preferably by several. Other community members
are welcome to give feedback.

* Code must be tested. Your pull request should include unit-tests (that cover the piece of code you’re submitting,
obviously)

* Documentation should reflect your changes if relevant. There is nothing worse than invalid documentation.
e Usually, if unit tests are written, pass, and your change is relevant, then it’ll be merged.
Since we’re hosted on GitHub, django CMS uses git as a version control system.

The GitHub help is very well written and will get you started on using git and GitHub in a jiffy. It is an invaluable
resource for newbies and old timers alike.

Syntax and conventions
Python

We try to conform to PEP8 as much as possible. A few highlights:
¢ Indentation should be exactly 4 spaces. Not 2, not 6, not 8. 4. Also, tabs are evil.

* We try (loosely) to keep the line length at 79 characters. Generally the rule is “it should look good in a terminal-
base editor” (eg vim), but we try not be too inflexible about it.

5.2. Django/Python compatibility table 313


http://www.github.com
https://github.com/django-cms/django-cms
https://www.django-cms.org/discord
https://www.django-cms.org/discord
http://git-scm.com/
http://help.github.com
http://www.python.org/dev/peps/pep-0008/

django cms Documentation, Release 4.1.1

HTML, CSS and JavaScript

As of django CMS 3.2, we are using the same guidelines as described in Aldryn Boilerplate

Frontend code should be formatted for readability. If in doubt, follow existing examples, or ask.

JS Linting

JavaScript is linted using ESLint. In order to run the linter you need to do this:

gulp lint

Or you can also run the watcher by just running gulp.

Process

This is how you fix a bug or add a feature:
1. fork us on GitHub.
2. Checkout your fork.
3. Hack hack hack, test test test, commit commit commit, test again.
4. Push to your fork.
5. Open a pull request.

And at any point in that process, you can add: discuss discuss discuss, because it’s always useful for everyone to pass
ideas around and look at things together.

testing is really important: a pull request that lowers our testing coverage will only be accepted with a very good reason;
bug-fixing patches must demonstrate the bug with a test to avoid regressions and to check that the fix works.

We have a Discord Server and of course the code reviews mechanism on GitHub - do use them.

Frontend

Important: When we refer to the frontend here, we only mean the frontend of django CMS’s admin/editor interface.

The frontend of a django CMS website, as seen by its visitors (i.e. the published site), is wholly independent of this.
django CMS places almost no restrictions at all on the frontend - if a site can be described in HTML/CSS/JavaScript,
it can be developed in django CMS.

In order to be able to work with the frontend tooling contributing to the django CMS you need to have the following
dependencies installed:

1. Node version 18.19.0 (will install npm 10.2.3 as well). We recommend using NVM to get the correct version of
Node.

2. gulp - see Gulp’s Getting Started notes

3. Local dependencies npm install

314 Chapter 5. Software version requirements and release notes



https://aldryn-boilerplate-bootstrap3.readthedocs.io/en/latest/guidelines/index.html
http://eslint.org
https://github.com/django-cms/django-cms
https://www.django-cms.org/discord
https://nodejs.org/
https://github.com/creationix/nvm
https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md

django cms Documentation, Release 4.1.1

Styles

We use Sass for our styles. The files are located within cms/static/cms/sass and can be compiled using the libsass
implementation of Sass compiler through gulp.

In order to compile the stylesheets you need to run this command from the repo root:

gulp sass

While developing it is also possible to run a watcher that compiles Sass files on change:

gulp

By default, source maps are not included in the compiled files. In order to turn them on while developing just add the
--debug option:

gulp --debug

Icons

We are using gulp-iconfont to generate icon web fonts into cms/static/cms/fonts/. This also creates
_iconography.scss within cms/static/cms/sass/components which adds all the icon classes and ultimately
compiles to CSS.

In order to compile the web font you need to run:

gulp icons

This simply takes all SVGs within cms/static/cms/fonts/src and embeds them into the web font. All classes will
be automatically added to _iconography. scss as previously mentioned.

Additionally we created an SVG template within cms/static/cms/font/src/_template.svgz that you should use
when converting or creating additional icons. It is named svgz so it doesn’t get compiled into the font. When using
Adobe Illustrator please mind the following settings.

JS Bundling

JavaScript files are split up for easier development, but in the end they are bundled together and minified to decrease
amount of requests made and improve performance. In order to do that we use the gulp task runner, where bundle
command is available. We use Webpack for bundling JavaScript files. Configuration for each bundle are stored inside
the webpack.config. js and their respective entry points. CMS exposes only one global variable, named CMS. If you
want to use JavaScript code provided by CMS in external applications, you can only use bundles distributed by CMS,
not the source modules.

5.2. Django/Python compatibility table 315



http://sass-lang.com/
http://libsass.org/
http://gulpjs.com/
https://github.com/backflip/gulp-iconfont
images/svg_settings.png
https://github.com/webpack/webpack

django cms Documentation, Release 4.1.1

Contributing documentation

Perhaps considered “boring” by hard-core coders, documentation is sometimes even more important than code! This
is what brings fresh blood to a project, and serves as a reference for old timers. On top of this, documentation is the
one area where less technical people can help most - you just need to write simple, unfussy English. Elegance of style
is a secondary consideration, and your prose can be improved later if necessary.

Contributions to the documentation earn the greatest respect from the core developers and the django CMS community.
Documentation should be:
 written using valid Sphinx/restructuredText syntax (see below for specifics); the file extension should be .rst
» wrapped at 100 characters per line
 written in English, using British English spelling and punctuation

* accessible - you should assume the reader to be moderately familiar with Python and Django, but not anything
else. Link to documentation of libraries you use, for example, even if they are “obvious” to you

Merging documentation is pretty fast and painless.

Except for the tiniest of change, we recommend that you test them before submitting.

Building the documentation

Follow the same steps above to fork and clone the project locally. Next, cd into the django-cms/docs and install the
requirements:

make install

Now you can test and run the documentation locally using:

make run

This allows you to review your changes in your local browser using http://localhost:8001/.

Note: What this does

make install is roughly the equivalent of:

virtualenv env

source env/bin/activate

pip install -r requirements.txt
cd docs

make html

make runrunsmake html, and serves the built documentation on port 8001 (that is, at http://localhost:8001/.

It then watches the docs directory; when it spots changes, it will automatically rebuild the documentation, and refresh
the page in your browser.

316 Chapter 5. Software version requirements and release notes



http://sphinx-doc.org//
http://docutils.sourceforge.net/docs/ref/rst/introduction.html

django cms Documentation, Release 4.1.1

Documentation requirements

The packages required by the documentation are managed by pip-tools, which compiles requirements.txt ensuring
compatibility between packages.

The packages that the documentation requires are in requirements.in which looks like a regular requirements file.
Specific versions of packages can be specified, or left without a version in which case the latest version which is
compatible with the other packages will be used.

Example requirements.in:

furo

Sphinx>4
sphinx-copybutton
sphinxext-opengraph
sphinxcontrib-spelling
pyenchant>3

By running pip-compile the requirements are compiled into requirements. txt.

Periodically requirements should be updated to ensure that new versions, most importantly security patches, are used.
This is done using the -U flag:

cd docs
pip-compile -U

The generated requirements.txt pins specific versions and explains where each required package comes from, for
example:

datetime==4.3

# via -r requirements.in
django==3.2.5

# via

# django-classy-tags
django-cms
django-formtools
django-sekizai

# django-treebeard
django-classy-tags==2.0.0

# via

#  django-cms

# django-sekizai
django-cms==3.9.0

# via -r requirements.in
django-formtools==2.3

# via django-cms

H R R

5.2. Django/Python compatibility table 317



https://github.com/jazzband/pip-tools

django cms Documentation, Release 4.1.1

Spelling

We use sphinxcontrib-spelling, which in turn uses pyenchant and enchant to check the spelling of the documentation.

You need to check your spelling before submitting documentation.

Important: We use British English rather than US English spellings. This means that we use colour rather than color,
emphasise rather than emphasize and so on.

Install the spelling software

sphinxcontrib-spelling and pyenchant are Python packages that will be installed in the virtualenv docs/env
when you run make install (see above).

You will need to have enchant installed too, if it is not already. The easy way to check is to run make spelling from
the docs directory. If it runs successfully, you don’t need to do anything, but if not you will have to install enchant
for your system. For example, on OS X:

brew install enchant

or Debian Linux:

apt-get install enchant

Check spelling

Run:

make spelling

in the docs directory to conduct the checks.

Note: This script expects to find a virtualenv at docs/env, as installed by make install (see above).

If no spelling errors have been detected, make spelling will report:

build succeeded.

Otherwise:

build finished with problems.
make: *** [spelling] Error 1

It will list any errors in your shell. Misspelt words will be also be listed in build/spelling/output.txt

Words that are not in the built-in dictionary can be added to docs/spelling_wordlist. If you are certain that a
word is incorrectly flagged as misspelt, add it to the spelling_wordlist document, in alphabetical order. Please do
not add new words unless you are sure they should be in there.

If you find technical terms are being flagged, please check that you have capitalised them correctly - javascript and
css are incorrect spellings for example. Commands and special names (of classes, modules, etc) in double backticks
- 77 - will mean that they are not caught by the spelling checker.

318 Chapter 5. Software version requirements and release notes



https://pypi.python.org/pypi/sphinxcontrib-spelling/
https://pypi.python.org/pypi/pyenchant/
http://www.abisource.com/projects/enchant/

django cms Documentation, Release 4.1.1

Important: You may well find that some words that pass the spelling test on one system but not on another. Dictio-
naries on different systems contain different words and even behave differently. The important thing is that the spelling
tests pass on Travis when you submit a pull request.

Making a pull request

Before you commit any changes, you need to check spellings with make spelling and rebuild the docs using make
html. If everything looks good, then it’s time to push your changes to GitHub and open a pull request in the usual way.

Documentation structure

Our documentation is divided into the following main sections:
 Tutorials (introduction): step-by-step, beginning-to-end tutorials to get you up and running
* How-to guides (how_to): step-by-step guides covering more advanced development
* /topics/index (topics): explanations of key parts of the system
* Reference (reference): technical reference for APIs, key models and so on
e Contribute (contributing)
* Release notes & upgrade information (upgrade)

* Who is behind django CMS (who): who is behind the django CMS project

Documentation markup
Sections

We mostly follow the Python documentation conventions for section marking:

#HARH AR A RHH
Page title
#ARH AR RHH

heading

sub-heading

sub-sub-sub-heading
AAAAAAAAAAAAAAAANAAA

sub-sub-sub-sub-heading

R R R TR R R IR IR IR IR IR IR IR TR IR IR TR TR

5.2. Django/Python compatibility table 319



https://travis-ci.com/django-cms/django-cms

django cms Documentation, Release 4.1.1

Inline markup

¢ use backticks -~ - for:

— literals:

The " " cms.models.pagemodel” " contains several important methods.

filenames:

Before you start, edit " “settings.py

— names of fields and other specific items in the Admin interface:

Edit the " “Redirect’™ " field.

¢ use emphasis - *Home* - around:

— the names of available options in or parts of the Admin:

To hide and show the *Toolbar*, use the...

— the names of important modes or states:

in order to switch to *Edit mode*.

values in or of fields:

Enter *Home* in the field.

¢ use strong emphasis - ** - around:

— buttons that perform an action:

Hit **View published** or **Save as draft**.

Rules for using technical words

There should be one consistent way of rendering any technical word, depending on its context. Please follow these

rules:

* in general use, simply use the word as if it were any ordinary word, with no capitalisation or highlighting: “Your

placeholder can now be used.”

* at the start of sentences or titles, capitalise in the usual way: “Placeholder management guide”

¢ when introducing the term for the the first time, or for the first time in a document, you may highlight it to draw

attention to it: “Placeholders are special model fields”.

» when the word refers specifically to an object in the code, highlight it as a literal: “Placeholder methods can be
overwritten as required” - when appropriate, link the term to further reference documentation as well as simply

highlighting it.

320 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

References

Create:

. _testing:

and use:

:ref: testing’

internal cross-references liberally.

Use absolute links to other documentation pages - :doc: " /how_to/toolbar" - rather than relative links - :doc: "/
../toolbar’. This makes it easier to run search-and-replaces when items are moved in the structure.

Contributing translations

For translators we have a Transifex account where you can translate the . po files and don’t need to install git or mercurial
to be able to contribute. All changes there will be automatically sent to the project.

Development policies

Reporting security issues

Attention: If you think you have discovered a security issue in our code, please report it privately, by emailing
us at security @django-cms.org.

Please do not raise it in any public forum until we have had a chance to deal with it.

Review

All patches should be made as pull requests against develop-4 to the GitHub repository. Patches should never be
pushed directly.

Nothing may enter the code-base, including the documentation, without proper review and formal approval from the
core team.

Reviews are welcomed by all members of the community. You don’t need to be a core developer, or even an experienced
programmer, to contribute usefully to code review. Even noting that you don’t understand something in a pull request
is valuable feedback and will be taken seriously.

5.2. Django/Python compatibility table 321



https://www.transifex.com/divio/django-cms/
mailto:security@django-cms.org
https://github.com/django-cms/django-cms

django cms Documentation, Release 4.1.1

Formal approval

Formal approval means “OK to merge” comments, following review, from at least one member of the core team who
has expertise in the relevant areas, and excluding the author of the pull request.

Proposal and discussion of significant changes

New features and backward-incompatible changes should follow the best practice of DEPS and should be discussed
in the community first. After your proposal has been reviewed by the community, it needs to be finally approved by
the Tech Committee. This is in the interests of openness and transparency, and to give the community a chance to
participate in and understand the decisions taken by the project.

So before submitting pull requests with significant changes, please make sure that the community agrees and the Tech-
nical Committee approves.

To create a proposal...

1. please use this DEP template

2. create a discussion in the main Github repository
3. discuss, discuss, discuss
4

. join the Tech Committee (#technical-committee) and make the team aware of your proposal after the proposal
has been reviewed by the Technical Committee, it is put to a vote at one of the weekly meetings of the technical
committee

Release schedule

The roadmap can be found on our website. The release schedule is managed by the release management workgroup.
The plan is to release quarterly and according to a retrospective approach.

Example of retrospective approach.
* QI 2021 -> 3.9 Release
End of Q1 2021 -> freeze

* Check what’s available
* Merge in anything that’s been approved
Q2 2021 Release -> 3.10

* Unscheduled Releases -> e.g. bug fix -> 3.x.x

Release management is managed on Discord in the #technical-committee channel. For questions regarding the release
process please join the channel and reach out. We’re happy to help.

322 Chapter 5. Software version requirements and release notes


https://github.com/django/deps
https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md
https://github.com/django/deps/blob/main/template.rst
https://github.com/django-cms/django-cms/discussions
https://www.django-cms.org/discord/tech-comm
https://www.django-cms.org/en/roadmap/
https://www.django-cms.org/discord/tech-comm

django cms Documentation, Release 4.1.1

Long-Term Support Release

For the current Long-Term Support (LTS) release overview see here. Long-term support means that this version will
continue to receive security and other critical updates in alignment with the corresponding Django LTS release.

Any updates it does receive will be backward-compatible and will not alter functional behaviour. This means that
users can deploy this version confident that keeping it up-to-date requires only easily-applied security and other critical
updates, until the next LTS release.

Branches

‘We maintain a number of branches on our GitHub repository:

develop-4
The default target branch for on-going development and new pull requests.

release/x.y.z are the latest released versions of django CMS. Commits
are cherry-picked from develop-4 and merged into release/x.y.z when suitable. We officially support the
latest, highest released version and the latest LTS.

Please always open PR’s against develop-4 and indicate that they should be backported to the latest LTS release when
necessary. Older branches are not supported any longer.

Commits
Commit messages

We follow the Conventional Commits specification for commit messages. Pull requests are linted against this specifi-
cation so please make your PR title match the specification.

Commit messages and their subject lines should be written in the past tense, not present tense, for example:
Updated contribution policies.
» Updated branch policy to clarify purpose of develop/release branches
e Added commit policy.
* Added changelog policy.

Keep lines short, and within 72 characters as far as possible.

Squashing commits

In order to make our Git history more useful, and to make life easier for the core developers, please rebase and squash
your commiit history into a single commit representing a single coherent piece of work.

For example, we don’t really need or want a commit history, for what ought to be a single commit, that looks like
(newest last):

2dceb83 Updated contribution policies.

ffe5f2c Fixed spelling mistake in contribution policies.
29168da Fixed typo.

85d925c Updated commit policy based on feedback.

5.2. Django/Python compatibility table 323



https://github.com/django-cms/django-cms
https://www.conventionalcommits.org

django cms Documentation, Release 4.1.1

The bottom three commits are just noise. They don’t represent development of the code base. The four commits should
be squashed into a single, meaningful, commit:

85d925c Updated contribution policies.

How to squash commits

In this example above, you'd use git rebase -i HEAD~4 (the 4 refers to the number of commits being squashed -
adjust it as required).

This will open a git-rebase-todo file (showing commits with the newest last):

pick 2dceb83 Updated contribution policies.

pick ffe5f2c Fixed spelling mistake in contribution policies.
pick 29168da Fixed typo.

pick 85d925c Updated commit policy based on feedback.

“Fixup” the last three commits, using f so that they are squashed into the first, and their commit messages discarded:

pick 2dceb83 Updated contribution policies.

f ffe5f2c Fixed spelling mistake in contribution policies.
f 29168da Fixed typo.

f 85d925c Updated commit policy based on feedback.

Save - and this will leave you with a single commit containing all of the changes:

85d925c Updated contribution policies.

Ask for help if you run into trouble!

Changelog

Every new feature, bugfix or other change of substance must be represented in the CHANGELOG. This includes
documentation, but doesn’t extend to things like reformatting code, tidying-up, correcting typos and so on.

Each line in the changelog should begin with a verb in the past tense, for example:

* Added CMS_WIZARD_CONTENT_PLACEHOLDER setting

* Renamed the CMS_WIZARD_* settings to CMS_PAGE_WIZARD_*

“ Deprecated the old-style wizard-related settings

* Improved handling of uninstalled apphooks

* Fixed an issue which could lead to an apphook without a slug
* Updated contribution policies documentation

New lines should be added to the top of the list.

324 Chapter 5. Software version requirements and release notes



https://github.com/django-cms/django-cms/blob/develop/CHANGELOG.rst

django cms Documentation, Release 4.1.1

Guidelines for django CMS projects

Note: These guidelines are based on the best practice established by the Jazzband project, a community of contributors
that shares the responsibility of maintaining Python-based projects.

The django CMS ecosystem consists of many custom projects. Often these projects are maintained by the author
themselves. However, sometimes it can make sense to put a project in the care of the django CMS project. Either
because it is of interest to the entire community, or because the author can no longer devote time to maintain the project
themselves.

Whether an existing project is transferred to the django CMS Github organization, or a new project is set up within the
django CMS Github organization, it is important that certain standards are followed.

Acceptance criteria for new projects or existing ones

Projects must meet the criteria of viability, documentation, testing, code of conducts and contributing guidelines. But
before that, they must be approved by the Tech Committee.

Approval by Tech Committee of the django CMS Association

New projects or project transfers under the django CMS patronage must first be approved by the Tech Committee. For
that you should join the #tech-committee channel on Discord and simply submit your proposal. Then, the TC decides
whether or not your project is in line with the product roadmap and overall vision for django CMS.

Viability

Projects to be maintained by the django CMS project must have a certain maturity (No proof of concepts, one-off
toys or code snippet hosts) and provide useful functionality. They should also be transferred to django CMS with the
agreement of the previous maintainer and in consultation with the Tech Committee (see Tech Committee).

Documentation

Project documentation is one of the most important aspects of a project. For this reason, it is of utmost importance that
the project includes prose documentation for end users and contributors. It is also strongly recommended to prepare
inline code documentation, as this is considered an indicator of high quality code. Please document as much as possible,
but also as clearly and concisely as possible. To quote Jazzband “Write like you’re addressing yourself in a few years.”
More information about how to contribute software documentation can be found here.

Tests

Your contributions and fixes are more than welcome as are your tests. We do not want to compromise our codebase.
Therefore, you are going to have to include tests if you want to contribute. For more information about running and
writing tests please see here.

5.2. Django/Python compatibility table 325


https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md
https://www.django-cms.org/discord
https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md
https://jazzband.co/about/guidelines
https://docs.django-cms.org/en/latest/contributing/documentation.html
https://docs.django-cms.org/en/latest/contributing/testing.html

django cms Documentation, Release 4.1.1

Conduct

Projects are required to adopt and follow the django CMS code of conduct. Please see the Contributor Code of Conduct
for more information about what that entails and how to report conduct violations.

Contributing Guidelines

Projects have to add a CONTRIBUTING.md ( Markdown ) or CONTRIBUTING.rst ( reStructuredText ) file to their
repository so it’s automatically displayed when new issues and pull requests are created.

The respective file needs to contain this text:

First of all, thank you for wanting to contribute to the django CMS. We always welcome contributions, like many other
open-source projects. We are very thankful to the many present, past and future contributors, to our community heroes
and to the [members of the django CMS Association. This is a django CMS project. By contributing you agree to abide
by the Contributor Code of Conduct and follow the guidelines. Of course extending the contributing document with
your project’s contributing guide is highly encouraged, too. See GitHub’s documentation on contributing guidelines
for more information.

Move an existing project to the django CMS Github organization

To initiate the transfer to django CMS, you should use Github’s Transfer Feature to transfer the repository to the django
CMS organization.

Code and project management

We use our GitHub project for managing both django CMS code and development activity.

This document describes how we manage tickets on GitHub. By “tickets”, we mean GitHub issues and pull requests
(in fact as far as GitHub is concerned, pull requests are simply a species of issue).

Issues

Raising an issue

Attention: If you think you have discovered a security issue in our code, please report it privately, by emailing
us at security @django-cms.org.

Please do not raise it in any public forum until we have had a chance to deal with it.

Except in the case of security matters, of course, you're welcome to raise issues in any way that suits you or in person
if you happen to meet another django CMS developer.

It’s very helpful though if you don’t just raise an issue by mentioning it to people, but actually file it too, and that means
creating a new issue on GitHub.

There’s an art to creating a good issue report.

The Title needs to be both succinct and informative. ‘“show_sub_menu displays incorrect nodes when used with
soft_root” is helpful, whereas “Menus are broken” is not.

In the Description of your report, we’d like to see:

326 Chapter 5. Software version requirements and release notes


https://docs.django-cms.org/en/latest/contributing/code_of_conduct.html
https://daringfireball.net/projects/markdown/syntax
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
https://github.com/django-cms/django-cms/graphs/contributors
https://github.com/django-cms/django-cms-mgmt/blob/master/community%20heros/list%20of%20community%20heros.md
https://github.com/django-cms/django-cms-mgmt/blob/master/association/members.md
https://www.django-cms.org
https://docs.django-cms.org/en/latest/contributing/code_of_conduct.html
https://docs.django-cms.org/en/latest/contributing/index.html
https://docs.github.com/en/repositories/creating-and-managing-repositories/transferring-a-repository
https://github.com/django-cms/django-cms
mailto:security@django-cms.org
https://github.com/django-cms/django-cms/issues/new

django cms Documentation, Release 4.1.1

* how to reproduce the problem
* what you expected to happen

» what did happen (a traceback is often helpful, if you get one)

Getting your issue accepted

Other django CMS developers will see your issue, and will be able to comment. A core developer may add further
comments, or a label.

The important thing at this stage is to have your issue accepted. This means that we’ve agreed it’s a genuine issue, and
represents something we can or are willing to do in the CMS.

You may be asked for more information before it’s accepted, and there may be some discussion before it is. It could
also be rejected as a non-issue (it’s not actually a problem) or won't fix (addressing your issue is beyond the scope of
the project, or is incompatible with our other aims).

Feel free to explain why you think a decision to reject your issue is incorrect - very few decisions are final, and we’re
always happy to correct our mistakes.

How we process tickets

Tickets should be:
* given a status
» marked with needs
» marked with a kind
» marked with the components they apply to
* marked with miscellaneous other labels
e commented
A ticket’s status and needs are the most important of these. They tell us two key things:
* status: what stage the ticket is at
* needs: what next actions are required to move it forward
Needless to say, these labels need to be applied carefully, according to the rules of this system.

GitHub’s interface means that we have no alternative but to use colours to help identify our tickets. We’re sorry about
this. We’ve tried to use colours that will cause the fewest issues for colour-blind people, so we don’t use green (since
we use red) or yellow (since we use blue) labels, but we are aware it’s not ideal.

django CMS ticket processing system rules

* one and only one status must be applied to each ticket

* a healthy ticket (blue) cannot have any critical needs (red)

* when closed, tickets must have either a healthy (blue) or dead (black) status

* aticket with critical needs must not have non-critical needs or miscellaneous other labels

* has patch and on hold labels imply a related pull request, which must be linked-to when these labels are applied

5.2. Django/Python compatibility table 327



django cms Documentation, Release 4.1.1

* component, non-critical need and miscellaneous other labels should be applied as seems appropriate

Status

The first thing we do is decide whether we accept the ticket, whether it’s a pull request or an issue. An accepted status
means the ticket is healthy, and will have a blue label.

Basically, it’s good for open tickets to be healthy (blue), because that means they are going somewhere.

Important: Accepting a ticket means marking it as healthy, with one of the blue labels.

issues
The bar for status: accepted is high. The status can be revoked at any time, and should be when
appropriate. If the issue needs a design decision, expert opinion or more info, it can’t be accepted.

pull requests
When a pull request is accepted, it should become work in progress or (more rarely) ready for review
or even ready to be merged, in those rare cases where a perfectly-formed and unimprovable pull
request lands in our laps. As for issues, if it needs a design decision, expert opinion or more info, it
can’t be accepted.

No issue or pull request can have both a blue (accepted) and a red, grey or black label at the
same time.

Preferably, the ticket should either be accepted (blue), rejected (black) or marked as having critical needs (red) as soon
as possible. 1t's important that open tickets should have a clear status, not least for the sake of the person who submitted
it so that they know it’s being assessed.

Tickets should not be allowed to linger indefinitely with critical (red) needs. If the opinions or information required
to accept the ticket are not forthcoming, the ticket should be declared unhealthy (grey) with marked for rejection and
rejected (black) at the next release.

Needs

Critical needs (red) affect status.

Non-critical needs labels (pink) can be added as appropriate (and of course, removed as work progresses) to pull
requests.

It’s important that open tickets should have a clear needs labels, so that it’s apparent what needs to be done to make
progress with it.

Kinds and components

Of necessity, these are somewhat porous categories. For example, it’s not always absolutely clear whether a pull request
represents an enhancement or a bug-fix, and tickets can apply to multiple parts of the CMS - so do the best you can
with them.

328 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

Other labels

backport, blocker, has patch or easy pickings labels should be applied as appropriate, to healthy (blue) tickets only.

Comments

At any time, people can comment on the ticket, of course. Although only core maintainers can change labels, anyone
can suggest changing a label.

Label reference

Components and kinds should be self-explanatory, but statuses, needs and miscellaneous other labels are clarified
below.

Statuses

A ticket’s status is its position in the pipeline - its point in our workflow.

Every issue should have a status, and be given one as soon as possible. An issue should have only one status applied
to it.

Many of these statuses apply equally well to both issues and pull requests, but some make sense only for one or the
other:

accepted
(issues only) The issue has been accepted as a genuine issue that needs to be addressed. Note that it doesn’t
necessarily mean we will do what the issue suggests, if it makes a suggestion - simply that we agree that there is
an issue to be resolved.

non-issue
The issue or pull request are in some way mistaken - the ‘problem’ is in fact correct and expected behaviour, or
the problems were caused by (for example) misconfiguration.

When this label is applied, an explanation must be provided in a comment.

won’t fix
The issue or pull request imply changes to django CMS’s design or behaviour that the core team consider incom-
patible with our chosen approach.

When this label is applied, an explanation must be provided in a comment.

marked for rejection
We’ve been unable to reproduce the issue, and it has lain dormant for a long time. Or, it’s a pull request of low
significance that requires more work, and looks like it might have been abandoned. These tickets will be closed
when we make the next release.

When this label is applied, an explanation must be provided in a comment.

work in progress
(pull requests only) Work is on-going.

The author of the pull request should include “(work in progress)” in its title, and remove this when they feel it’s
ready for final review.

ready for review
(pull requests only) The pull request needs to be reviewed. (Anyone can review and make comments recom-
mending that it be merged (or indeed, any further action) but only a core maintainer can change the label.)

5.2. Django/Python compatibility table 329



django cms Documentation, Release 4.1.1

ready to be merged
(pull requests only) The pull request has successfully passed review. Core maintainers should not mark their
own code, except in the simplest of cases, as ready to be merged, nor should they mark any code as ready to be
merged and then merge it themselves - there should be another person involved in the process.

When the pull request is merged, the label should be removed.

Needs

If an issue or pull request lacks something that needs to be provided for it to progress further, this should be marked
with a “needs” label. A “needs” label indicates an action that should be taken in order to advance the item’s status.

Critical needs

Critical needs (red) mean that a ticket is ‘unhealthy’ and won’t be accepted (issues) or work in progress, ready for
review or ready to be merged until those needs are addressed. In other words, no ticket can have both a blue and a red
label.)

more info
Not enough information has been provided to allow us to proceed, for example to reproduce a bug or to explain
the purpose of a pull request.

expert opinion
The issue or pull request presents a technical problem that needs to be looked at by a member of the core main-
tenance team who has a special insight into that particular aspect of the system.

design decision
The issue or pull request has deeper implications for the CMS, that need to be considered carefully before we
can proceed further.

Non-critical needs

A healthy (blue) ticket can have non-critical needs:

patch
(issues only) The issue has been given a status: accepted, but now someone needs to write the patch to address
it.

tests
docs
(pull requests only) Code without docs or tests?! In django CMS? No way!

Other

has patch
(issues only) A patch intended to address the issue exists. This doesn’t imply that the patch will be accepted, or
even that it contains a viable solution.

When this label is applied, a comment should cross-reference the pull request(s) containing the patch.

easy pickings
An easy-to-fix issue, or an easy-to-review pull request - newcomers to django CMS development are encouraged
to tackle easy pickings tickets.

330 Chapter 5. Software version requirements and release notes



django cms Documentation, Release 4.1.1

blocker
We can’t make the next release without resolving this issue.

backport
Any patch will should be backported to a previous release, either because it has security implications or it im-
proves documentation.

on hold
(pull requests only) The pull request has to wait for a higher-priority pull request to land first, to avoid complex
merges or extra work later. Any on hold pull request is by definition work in progress.

When this label is applied, a comment should cross-reference the other pull request(s).

Running and writing tests

Good code needs tests.
A project like django CMS simply can’t afford to incorporate new code that doesn’t come with its own tests.

Tests provide some necessary minimum confidence: they can show the code will behave as it expected, and help identify
what’s going wrong if something breaks it.

Not insisting on good tests when code is committed is like letting a gang of teenagers without a driving license borrow
your car on a Friday night, even if you think they are very nice teenagers and they really promise to be careful.

We certainly do want your contributions and fixes, but we need your tests with them too. Otherwise, we’d be compro-
mising our codebase.

So, you are going to have to include tests if you want to contribute. However, writing tests is not particularly difficult,
and there are plenty of examples to crib from in the code to help you.

Running tests

There’s more than one way to do this, but here’s one to help you get started:

# create a virtual environment
virtualenv test-django-cms

# activate it
cd test-django-cms/
source bin/activate

# get django CMS from GitHub
git clone https://github.com/django-cms/django-cms.git

# install the dependencies for testing
# note that requirements files for other Django versions are also provided
pip install -r django-cms/test_requirements/django-X.Y.txt

# run the test suite

# note that you must be in the django-cms directory when you do this,
# otherwise you'll get "Template not found" errors

cd django-cms

python manage.py test

It can take a few minutes to run.

5.2. Django/Python compatibility table 331




django cms Documentation, Release 4.1.1

When you run tests against your own new code, don’t forget that it’s useful to repeat them for different versions of
Python and Django.

Problems running the tests

We are working to improve the performance and reliability of our test suite. We’re aware of certain problems, but need
feedback from people using a wide range of systems and configurations in order to benefit from their experience.

Please report any issues on our GitHub repository.

If you can help improve the test suite, your input will be especially valuable.

OS X users

In some versions of OS X, gettext needs to be installed so that it is available to Django. If you run the tests and find
that various tests in cms. tests. frontend raise errors, it’s likely that you have this problem.

A solution is:

brew install gettext &% brew link --force gettext

(This requires the installation of Homebrew)

ERROR: test_copy_to_from_clipboard (cms.tests.frontend.PlaceholderBasicTests)

You may find that a single frontend test raises an error. This sometimes happens, for some users, when the entire suite
is run. To work around this you can invoke the test class on its own:

manage.py test cms.PlaceholderBasicTests

and it should then run without errors.

ERROR: zlib is required unless explicitly disabled using --disable-zlib, aborting

If you run into that issue, make sure to install zlib using Homebrew:

brew install libjpeg zlib && brew link --force zlib

Advanced testing options

Run manage.py test --help for the full list of advanced options.

Use --parallel to distribute the test cases across your CPU cores.

Use --failed to only run the tests that failed during the last run.

Use --retest to run the tests using the same configuration as the last run.

Use --vanilla to bypass the advanced testing system and use the built-in Django test command.

To use a different database, set the DATABASE_URL environment variable to a dj-database-url compatible value.

332 Chapter 5. Software version requirements and release notes



https://github.com/django-cms/django-cms/issues
http://brew.sh

django cms Documentation, Release 4.1.1

Running Frontend Tests

We have two types of frontend tests: unit tests and integration tests. For unit tests we are using Karma as a test runner
and Jasmine as a test framework.

In order to be able to run them you need to install necessary dependencies as outlined in frontend tooling installation
instructions.

Linting runs against the test files as well with gulp lint. In order to run linting continuously, do:

gulp watch

Unit tests

Unit tests can be run like this:

gulp unitTest

If your code is failing and you want to run only specific files, you can provide the --tests parameter with comma
separated file names, like this:

gulp unitTest --tests=cms.base,cms.modal

If you want to run tests continuously you can use the watch command:

gulp unitTest --watch

This will rerun the suite whenever source or test file is changed. By default the tests are running on PhantomJS, but
when running Karma in watch mode you can also visit the server it spawns with an actual browser.

INFO [karma]: Karma v0.13.15 server started at http://localhost:9876/

On Travis CI we are using SauceLabs integration to run tests in a set of different real browsers, but you can opt out of
running them on saucelabs using [skip saucelabs] marker in the commit message, similar to how you would skip
the build entirely using [skip ci].

We’re using Jasmine as a test framework and Istanbul as a code coverage tool.

Writing tests

Contributing tests is widely regarded as a very prestigious contribution (you’re making everybody’s future work much
easier by doing so). We’ll always accept contributions of a test without code, but not code without a test - which should
give you an idea of how important tests are.

What we need

We have a wide and comprehensive library of unit-tests and integration tests with good coverage.
Generally tests should be:

* Unitary (as much as possible). i.e. should test as much as possible only one function/method/class. That’s the
very definition of unit tests. Integration tests are interesting too obviously, but require more time to maintain
since they have a higher probability of breaking.

5.2. Django/Python compatibility table 333



http://karma-runner.github.io/
http://jasmine.github.io/
http://phantomjs.org/
http://localhost:9876/

django cms Documentation, Release 4.1.1

 Short running. No hard numbers here, but if your one test doubles the time it takes for everybody to run them,
it’s probably an indication that you’re doing it wrong.

» Easy to understand. If your test code isn’t obvious, please add comments on what it’s doing.

Code of Conduct

Participation in the django CMS project is governed by a code of conduct.

The django CMS community is a pleasant one to be involved in for everyone, and we wish to keep it that way. Partici-
pants are expected to behave and communicate with others courteously and respectfully, whether online or in person,
and to be welcoming, friendly and polite.

We will not tolerate abusive behaviour or language or any form of harassment.

Individuals whose behaviour is a cause for concern will be given a warning, and if necessary will be excluded from
participation in official django CMS channels and events. The Django Software Foundation will also be informed of
the issue.

Raising a concern

If you have a concern about the behaviour of any member of the django CMS community, please contact us via
info@django-cms.org and our Community Manager will reach out to you.

Your concerns will be taken seriously, treated as confidential and investigated. You will be informed, in writing and as
promptly as possible, of the outcome.

5.2.7 Who is behind django CMS

django CMS was released under a BSD licence in 2009. It was created at Divio AG of Ziirich, Switzerland, by Patrick
Lauber, who led its development for several years.

the django CMS Association

In July 2020 Divio handed over the banner to the newly founded django CMS Association (dCA). Its goal is to drive
the success of django CMS, by increasing customer happiness, market share and open-source-contributions. Divio
remains thoroughly committed to django CMS as the host of the django CMS project website and as one of the founding
members of the dCA, next to What. and Eliga Services.

The dCA’s role in steering the project’s development is formalised in the django CMS technical committee, whose
members are drawn from the django CMS community and the dCA.

The dCA maintains overall control of the django CMS repository. As the chief backer of django CMS, and in order
to ensure a consistent and long-term approach to the project, the dCA reserves the right of final say in any decisions
concerning its development.

As a non-profit organization the django CMS Association is dependent on donations to fulfill its mission, which is
based on the following three statements:

¢ Innovate and lead
¢ Foster contribution
* Drive adoption

The best way to donate is to become a member of the association and pay membership fees. The funding is funneled
back into core development and community projects.

334 Chapter 5. Software version requirements and release notes


http://djangoproject.com/foundation/
mailto:info@django-cms.org
https://www.divio.com/
https://github.com/digi604/
https://github.com/digi604/
https://www.django-cms.org/en/about-us/
https://www.django-cms.org/
https://what.digital/
https://eliga.services/
https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md
https://github.com/django-cms/django-cms

django cms Documentation, Release 4.1.1

* Sign up for more information about becoming a member of the dCA
The dCA Tech Committee
Mission
It prepares and updates the technical roadmap for approval by the Executive Board and/or the General Assembly, man-

ages incoming feature requests and proposals and takes decisions on awarding credits for work submitted by members.

¢ Find out more about the mission

Team

¢ Overview of the team

Tasks

 Tasks & Decisions Log

¢ Kanban Board

Processes

¢ Become a core contributor

¢ Become a member of the Tech Committee

5.2. Django/Python compatibility table 335


https://www.django-cms.org/en/sign-up/
https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md#mission
https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md#team
https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/tasks-and-decisions-log.md
https://github.com/django-cms/django-cms-mgmt/projects/1
https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md#become-a-core-contributor
https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md#become-am-member-of-the-tech-committee

django cms Documentation, Release 4.1.1

336 Chapter 5. Software version requirements and release notes



cms.
cms.
.api, 152
cms.
.cms_toolbars, 208
cms.
cms.
.management, 131

.models. fields, 158
.models.permissionmodels, 174
.models.placeholdermodel, 175
.templatetags.cms_tags, 187
.toolbar.items, 202

.toolbar. toolbar, 200
.toolbar_base.CMSToolbar, 207
.utils.placeholder, 212
.utils.plugins, 212
.wizards.helpers, 217
.wizards.wizard_base, 216
.wizards.wizard_pool, 217

cms

cms

cms
cms
cms
cms
cms
cms
cms
cms
cms
cms
cms
cms
cms

admin.placeholderadmin, 177
admin.utils, 208

app_base, 156

constants, 155
forms.fields, 159

PYTHON MODULE INDEX

337



django cms Documentation, Release 4.1.1

338 Python Module Index



Symbols

__init__ Q) (menus.base.NavigationNode method), 166
_build_nodes() (menus.menu_pool.MenuPool

method), 165
_mark_selected() (menus.menu_pool.MenuPool
method), 165

_menus (cms.app_base.CMSApp attribute), 156
_urls (cms.app_base.CMSApp attribute), 156

A

accepted, 329

ACCESS_CHILDREN (in module
cms.models.permissionmodels), 174
ACCESS_DESCENDANTS (in module
cms.models.permissionmodels), 174
ACCESS_PAGE (in module
cms.models.permissionmodels), 174
ACCESS_PAGE_AND_DESCENDANTS (in module

cms.models.permissionmodels), 174
active
command line option, 207
add_ajax_item() (cms.toolbar.items.Menu method),
202
add_ajax_item()
method), 203
add_ajax_item() (cms.toolbar.items.ToolbarAPIMixin
method), 206
add_ajax_item()
method), 200
add_break () (cms.toolbar.items.Menu method), 202
add_break () (cms.toolbar.items.SubMenu method), 203
add_button() (cms.toolbar.items.ButtonList method),
205
add_button()
method), 200
add_button_list() (cms.toolbar.toolbar.CMSToolbar
method), 200
add_item() (cms.toolbar.items.Menu method), 202
add_item() (cms.toolbar.items.SubMenu method), 203
add_item(Q) (cms.toolbar.items. ToolbarA PIMixin
method), 206

(cms.toolbar.items.SubMenu

(cms.toolbar.toolbar. CMSToolbar

(cms.toolbar.toolbar.CMSToolbar

INDEX

add_item() (cms.toolbar.toolbar.CMSToolbar method),
201
add_link_item() (cms.toolbar.items.Menu method),
202
add_link_item()
method), 203
add_link_item() (cms.toolbar.items.ToolbarAPIMixin
method), 206
add_link_item(Q)
method), 201
add_modal_button()
method), 205
add_modal_button() (cms.toolbar.toolbar.CMSToolbar
method), 201
add_modal_item() (cms.toolbar.items.Menu method),
202
add_modal_item()
method), 203
add_modal_item() (cms.toolbar.items.ToolbarAPIMixin
method), 206
add_modal_item()
method), 201
add_plugin(Q) (cms.models.placeholdermodel. Placeholder
method), 175
add_plugin() (in module cms.api), 153
add_sideframe_button()
(cms.toolbar.items. ButtonList method), 205
add_sideframe_button()
(ecms.toolbar.toolbar.CMSToolbar
201
add_sideframe_item()
method), 202
add_sideframe_item()
method), 203
add_sideframe_item()
(cms.toolbar.items.ToolbarAPIMixin method),
206
add_sideframe_item()
(cms.toolbar.toolbar.CMSToolbar
201
add_view() (cms.extensions.admin.PageContentExtensionAdmin
method), 173

(cms.toolbar.items.SubMenu

(cms.toolbar.toolbar. CMSToolbar

(cms.toolbar.items. ButtonList

(cms.toolbar.items.SubMenu

(ems.toolbar.toolbar.CMSToolbar

method),
(ems.toolbar.items.Menu

(cms.toolbar.items.SubMenu

method),

339



django cms Documentation, Release 4.1.1

add_view() (cms.extensions.admin. Page ExtensionAdmin
method), 173
admin_action_button()
(cms.admin.utils. ChangeListActionsMixin
static method), 208
admin_manager (cms.models.contentmodels. Page Content
attribute), 172
ADMIN_MENU_IDENTIFIER
cms.cms_toolbars), 208
admin_preview (cms.plugin_base.CMSPluginBase at-
tribute), 181
AjaxItem (class in cms.toolbar.items), 204
allow_children (cms.plugin_base. CMSPluginBase at-
tribute), 181
app_config (cms.app_base. CMSApp attribute), 157
app_name (cms.app_base. CMSApp attribute), 157
apply_modifiers() (menus.menu_pool.MenuPool
method), 165
assign_plugins() (in module cms.utils.plugins), 185,
212
assign_user_to_page() (in module cms.api), 154
attr (menus.base.NavigationNode attribute), 165, 166
AUTH_USER_MODEL
setting, 134
AuthVisibility (class in menus.modifiers), 167

B

backport, 331

BaseItem (class in cms.toolbar.items), 205
blocker, 331

Break (class in cms.toolbar.items), 204
built-in function

(in module

child_classes (cms.plugin_base.CMSPluginBase at-
tribute), 182
clean() (cms.forms.fields.PageSmartLinkField method),

160
clear() (cms.models.placeholdermodel. Placeholder
method), 175

clear () (menus.menu_pool.MenuPool method), 165

clear_content_cache()
(cms.admin.utils. GrouperModelAdmin
method), 210

.admin.placeholderadmin

module, 177

.admin.utils

module, 208

api

module, 152

app_base

module, 156

cms_toolbars

module, 208

constants

module, 155

.forms.fields

module, 159

.management

module, 131

.models.fields

module, 158

.models.permissionmodels

module, 174

.models.placeholdermodel

module, 175

cms

cms

cms.

cms.

cms.

cms.

cms

cms

cms

cms

cms

menus .menu_pool . _build_nodes_inner_for_oneCH&nkgnyplatetags.cms_tags

165

module, 187

menus. templatetags.menu_tags.cut_levels(), Ciis.toolbar.items

165
Button (class in cms.toolbar.items), 205
ButtonList (class in cms.toolbar.items), 205

C

cache (cms.plugin_base. CMSPluginBase attribute), 181

cache_placeholder (cms.models.placeholdermodel. Placeholder

attribute), 177

module, 202
cms.toolbar.toolbar

module, 200
cms.toolbar_base.ClMSToolbar

module, 207
cms.utils.placeholder
module, 212
cms.utils.plugins

can_change_page () (in module cms.api), 155 mc?dulz, 2lh2 .
change_form_template cms.w1§a; 52-176 pers

(cms.plugin_base.CMSPluginBase  attribute), module, =1/

182 cms .wizards.wizard_base
changed_date (cms.models.pluginmodel. CMSPlugin at- mc?dule, 216_

tribute), 184 cms.wizards.wizard_pool
changeform_view() (cms.admin.utils. GrouperModelAdmin module, 217

method), 210 CMS_APPHOOKS
ChangeListActionsMixin (class in cms.admin.utils), setting, 140

208 CMS_CACHE_DURATIONS

setting, 146

340

Index



django cms Documentation, Release 4.1.1

CMS_CACHE_PREFIX
setting, 147

CMS_CONFIRM_VERSION4
setting, 151

CMS_ENDPOINT_LIVE_URL_QUERYSTRING_PARAM

setting, 150

CMS_TEMPLATES
setting, 135

CMS_TEMPLATES_DIR
setting, 135

cms_toolbar
template tag, 199

CMS_ENDPOINT_LIVE_URL_QUERYSTRING_PARAM_ENABLEIMS_TOOLBAR_ANONYMOUS_ON

setting, 150
CMS_INTERNAL_IPS
setting, 145
CMS_LANGUAGES
setting, 140
CMS_MAX_PAGE_PUBLISH_REVERSIONS
setting, 148
CMS_MEDIA_PATH
setting, 144
CMS_MEDIA_ROOT
setting, 144
CMS_MEDIA_URL
setting, 145
CMS_PAGE_CACHE
setting, 147
CMS_PAGE_MEDIA_PATH
setting, 145
CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER
setting, 150
CMS_PAGE_WIZARD_CONTENT_PLUGIN
setting, 150
CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY
setting, 150
CMS_PERMISSION
setting, 145
CMS_PLACEHOLDER_CACHE
setting, 148
CMS_PLACEHOLDER_CONF
setting, 136
CMS_PLUGIN_CACHE
setting, 148
CMS_PLUGIN_CONTEXT_PROCESSORS
setting, 139
CMS_PLUGIN_PROCESSORS
setting, 139
CMS_PUBLIC_FOR
setting, 146
CMS_RAW_ID_USERS
setting, 146
CMS_REDIRECT_PRESERVE_QUERY_PARAMS
setting, 150
CMS_REDIRECT_TO_LOWERCASE_SLUG
setting, 151
CMS_REQUEST_IP_RESOLVER
setting, 145
CMS_TEMPLATE_INHERITANCE
setting, 135

setting, 149
CMS_TOOLBAR_URL__DISABLE
setting, 149
CMS_TOOLBAR_URL__ENABLE
setting, 149
CMS_TOOLBARS
setting, 148
CMS_UNIHANDECODE_DECODERS
setting, 143
CMS_UNIHANDECODE_DEFAULT_DECODER
setting, 144
CMS_UNIHANDECODE_HOST
setting, 143
CMS_UNIHANDECODE_VERSION
setting, 143
CMSApp (class in cms.app_base), 156
CMSAppConfig (class in cms.app_base), 158
CMSAppExtension (class in cms.app_base), 158
CMSAttachMenu (class in cms.menu_bases), 169
CMSMenu (class in cms.cms_menus), 168
CMSPlugin (class in cms.models.pluginmodel), 183
CMSPlugin.DoesNotExist, 183
CMSPlugin.MultipleObjectsReturned, 183
CMSPluginBase (class in cms.plugin_base), 177
CMSSitemap (class in cms.sitemaps), 187
CMSToolbar (class in cms.toolbar.toolbar), 200
code
setting, 141
command line option
active, 207
disabled, 207
key, 207
on_close:, 207
position, 207
side, 207
verbose_name, 207
compress() (cms.forms.fields. PageSelectFormField
method), 159
configure_app() (cms.app_base.CMSAppExtension
method), 158
content_indicator()
(cms.models.contentmodels. EmptyPage Content
method), 173
content_indicator()
(cms.models.contentmodels. PageContent
method), 172
content_mode_active

Index

341



django cms Documentation, Release 4.1.1

(cms.toolbar.toolbar.CMSToolbar
201
content_model (cms.admin.utils.GrouperModelAdmin
attribute), 211
content_related_field
(cms.admin.utils. GrouperModelAdmin
tribute), 211
copy_plugins_to_language() (in module cms.api),
155
copy_plugins_to_placeholder()
cms.utils.plugins), 185, 213

attribute),

at-

(in module

copy_relations () (cms.models.pluginmodel. CMSPlugin

method), 183
copy_with_descendants()

(ems.models.pagemodel. Page method), 170
create_page() (in module cms.api), 152
create_page_content () (in module cms.api), 153
create_page_user () (in module cms.api), 154
create_title() (in module cms.api), 153
creation_date (cms.models.pluginmodel. CMSPlugin

attribute), 184
current_content_filters

(cms.admin.utils. GrouperModelAdmin

erty), 211

prop-

D

default_form_class (cms.models.fields.PageField at-
tribute), 158

default_width (cms.models.placeholdermodel. Placeholdefind_items ()

attribute), 177

delete_model () (cms.extensions.admin.PageContentExtenkimdAdreéms ()

method), 173

EmptyPageContent (class in
cms.models.contentmodels), 172

exclude_permissions (cms.app_base. CMSApp at-
tribute), 157

expert opinion, 330

EXPIRE_NOW (in module cms.constants), 156

ExtensionToolbar (class in cms.extensions.toolbar),
174

extra_grouping_fields
(cms.admin.utils. GrouperModelAdmin
tribute), 211

at-

fallbacks
setting, 142

find_ancestors_and_remove_children()
(cms.cms_menus.SoftRootCutter
169

find_first () (cms.toolbar.items.Menu method), 202

find_first() (cms.toolbar.items.SubMenu method),
203

find_first(Q) (cms.toolbar.items.ToolbarAPIMixin
method), 206

find_first(Q
method), 201

find_items () (cms.toolbar.items.Menu method), 202

find_items() (cms.toolbar.items.SubMenu method),
203

method),

(ems.toolbar.toolbar.CMSToolbar

(cms.toolbar.items. ToolbarAPIMixin
method), 206
(cms.toolbar.toolbar. CMSToolbar
method), 201

delete_model () (cms.extensions.admin.PageExtensionAdiorm (cms.plugin_base. CMSPluginBase attribute), 182

method), 173

delete_plugin() (cms.models.placeholdermodel. PlacehokdontendEditableAdminMixin

method), 175

delete_view() (cms.admin.utils.GrouperModelAdmin
method), 210

design decision, 330

disable_child_plugins
(cms.plugin_base. CMSPluginBase
182

disabled

command line option, 207
discover_menus() (menus.menu_pool.MenuPool

attribute),

method), 165

docs, 330

downcast_plugins() (in module cms.utils.plugins),
186, 213

E

easy pickings, 330
edit_mode_active (cms.toolbar.toolbar.CMSToolbar
attribute), 201

formfield () (cms.models.fields. PageField method), 158
(class in
cms.admin.placeholderadmin), 177

get_absolute_url () (cms.models.contentmodels. Page Content

method), 172
get_absolute_url()
method), 164, 166

(menus.base.NavigationNode

get_action_urls() (cms.models.pluginmodel. CMSPlugin

method), 183

get_actions_list () (cms.admin.utils. ChangeListActionsMixin

method), 209

get_actions_list () (cms.admin.utils. GrouperModelAdmin

method), 210
get_admin_list_actions()

(cms.admin.utils. ChangeListActionsMixin

method), 209
get_ancestors()

method), 164, 166

(menus.base.NavigationNode

342

Index



django cms Documentation, Release 4.1.1

get_apphooks()  (cms.menu_bases.CMSAttachMenu
class method), 169

get_application_urls()
(cms.models.pagemodel. Page method), 170

get_attribute() (menus.base.NavigationNode
method), 164, 166

get_bound_plugin() (cms.models.pluginmodel. CMSPlugget_descendants()

method), 183

get_bound_plugins() (in module cms.utils.plugins),
186, 214

get_buttons() (cms.toolbar.items.ButtonList method),
205

get_cache_expiration()
(cms.models.placeholdermodel.Placeholder
method), 175

get_cache_expiration()
(cms.plugin_base. CMSPluginBase
178

get_changed_by(Q
method), 170

get_changed_date()
method), 170

method),
(cms.models.pagemodel.Page

(cms.models.pagemodel. Page

get_changelist () (cms.admin.utils. GrouperModelAdmin

method), 210

get_changelist_instance()
(cms.admin.utils.GrouperModelAdmin
method), 210

get_child_class_overrides()
(cms.plugin_base. CMSPluginBase
method), 178

get_child_classes()
(cms.plugin_base.CMSPluginBase
method), 178

get_child_plugin_candidates()
(cms.plugin_base. CMSPluginBase
method), 178

get_config(Q) (cms.app_base.CMSApp method), 156

get_config_add_url(Q) (cms.app_base.CMSApp
method), 156

get_configs() (cms.app_base. CMSApp method), 156

get_content_field()
(cms.admin.utils.GrouperModelAdmin
method), 210

get_content_obj()
method), 170

get_context() (cms.toolbar.items.Ajaxltem method),
204

get_context() (cms.toolbar.items.Baseltem method),
205

get_context() (cms.toolbar.items.ButtonList method),
205

get_context() (cms.toolbar.items.Linkltem method),
204

get_context () (cms.toolbar.items.Menu method), 202

class

class

class

(cms.models.pagemodel.Page

get_context() (cms.toolbar.items.SubMenu method),
203

get_context () (menus.templatetags.menu_tags.ShowMenu

method), 165
get_declared_placeholders_for_obj () (in module
cms.utils.placeholder), 212
(menus.base.NavigationNode
method), 164, 166
get_description() (cms.wizards.wizard_base. Wizard
method), 216
get_empty_change_form_text()
(cms.plugin_base. CMSPluginBase
method), 178
get_entries() (in module cms.wizards.helpers), 217
get_entry(Q) (ems.wizards.wizard_pool. WizardPool
method), 217
get_entry() (in module cms.wizards.helpers), 217
get_extra_context()
(cms.admin.utils. GrouperModelAdmin
method), 210
get_extra_placeholder_menu_items()

class

(cms.plugin_base. CMSPluginBase class

method), 179
get_extra_plugin_menu_items()

(cms.plugin_base. CMSPluginBase class

method), 179

get_fieldsets() (cms.plugin_base.CMSPluginBase
method), 179

get_filled_languages()
(cms.models.placeholdermodel.Placeholder
method), 175

get_form() (cms.admin.utils. GrouperModelAdmin
method), 210

get_grouper_obj () (cms.admin.utils. GrouperModelAdmin

method), 211
get_grouping_from_request()
(cms.admin.utils. GrouperModelAdmin
method), 211
get_instance_icon_alt()
(cms.models.pluginmodel. CMSPlugin method),
183
get_instance_icon_src()
(cms.models.pluginmodel. CMSPlugin method),
183
get_instances() (cms.menu_bases.CMSAttachMenu
class method), 169
get_item_count() (cms.toolbar.items.Menu method),
202
get_item_count()
method), 203
get_item_count () (cms.toolbar.items.ToolbarAPIMixin
method), 206
get_item_count()
method), 201

(cms.toolbar.items.SubMenu

(ems.toolbar.toolbar.CMSToolbar

Index

343



django cms Documentation, Release 4.1.1

get_language ) (cms.admin.utils. GrouperModelAdmin
method), 211
get_language_from_request()
(cms.admin.utils. GrouperModelAdmin
method), 211
get_language_tuple()
(cms.admin.utils. GrouperModelAdmin
method), 211
get_media_path()
method), 170
get_menu() (cms.toolbar.toolbar.CMSToolbar method),
201
get_menu_title()
method), 170
get_menu_title()
method), 165, 166
get_menus () (cms.app_base.CMSApp method), 156
get_menus_by_attribute()
(menus.menu_pool.MenuPool method), 165
get_meta_description()
(cms.models.pagemodel. Page method), 170

(cms.models.pagemodel.Page

(cms.models.pagemodel.Page

(menus.base.NavigationNode

186, 213
get_plugin_instance()
(cms.models.pluginmodel. CMSPlugin method),

183

get_plugin_model() (in module cms.utils.plugins),
186, 213

get_plugin_restrictions() (in module

cms.utils.plugins), 186

get_plugin_tree_order()
(ecms.models.placeholdermodel.Placeholder
method), 176

get_plugin_urls(Q) (cms.plugin_base. CMSPluginBase
method), 179

get_plugins () (cms.models.placeholdermodel.Placeholder
method), 176

get_plugins () (in module cms.utils.plugins), 186, 212

get_plugins_as_layered_tree() (in module
cms.utils.plugins), 187,213

get_plugins_list () (cms.models.placeholdermodel.Placeholder
method), 176

get_preserved_filters()

get_model_perms () (cms.extensions.admin. PageContentExtensionAt@nin admin.utils. GrouperModelAdmin

method), 173

method), 211

get_model_perms () (cms.extensions.admin.PageExtensiomgadmaueryset () (cms.admin.utils. GrouperModelAdmin

method), 173
get_next_plugin_position()
(cms.models.placeholdermodel. Placeholder
method), 175
get_nodes () (cms.cms_menus. CMSMenu method), 168
get_nodes () (menus.base.Menu method), 164
get_nodes() (menus.menu_pool.MenuPool method),
165
get_or_create_menu()
method), 202
get_or_create_menu()
(ems.toolbar.toolbar.CMSToolbar
201
get_page_content_extension_admin()
(cms.extensions.toolbar. ExtensionToolbar
method), 174
get_page_content_obj_attribute()
(ems.models.pagemodel. Page method), 170
get_page_draft() (in module cms.api), 154
get_page_extension_admin()
(cms.extensions.toolbar. ExtensionToolbar
method), 174
get_page_title()
method), 170
get_path(Q (cms.models.pagemodel.Page method), 170
get_placeholder_from_slot() (in module
cms.utils.placeholder), 212
get_plugin() (cms.plugin_pool PluginPool method),
185
get_plugin_class() (in module cms.utils.plugins),

(cms.toolbar.items.Menu

method),

(cms.models.pagemodel.Page

method), 211
get_readonly_fields()
(cms.admin.utils. GrouperModelAdmin
method), 211
get_redirect()
method), 171
get_registered_menus()
(menus.menu_pool.MenuPool method), 165
get_render_template()
(cms.plugin_base. CMSPluginBase
177
get_success_url() (cms.wizards.wizard_base.Wizard
method), 216
get_template() (cms.models.contentmodels. Page Content
method), 172
get_template_name()
(cms.models.contentmodels. PageContent
method), 172
get_template_name()
method), 171
get_title() (cms.models.pagemodel.Page method),
171
get_title()
method), 216
get_title_extension_admin()
(cms.extensions.toolbar. ExtensionToolbar
method), 174
get_urls() (cms.admin.placeholderadmin. FrontendEditableAdminMixin
method), 177
get_urls() (cms.app_base.CMSApp method), 157

(cms.models.pagemodel.Page

method),

(cms.models.pagemodel.Page

(cms.wizards.wizard_base.Wizard

344

Index



django cms Documentation, Release 4.1.1

get_vary_cache_on()
(cms.models.placeholdermodel.Placeholder
method), 176

get_vary_cache_on()
(cms.plugin_base.CMSPluginBase
179

get_weight(
method), 216

get_xframe_options()
(cms.models.contentmodels. PageContent
method), 172

method),

(ems.wizards.wizard_base.Wizard

grouper_£field_name (cms.admin.utils. GrouperModelAdmin

attribute), 212
GrouperModelAdmin (class in cms.admin.utils), 209

H

has patch, 330

has_add_permission() (cms.models.pagemodel.Page
method), 171

has_add_plugin_permission()
(cms.models.placeholdermodel.Placeholder
method), 176

has_add_plugins_permission()
(cms.models.placeholdermodel. Placeholder
method), 176

has_change_permission()
(cms.models.placeholdermodel.Placeholder
method), 176

has_change_permissions_permission()
(cms.models.pagemodel.Page method), 171

has_change_plugin_permission()
(cms.models.placeholdermodel.Placeholder
method), 176

has_changed() (cms.forms.fields.PageSelectFormField
method), 159

has_clear_permission()
(cms.models.placeholdermodel.Placeholder
method), 176

has_delete_plugin_permission()
(cms.models.placeholdermodel. Placeholder
method), 176

has_delete_plugins_permission()
(cms.models.placeholdermodel.Placeholder
method), 176

has_move_page_permission()
(cms.models.pagemodel. Page method), 171

has_move_plugin_permission()
(cms.models.placeholdermodel.Placeholder
method), 176

has_plugins ) (cms.models.placeholdermodel.Placeholder

method), 176
has_reached_plugin_limit()

cms.utils.plugins), 187,213
hide_untranslated

(in module

setting, 142

history_view() (cms.admin.utils. GrouperModelAdmin

method), 211

icon_alt() (cms.plugin_base.CMSPluginBase
method), 179
icon_src() (cms.plugin_base.CMSPluginBase

method), 180

id (ecms.wizards.wizard_base.Wizard property), 216

index (cms.toolbar.items.ItemSearchResult attribute),

207

is_editable (cms.models.placeholdermodel. Placeholder
attribute), 177

is_editable () (cms.models.contentmodels. EmptyPage Content
method), 173

is_editable() (cms.models.contentmodels.PageContent
method), 172

is_potential_home()
method), 171

is_potential_home()
(cms.models.pagemodel. PageType
171

is_registered() (cms.wizards.wizard_pool. WizardPool
method), 217

is_selected() (menus.base.NavigationNode method),
165, 166

is_static (cms.models.placeholdermodel.Placeholder
attribute), 177

item (cms.toolbar.items.ItemSearchResult attribute), 206

ItemSearchResult (class in cms.toolbar.items), 206

K

key
command line option, 207

(cms.models.pagemodel.Page

method),

L

language (cms.models.pluginmodel. CMSPlugin  at-
tribute), 184
language_chooser
template tag, 199
LANGUAGE_MENU_IDENTIFIER (in module

cms.cms_toolbars), 208

LEFT (in module cms.constants), 156

Level (class in menus.modifiers), 167

LinkItem (class in cms.toolbar.items), 204

log_addition() (cms.plugin_base.CMSPluginBase
method), 180

log_change () (cms.plugin_base.CMSPluginBase

method), 180

log_deletion() (cms.plugin_base.CMSPluginBase
method), 180

Index

345



django cms Documentation, Release 4.1.1

M

mark_descendants()
method), 166

mark_levels() (menus.modifiers.Level method), 167

marked for rejection, 329

Marker (class in menus.modifiers), 166

MAX_EXPIRATION_TTL (in module cms.constants), 156

Menu (class in cms.toolbar.items), 202

Menu (class in menus.base), 164

MenuPool (class in menus.menu_pool), 165

(menus.modifiers.Marker

menus .menu_pool._build_nodes_inner_for_one_menu()

built-in function, 165
menus .menu_pool .MenuPool (built-in class), 165
menus.templatetags.menu_tags.cut_levels()
built-in function, 165
menus . templatetags.menu_tags.ShowMenu (built-in
class), 165
ModalButton (class in cms.toolbar.items), 205
ModalItem (class in cms.toolbar.items), 204
model (cms.plugin_base.CMSPluginBase attribute), 178
Modifier (class in menus.base), 164
modify () (cms.cms_menus.NavExtender method), 168
modify () (cms.cms_menus.SoftRootCutter method), 169
modify () (menus.base.Modifier method), 164
modify () (menus.modifiers.AuthVisibility method), 167
modify () (menus.modifiers.Level method), 167
modify () (menus.modifiers.Marker method), 167
module
cms.
cms.
cms.

admin.placeholderadmin, 177
admin.utils, 208
api, 152
cms . app_base, 156
cms.cms_toolbars, 208
cms.constants, 155
cms. forms. fields, 159
cms .management, 131
cms.models. fields, 158
cms .models.permissionmodels, 174
cms .models.placeholdermodel, 175
cms.templatetags.cms_tags, 187
cms.toolbar.items, 202
cms. toolbar. toolbar, 200
cms . toolbar_base.CMSToolbar, 207
cms.utils.placeholder, 212
cms.utils.plugins, 212
cms.wizards.helpers, 217
cms .wizards.wizard_base, 216
cms.wizards.wizard_pool, 217
module (cms.plugin_base.CMSPIluginBase attribute),
182
more info, 330
move_page() (cms.models.pagemodel.Page method),
171

move_plugin() (cms.models.placeholdermodel.Placeholder

method), 176

N

name (cms.app_base. CMSApp attribute), 157

name (cms.plugin_base. CMSPluginBase attribute), 182

NavExtender (class in cms.cms_menus), 168

NavigationNode (class in menus.base), 164, 165

non-issue, 329

notify_on_autoadd()

(cms.models.pluginmodel. CMSPlugin method),

184

notify_on_autoadd_children()
(cms.models.pluginmodel. CMSPlugin method),
184

O

on hold, 331
on_close:
command line option, 207

P

Page (class in cms.models.pagemodel), 170
page (cms.models.placeholdermodel.Placeholder prop-
erty), 177
page_attribute
template tag, 191
page_language_url
template tag, 199
page_lookup
template tag, 190
PAGE_MENU_IDENTIFIER (in module cms.cms_toolbars),
208
page_only (cms.plugin_base. CMSPluginBase attribute),
182
page_url
template tag, 191
PageContent (class in cms.models.contentmodels), 172
PageContentExtension (class in
cms.extensions.models), 173
PageContentExtensionAdmin
cms.extensions.admin), 173
PageExtension (class in cms.extensions.models), 173
PageExtensionAdmin (class in cms.extensions.admin),
173
PageField (class in cms.models.fields), 158
PagePermission (class in
cms.models.permissionmodels), 174
PageSelectFormField (class in cms.forms.fields), 159
PageSmartLinkField (class in cms.forms.fields), 160
PageType (class in cms.models.pagemodel), 171
PageUrl (class in cms.models.pagemodel), 171
parent (cms.models.pluginmodel. CMSPlugin attribute),
184

(class in

346

Index



django cms Documentation, Release 4.1.1

parent_classes (cms.plugin_base. CMSPluginBase at-
tribute), 182

patch, 330

permissions (cms.app_base. CMSApp attribute), 157

placeholder

template tag, 187

Placeholder (class in cms.models.placeholdermodel),
175

placeholder (cms.models.pluginmodel. CMSPlugin at-
tribute), 184

PlaceholderAdminMixin (class in
cms.admin.placeholderadmin), 177

PlaceholderField (class in cms.models.fields), 159

PlaceholderRelationField (class in
cms.models.fields), 159

plugin_type (cms.models.pluginmodel. CMSPlugin at-
tribute), 184

PluginMenuItem (class in cms.plugin_base), 183

PluginPool (class in cms.plugin_pool), 184

populate() (cms.toolbar.toolbar.CMSToolbar method),
201

position

command line option, 207

position (cms.models.pluginmodel. CMSPlugin
tribute), 184

post_copy () (ems.models.pluginmodel. CMSPlugin
method), 184

preview_mode_active
(cms.toolbar.toolbar.CMSToolbar
201

at-

attribute),

public

setting, 142
publish_page() (in module cms.api), 154
publish_pages() (in module cms.api), 154

R

ready for review, 329
ready to be merged, 330
ready() (cms.app_base.CMSAppExtension method),
158
redirect_on_fallback
setting, 142

refresh_from_db() (cms.models.pluginmodel. CMSPlugin

method), 184
REFRESH_PAGE (in module cms.constants), 207

register() (cms.wizards.wizard_pool WizardPool
method), 217

register_plugin() (ecms.plugin_pool. PluginPool
method), 185

reload () (cms.models.pagemodel.Page method), 171

render() (cms.plugin_base.CMSPluginBase method),
180

render () (cms.toolbar.items.Baseltem method), 206

render () (cms.toolbar.items.Menu method), 203

render () (cms.toolbar.items.SubMenu method), 204
render_change_form()
(cms.plugin_base. CMSPluginBase
181
render_model
template tag, 194
render_model_add
template tag, 197
render_model_add_block
template tag, 198
render_model_block
template tag, 195
render_model_icon
template tag, 196
render_placeholder
template tag, 188
render_plugin
template tag, 192
render_plugin (cms.plugin_base.CMSPluginBase at-
tribute), 182
render_plugin_block
template tag, 193
render_template (cms.plugin_base. CMSPluginBase
attribute), 182
render_uncached_placeholder
template tag, 189
require_parent (cms.plugin_base. CMSPluginBase at-
tribute), 182
rescan_placeholders()
(cms.models.contentmodels.Page Content
method), 172
response_add() (cms.plugin_base.CMSPluginBase

method),

method), 181
response_change () (cms.plugin_base. CMSPluginBase
method), 181

RIGHT (in module cms.constants), 156

S

save() (cms.models.contentmodels. Page Content
method), 172

save () (cms.models.pagemodel.Page method), 171
save_form() (cms.plugin_base. CMSPluginBase
method), 181

save_model () (cms.admin.utils.GrouperModelAdmin

method), 211

save_model () (cms.extensions.admin.PageContentExtensionAdmin

method), 173

save_model () (cms.extensions.admin.PageExtensionAdmin

method), 173
save_model () (cms.plugin_base.CMSPluginBase

method), 181

set_as_homepage() (cms.models.pagemodel.Page
method), 171

setting

Index

347



django cms Documentation, Release 4.1.1

AUTH_USER_MODEL, 134

CMS_APPHOOKS, 140

CMS_CACHE_DURATIONS, 146

CMS_CACHE_PREFIX, 147

CMS_CONFIRM_VERSION4, 151

CMS_ENDPOINT_LIVE_URL_QUERYSTRING_PARAN,
150

template tag, 189
show_sub_menu

template tag, 161
show_uncached_placeholder

template tag, 190
side

command line option, 207

CMS_ENDPOINT_LIVE_URL_QUERYSTRING_PARAM_ENA&BAEPrameButton (class in cms.toolbar.items), 205

150

CMS_INTERNAL_IPS, 145
CMS_LANGUAGES, 140
CMS_MAX_PAGE_PUBLISH_REVERSIONS, 148
CMS_MEDIA_PATH, 144
CMS_MEDIA_ROOT, 144
CMS_MEDIA_URL, 145
CMS_PAGE_CACHE, 147
CMS_PAGE_MEDIA_PATH, 145
CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER, 150
CMS_PAGE_WIZARD_CONTENT_PLUGIN, 150
CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY, 150
CMS_PERMISSION, 145
CMS_PLACEHOLDER_CACHE, 148
CMS_PLACEHOLDER_CONF, 136
CMS_PLUGIN_CACHE, 148
CMS_PLUGIN_CONTEXT_PROCESSORS, 139
CMS_PLUGIN_PROCESSORS, 139
CMS_PUBLIC_FOR, 146
CMS_RAW_ID_USERS, 146
CMS_REDIRECT_PRESERVE_QUERY_PARAMS, 150
CMS_REDIRECT_TO_LOWERCASE_SLUG, 151
CMS_REQUEST_IP_RESOLVER, 145
CMS_TEMPLATE_INHERITANCE, 135
CMS_TEMPLATES, 135
CMS_TEMPLATES_DIR, 135
CMS_TOOLBAR_ANONYMOUS_ON, 149
CMS_TOOLBAR_URL__DISABLE, 149
CMS_TOOLBAR_URL__ENABLE, 149
CMS_TOOLBARS, 148
CMS_UNIHANDECODE_DECODERS, 143
CMS_UNIHANDECODE_DEFAULT_DECODER, 144
CMS_UNIHANDECODE_HOST, 143
CMS_UNIHANDECODE_VERSION, 143
code, 141
fallbacks, 142
hide_untranslated, 142
public, 142
redirect_on_fallback, 142

show_breadcrumb
template tag, 162

show_menu
template tag, 160

show_menu_below_id
template tag, 161

show_placeholder

SideframeItem (class in cms.toolbar.items), 204

slot (cms.models.placeholdermodel.Placeholder — at-

tribute), 177
SoftRootCutter (class in cms.cms_menus), 168
static_placeholder

template tag, 188
SubMenu (class in cms.toolbar.items), 203

T

template (cms.toolbar.items.Ajaxltem attribute), 204
template (cms.toolbar.items.Baseltem attribute), 206

template (cms.toolbar.items.Break attribute), 205
template (cms.toolbar.items. ButtonList attribute),

205

template (cms.toolbar.items.Linkltem attribute), 204

template (cms.toolbar.items.Menu attribute), 203

template (cms.toolbar.items.Modalltem attribute), 204
template (cms.toolbar.items.Sideframeltem attribute),

204

template (cms.toolbar.items.SubMenu attribute), 204

template tag
cms_toolbar, 199
language_chooser, 199
page_attribute, 191
page_language_url, 199
page_lookup, 190
page_url, 191
placeholder, 187
render_model, 194
render_model_add, 197
render_model_add_block, 198
render_model_block, 195
render_model_icon, 196
render_placeholder, 188
render_plugin, 192
render_plugin_block, 193
render_uncached_placeholder, 189
show_breadcrumb, 162
show_menu, 160
show_menu_below_id, 161
show_placeholder, 189
show_sub_menu, 161
show_uncached_placeholder, 190
static_placeholder, 188

TEMPLATE_INHERITANCE_MAGIC (in module

cms.constants), 156
tests, 330

348

Index



django cms Documentation, Release 4.1.1

text_enabled (cms.plugin_base. CMSPluginBase
attribute), 182

toggle_in_navigation()
(cms.models.contentmodels. PageContent
method), 172

ToolbarAPIMixin (class in cms.toolbar.items), 206

U

unregister() (cms.wizards.wizard_pool. WizardPool
method), 218

unregister_plugin() (cms.plugin_pool.PluginPool
method), 185

user_has_add_permission()
(cms.wizards.wizard_base. Wizard method),
216

\Y

validate_templates() (cms.plugin_pool.PluginPool
method), 185
verbose_name
command line option, 207
view_on_site() (cms.admin.utils.GrouperModelAdmin
method), 211
VISIBILITY_ALL (in module cms.constants), 155
VISIBILITY_ANONYMOUS (in module cms.constants), 155
VISIBILITY_USERS (in module cms.constants), 155

W

watch_models (cms.toolbar.toolbar.CMSToolbar at-
tribute), 202

widget  (cms.forms.fields.PageSelectFormField — at-
tribute), 159

widget (cms.forms.fields. PageSmartLinkField attribute),
160

widget_attrs() (cms.forms.fields.PageSmartLinkField
method), 160

Wizard (class in cms.wizards.wizard_base), 216

wizard_pool (in module cms.wizards.wizard_pool), 217

WizardBase (class in cms.wizards.wizard_base), 214

WizardPool (class in cms.wizards.wizard_pool), 217

won't fix, 329

work in progress, 329

Index

349



	Philosophy
	Overview
	Tutorials
	How-to guides
	Explanation
	Reference

	Join us online
	Discord
	StackOverflow

	Why django CMS?
	Software version requirements and release notes
	Long-term support (LTS)
	Current LTS table
	Unsupported LTS versions

	Django/Python compatibility table
	Tutorials
	Installing django CMS
	What you need to get started
	Production-ready: django CMS quickstart
	Setup Docker (Step 1)
	Run the demo project in docker (Step 2)
	Create your first page (Step 3)
	Publish your first page (Step 4)

	Installing django CMS by hand
	Install the django CMS package (Step 1)
	Create a new django CMS project (Step 2)
	Spin up your Django development server (Step 3)

	Adding django CMS to an existing Django project
	Minimally-required applications and settings
	INSTALLED_APPS
	Language settings
	Database
	Confirming that you are not migrating a version 3 project
	Database tables
	Sekizai
	Middleware
	Context processors

	Further required configuration
	URLs
	Versioning and Aliases
	Templates
	Media and static file handling
	Using cms check for configuration
	Adding content-handling functionality
	Django Filer
	Django CMS CKEditor
	Django CMS Frontend
	Miscellaneous plugins

	Next steps

	Templates & Placeholders
	Templates
	Placeholders
	Static Aliases
	Rendering Menus

	Integrating applications
	Incorporate the polls application
	Install polls
	Improve the templates for Polls

	Set up a new polls_cms_integration application
	Create the application
	Add it to INSTALLED_APPS


	Plugins
	Create a plugin model
	The Plugin Class
	The template

	Test the plugin

	Apphooks
	Create an apphook
	Create the apphook class
	Remove the old polls entry from the project’s urls.py
	Restart the runserver

	Apply the apphook to a page

	Extending the toolbar
	Add a basic PollToolbar class
	Add a menu to the toolbar
	Add nodes to the Polls menu
	Add buttons to the toolbar

	Further refinements
	The complete cms_toolbars.py

	Extending the navigation menu
	Create the navigation menu

	Content creation wizards

	Explanation
	Plugins
	Why would you need to write a plugin?
	Components of a plugin
	CMSPlugin
	CMSPluginBase


	Application hooks (“apphooks”)
	Multiple apphooks per application
	Apphook configurations

	Publishing
	Version states
	Code and PageContent

	Serving content in multiple languages
	Basic concepts
	How django CMS determines the user’s preferred language
	How django CMS determines what language to serve
	What django CMS shows in your menus


	Internationalisation
	URLs
	How django CMS determines which language to serve

	Permissions
	Permission modes
	Key user permissions
	Permissions in Page permissions mode
	Global and per-page permissions
	Page permission options
	Per-page permissions
	New admin models

	Permission strategies
	Use permissions on Groups, not on Users
	Use Groups to build up permissions
	Two dimensions of permissions


	Using touch-screen devices with django CMS
	General
	Device support
	Your site’s frontend
	Known issues
	General issues
	CKEditor issues
	Django Admin issues


	Color schemes (light/dark) with django CMS
	Setting the color scheme
	Toggle button for the color scheme
	Make your own admin CSS color scheme aware

	How the menu system works
	Basic concepts
	Soft Roots
	Registration
	Generators and Modifiers
	Generators
	Modifiers
	Nodes

	Menu system logic
	The ShowMenu.get_context() method
	The MenuPool.get_nodes() method
	Menu Modifiers


	Some commonly-used plugins
	django CMS Core Addons
	Recommended with Version 4 of django CMS
	Thrid-party opinionated packages
	Packages not (yet) supporting version 4

	Deprecated addons

	Frontend integration

	How-to guides
	Using core functionality
	How to use placeholders outside the CMS
	Get started
	Admin Integration
	I18N Placeholders
	Templates
	Adding the slots to the model
	Add the structure mode template to the model
	Registering the model for frontend editing
	Adding content to a placeholder
	Permissions

	How to serve multiple languages
	Multilingual URLs
	Monolingual URLs
	Store the user’s language preference
	Working in templates
	Display a language chooser in the page
	Get the URL of the current page for a different language
	Configuring language-handling behaviour

	Multi-Site Installation
	How to work with templates
	static_alias
	CMS_TEMPLATE
	render_model

	How to manage caching
	Set-up
	Plugins
	Content Cache Duration
	Settings

	How to enable frontend editing for Page and Django models
	Template tags
	Page titles edit
	Page menu edit
	Editing ‘ordinary’ Django models
	Configure the model’s admin class
	Selected fields edit
	Set up the admin
	Set up the template
	Special attributes
	Custom views
	Model changelist
	Filters
	Context variable

	How to create sitemaps
	Sitemap
	Configuration
	django.contrib.sitemaps

	How to manage Page Types

	Creating new functionality
	How to create Plugins
	The simplest plugin
	Troubleshooting
	Storing configuration
	Handling Relations
	For foreign key relations from other objects
	For many-to-many or foreign key relations to other objects
	Relations between plugins
	Advanced
	Inline Admin
	Plugin form
	Handling media
	Sekizai style
	Plugin Context
	Plugin Context Processors
	Plugin Processors
	Example
	Nested Plugins
	Extending context menus of placeholders or plugins
	Creating and deleting plugin instances

	How to upgrade custom plugins for django CMS v4+
	Difference between django CMS v3 and v4 plugins
	What to change
	Replacing access to django-treebeard fields
	path
	depth
	position
	Creating or deleting plugins programmatically
	Creating “universal” plugins
	Adapting your test suite

	How to create apphooks
	The basics of apphook creation
	Apphooks for namespaced applications
	Apphooks for non-namespaced applications
	Returning apphook URLs manually
	Loading new and re-configured apphooks
	Using an apphook
	Sub-pages of an apphooked page
	Managing apphooks
	Uninstalling an apphook with applied instances
	Management commands
	Adding menus to apphooks
	Managing permissions on apphooks
	Automatically restart server on apphook changes
	Apphooks and placeholder template tags

	How to manage complex apphook configuration
	Attaching an application multiple times
	Define a namespace at class-level
	Set a namespace at instance-level
	Apphook configurations
	Basic concepts
	An example apphook configuration
	Create the new FAQ application
	Put it all together

	How to extend the Toolbar
	Create a cms_toolbars.py file
	Define and register a CMSToolbar sub-class
	Populate the toolbar
	Add links and buttons to the toolbar
	Opening a URL in an iframe
	Adding buttons to the toolbar
	Create a toolbar menu
	To add a menu divider
	To add a sub-menu
	Finding existing toolbar items
	get_or_create_menu() and get_menu()
	find_items() and find_first()
	Control the position of items in the toolbar
	Control how and when the toolbar appears
	Modifying an existing toolbar
	Detecting URL changes to an object
	Frontend

	How to customise navigation menus
	Menus
	Customise menus at runtime
	Attach Menus
	Navigation Modifiers
	Example use-cases
	How it works
	Performance issues in menu modifiers

	How to implement content creation wizards
	Create a content-creation wizard

	How to create an admin class for a grouper model
	What is a grouper model?
	Administrating grouper models
	Change list view
	Example
	Other extra grouping fields (besides language)
	Providing your own templates
	Providing the required context

	How to extend Page & PageContent models
	PageContent vs Page extensions
	Implement a basic extension
	Page model extension example
	The model
	The admin
	The toolbar item
	PageContent model extension example
	The model
	The admin
	The toolbar item
	Using extensions
	In templates
	Page extensions
	PageContent extensions
	With menus
	Handling relations
	Complete toolbar API
	Simplified Toolbar API

	How to test your extensions
	Testing Apps
	Resolving View Names
	CMSTestCase
	Testing Plugins


	Sharing functionality
	How to share capabilities between apps


	Reference
	Command Line Interface
	Informational commands
	cms list
	cms check

	Plugin and apphook management commands
	cms delete-orphaned-plugins
	cms uninstall
	cms copy
	cms copy lang
	cms copy site

	Maintenance and repair
	fix-tree


	Configuring django CMS
	The INSTALLED_APPS setting
	The MIDDLEWARE setting
	cms.middleware.utils.ApphookReloadMiddleware

	Custom User Requirements
	Required Settings
	CMS_TEMPLATES

	Basic Customisation
	CMS_TEMPLATE_INHERITANCE
	CMS_TEMPLATES_DIR
	CMS_PLACEHOLDER_CONF
	CMS_PLUGIN_CONTEXT_PROCESSORS
	CMS_PLUGIN_PROCESSORS
	CMS_APPHOOKS

	Internationalisation and localisation (I18N and L10N)
	CMS_LANGUAGES
	code
	name
	public
	fallbacks
	hide_untranslated
	redirect_on_fallback
	Unicode support for automated slugs
	CMS_UNIHANDECODE_HOST
	CMS_UNIHANDECODE_VERSION
	CMS_UNIHANDECODE_DECODERS
	CMS_UNIHANDECODE_DEFAULT_DECODER
	Example

	Media Settings
	CMS_MEDIA_PATH
	CMS_MEDIA_ROOT
	CMS_MEDIA_URL
	CMS_PAGE_MEDIA_PATH

	Advanced Settings
	CMS_INTERNAL_IPS
	CMS_REQUEST_IP_RESOLVER
	CMS_PERMISSION
	CMS_RAW_ID_USERS
	CMS_PUBLIC_FOR
	CMS_CACHE_DURATIONS
	'content'
	'menus'
	'permissions'
	CMS_CACHE_PREFIX
	CMS_PAGE_CACHE
	CMS_PLACEHOLDER_CACHE
	CMS_PLUGIN_CACHE
	CMS_TOOLBARS
	CMS_TOOLBAR_ANONYMOUS_ON
	CMS_TOOLBAR_URL__ENABLE
	CMS_TOOLBAR_URL__DISABLE
	CMS_TOOLBAR_HIDE
	CMS_DEFAULT_X_FRAME_OPTIONS
	CMS_PAGE_WIZARD_DEFAULT_TEMPLATE
	CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER
	CMS_PAGE_WIZARD_CONTENT_PLUGIN
	CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY
	CMS_ENDPOINT_LIVE_URL_QUERYSTRING_PARAM_ENABLED
	CMS_ENDPOINT_LIVE_URL_QUERYSTRING_PARAM
	CMS_REDIRECT_PRESERVE_QUERY_PARAMS
	CMS_REDIRECT_TO_LOWERCASE_SLUG
	CMS_CONFIRM_VERSION4


	API References
	cms.api
	Functions and constants
	Example workflows

	cms.constants

	Configuring apps to work with django CMS
	App Hooks
	App Config
	App Extensions

	Form and model fields
	Model fields
	Form fields

	User site navigation
	show_menu
	Some Examples

	show_menu_below_id
	show_sub_menu
	show_breadcrumb
	Properties of Navigation Nodes in templates
	Menu system classes and function

	CMS menus
	Pages
	Page contents
	Page extensions and page content extensions
	Extensions
	Admin
	Toolbar

	Permissions
	Placeholders
	Plugins
	Plugin utility functions

	Sitemaps
	Template Tags
	CMS template tags
	Placeholders
	placeholder
	static_placeholder
	render_placeholder
	render_uncached_placeholder
	show_placeholder
	show_uncached_placeholder
	page_lookup
	page_url
	page_attribute
	render_plugin
	render_plugin_block
	render_model
	render_model_block
	render_model_icon
	render_model_add
	render_model_add_block
	page_language_url
	language_chooser

	Toolbar template tags

	Toolbar
	Classes and methods
	Parameters
	django CMS constants used in toolbars

	Utility functions
	Model admin
	Action buttons
	Grouper admin

	Placeholders
	Plugins

	Content creation wizards
	Wizard class
	Helpers
	wizard_pool

	Icons reusable for plugins

	Release notes & upgrade information
	4.1.1 release notes
	Django and Python compatibility
	What’s new in 4.1.1
	Improved right-to-left support
	Faster menu rendering
	Bug Fixes


	4.1.0 release notes
	Django and Python compatibility
	What’s new in 4.1
	Status indicators in page tree
	Bug Fixes

	Backward incompatible changes in 4.1
	TitleExtension
	Monkey patching
	Miscellaneous


	4.0.0 release notes
	How to upgrade to 4.0.0
	What’s new in 4.0.0
	Improvements and new features
	Bug Fixes
	Removal of deprecated functionality
	Main differences to django CMS 3.x
	Model changes
	Page, Title (now PageContent) and Placeholder refactor
	Data model of CMS < 4
	Data model of CMS >= 4
	Moving Title to PageContent
	Settings
	CMS_TOOLBAR_ANONYMOUS_ON
	CMS_TOOLBAR_URL__ENABLE
	CMS_TOOLBAR_URL__DISABLE
	App registration
	App configuration example
	App configuration usage examples in djangocms-url-manager and djangocms-alias
	Publishing has been moved to djangocms-versioning
	djangocms-versioning overrides queries from PageContent
	Disabling the admin sideframe
	Plugin refactor
	Signals
	Log Operations
	Placeholder Admin
	Placeholder relations
	Placeholder endpoints
	Preview end-point
	Edit end-point
	Structure end-point
	Configuring you application to use Placeholder endpoint
	Static Placeholders


	3.11.1 release notes
	What’s new in 3.11.1
	Features:
	Bug Fixes:
	Refactoring and Cleanups:
	Statistics:

	How to upgrade to

	3.11.0 release notes
	What’s new in 3.11.0
	Features:
	Bug Fixes:

	How to upgrade to 3.11.0

	3.10.1 release notes
	What’s new in 3.10.1
	Features:
	Bug Fixes:

	How to upgrade to 3.10.1

	3.10.0 release notes
	What’s new in 3.10.0
	Features:
	Bug Fixes:

	How to upgrade to 3.10.0

	3.9.0 release notes
	What’s new in 3.9.0
	Features:
	Bug Fixes:

	How to upgrade to 3.9.0

	3.8.0 release notes
	What’s new in 3.8.0
	Improvements and new features
	Bug Fixes

	How to upgrade to 3.8

	3.7.4 release notes
	What’s new in 3.7.4
	Bug Fixes


	3.7.3 release notes
	What’s new in 3.7.3
	Bug Fixes


	3.7.2 release notes
	What’s new in 3.7.2
	Bug Fixes
	Improvements and new features

	How to upgrade to 3.7.2

	3.7.1 release notes
	What’s new in 3.7.1
	Bug Fixes
	Improvements and new features


	3.7.0 release notes
	What’s new in 3.7.0
	Improvements and new features

	How to upgrade to 3.7
	Create a new django CMS 3.7 project
	On the Divio Cloud
	Using the django CMS Installer

	Contributors to this release

	3.6.1 release notes
	What’s new in 3.6.1
	Bug Fixes


	3.6.0 release notes
	What’s new in 3.6.0
	Improvements and new features
	Removal of deprecated functionality

	How to upgrade to 3.6
	Create a new django CMS 3.6 project
	On the Divio Cloud
	Using the django CMS Installer

	Contributors to this release

	3.5.4 release notes
	What’s new in 3.5.4
	Bug Fixes


	3.5.3 release notes
	What’s new in 3.5.3
	Bug Fixes


	3.5.2 release notes
	What’s new in 3.5.2
	Bug Fixes


	3.5.1 release notes
	What’s new in 3.5.1
	Bug Fixes


	3.5.0 release notes
	What’s new in 3.5.0
	Improvements and new features
	Bug Fixes
	Removal of deprecated functionality
	Backward-incompatible changes

	How to upgrade to 3.5
	Create a new django CMS 3.5 project
	On the Divio Cloud
	Using the django CMS Installer

	Contributors to this release

	3.4.7 release notes
	What’s new in 3.4.7
	Bug Fixes


	3.4.6 release notes
	What’s new in 3.4.6
	Bug Fixes


	3.4.5 release notes
	What’s new in 3.4.5
	Bug Fixes
	Improvements and new features


	3.4.4 release notes
	What’s new in 3.4.4
	Bug Fixes
	Improvements and new features
	Deprecations

	Backward incompatible changes
	Page methods
	Placeholder utilities


	3.4.3 release notes
	What’s new in 3.4.3
	Security Fixes
	Thanks


	3.4.2 release notes
	What’s new in 3.4.2
	Bug Fixes
	Improvements and new features
	Deprecations
	Other changes


	3.4.1 release notes
	What’s new in 3.4.1
	Bug Fixes


	3.4 release notes
	What’s new in 3.4
	Upgrading to 3.4
	Backward incompatible changes
	Apphooks & Toolbars
	Permissions
	Manual plugin rendering


	3.3 release notes
	What’s new in 3.3
	Upgrading to 3.3
	Deprecation of Old-Style Page Wizard Settings
	Action Required

	Backward incompatible changes
	Management commands
	Signature changes


	3.2.5 release notes
	What’s new in 3.2.5
	Bug Fixes
	DjangoCMS Text CKEditor
	Action required


	3.2.4 release notes
	What’s new in 3.2.4
	Bug Fixes
	DjangoCMS Text CKEditor
	Action required


	3.2.3 release notes
	What’s new in 3.2.3
	Bug Fixes


	3.2.2 release notes
	What’s new in 3.2.2
	Improvements
	Bug Fixes
	Model Relationship Back-References and Django 1.9
	Notice of Upcoming Change in 3.3
	Treebeard corruption
	DjangoCMS Text CKEditor
	Action required


	3.2.1 release notes
	What’s new in 3.2.1
	Improvements
	Bug Fixes
	Treebeard corruption
	DjangoCMS Text CKEditor
	Action required


	3.2 release notes
	What’s new in 3.2
	Changes that require attention
	Touch interface support
	Device support
	Feedback required
	Bug-fixes
	Content wizards
	Renaming cms_app, cms_toolbar, menu modules
	Action required
	New ApphookReloadMiddleware
	For developers
	Code formatting
	gulp.js
	Sass-related changes
	.editorconfig file
	Automated spelling checks for documentation
	New structure board
	Replaced the sideframe with an overlay
	New startup page

	Known issues
	Backward-incompatible changes
	Upgrading django CMS 3.1 to 3.2
	Pending deprecations

	3.1.5 release notes
	What’s new in 3.1.5
	Bug Fixes
	Treebeard corruption
	DjangoCMS Text CKEditor
	Action required


	3.1.4 release notes
	What’s new in 3.1.4
	Bug Fixes
	Treebeard corruption


	3.1.3 release notes
	What’s new in 3.1.3
	Bug Fixes
	Thanks


	3.1.2 release notes
	What’s new in 3.1.2
	Bug Fixes


	3.1.1 release notes
	What’s new in 3.1.1
	Bug Fixes
	Potentially backward incompatible changes
	Thanks


	3.1 release notes
	What’s new in 3.1
	Switch from MPTT to MP
	Action required
	Dropped support for Django 1.4 and 1.5
	Action required
	South is now an optional dependency
	Action required
	Changes to PlaceholderAdmin.add_plugin
	CMSPluginBase permission hooks
	CMSPluginBase.get_form
	CMSPlugin.add_view
	Migrations moved
	Action required
	Plugins migrations moving process
	Action required
	Structure mode permission
	Action required
	Simplified loading of view restrictions in the menu
	Toolbar API extension
	Per-namespace apphook configuration
	Improvements to the toolbar user interface
	Placeholder language fallback default to True
	New template tags
	render_model_add_block
	render_plugin_block
	Plugin table naming
	Action required
	cms.context_processors.media replaced by cms.context_processors.cms_settings
	Action required

	Upgrading django CMS 3.0 to 3.1
	Preliminary steps
	Settings update
	Update the database


	3.0.16 release notes
	Bug-fixes

	3.0.15 release notes
	What’s new in 3.0.15
	Bug Fixes
	Thanks


	3.0.14 release notes
	What’s new in 3.0.14
	Bug Fixes
	Potentially backward incompatible changes
	Thanks


	3.0.13 release notes
	What’s new in 3.0.13
	Bug Fixes


	3.0.12 release notes
	What’s new in 3.0.12
	Bug Fixes


	3.0.11 release notes
	What’s new in 3.0.11
	Bug Fixes
	Other


	3.0.10 release notes
	What’s new in 3.0.10
	Bug Fixes


	3.0.9 release notes
	What’s new in 3.0.9
	Bug Fixes


	3.0.8 release notes
	What’s new in 3.0.8
	Bug Fixes


	3.0.7 release notes
	What’s new in 3.0.7
	Bug Fixes
	Project & Community Governance


	3.0.6 release notes
	What’s new in 3.0.6
	Django 1.7 support
	Extended Custom User Support
	CMSPlugin.get_render_template
	Simplified toolbar API for page extensions


	3.0.3 release notes
	What’s new in 3.0.3
	New Alias Plugin
	New Context Menu API
	Apphook Permissions


	3.0 release notes
	What’s new in 3.0
	New Frontend Editing
	New Toolbar
	New Page Types
	Experimental Python 3.3 support
	Better multilingual editing
	CMS_SEO_FIELDS
	CMS_MENU_TITLE_OVERWRITE
	Plugin fallback languages
	language_chooser
	Undo and Redo
	Plugins removed
	File Plugin
	Flash Plugin
	Googlemap Plugin
	Inherit Plugin
	Picture Plugin
	Teaser Plugin
	Video Plugin
	Link Plugin
	Snippet Plugin
	Twitter Plugin
	Plugin Context Processors take a new argument
	Apphooks
	PlaceholderAdmin
	Placeholder object permissions
	Placeholders are pre-fillable with default plugins
	Custom modules and plugin labels in the toolbar UI
	New copy-lang subcommand
	Frontend editor for Django models
	New Page related_name to Site
	Moved all template tags to cms_tags
	getter and setter for translatable plugin content
	No more DB table-name magic for plugins
	Added support for custom user models
	Page caching
	Placeholder caching
	Plugin caching
	Per-page Clickjacking protection
	CMS_TEMPLATE context variable

	Upgrading from 2.4
	Pending deprecations
	placeholder_tags
	cms.context_processors.media


	2.4 release notes
	What’s new in 2.4
	Introducing Django 1.5 support, dropped support for Django 1.3 and Python 2.5
	Migrations overhaul
	How this affects you
	Added delete orphaned plugins command
	Added a check command
	CMS_MODERATOR
	Added Fix MPTT Management command
	Removed the MultilingualMiddleware
	Added LanguageCookieMiddleware
	CMS_LANGUAGES
	CMS_FLAT_URLS
	Plugins in Plugins
	How to render your child plugins in the template
	New way to handle django CMS settings
	Added cms.constants module
	django-reversion integration changes
	Changes to the show_sub_menu template tag
	PlaceholderAdmin support i18n
	Added CMS_RAW_ID_USERS

	Backwards incompatible changes
	New minimum requirements for dependencies

	Pending deprecations

	2.3.4 release notes
	What’s new in 2.3.4
	WymEditor fixed
	Moved Norwegian translations
	Added support for time zones
	Fixed slug clashing
	Prevent unnamed related names for PlaceholderField
	Two fixes to page change form


	2.3.3 release notes
	What’s new in 2.3.3
	Restored Python 2.5 support

	Pending deprecations

	2.3.2 release notes
	What’s new in 2.3.2
	Google map plugin


	2.3 release notes
	What’s new in 2.3
	Introducing Django 1.4 support, dropped support for Django 1.2
	Lazy page tree loading in admin
	Toolbar isolation
	Plugin cancel button fixed
	Tests refactor
	Moving text plugins to different placeholders no longer loses inline plugins
	Minor improvements

	Backwards incompatible changes
	New minimum requirements for dependencies
	Registering a list of plugins in the plugin pool

	Pending deprecations

	2.2 release notes
	What’s new in 2.2
	django-mptt now a proper dependency
	Django 1.3 support
	View permissions

	Backwards incompatible changes
	django-sekizai instead of PluginMedia
	Toolbar must be enabled explicitly in templates
	Static files moved to /static/

	Features deprecated in 2.2
	django-dbgettext support


	Upgrading from 2.1.x and Django 1.2.x
	Upgrading dependencies
	Updates to settings.py
	Template Updates
	Database Updates
	Static Media


	Contribute
	Contribute to django CMS
	3 Reasons Why You Should Contribute
	1. Boost your reputation
	2. Find a mentor and improve your skills
	3. Meet new people and increase your network

	Are you new to django CMS?
	Contributor Community

	How to contribute
	Contributing code
	In a nutshell
	Basic requirements and standards
	Syntax and conventions
	Python
	HTML, CSS and JavaScript
	JS Linting
	Process
	Frontend
	Styles
	Icons
	JS Bundling

	Contributing documentation
	Building the documentation
	Documentation requirements
	Spelling
	Install the spelling software
	Check spelling
	Making a pull request
	Documentation structure
	Documentation markup
	Sections
	Inline markup
	Rules for using technical words
	References

	Contributing translations

	Development policies
	Reporting security issues
	Review
	Formal approval

	Proposal and discussion of significant changes
	Release schedule
	Long-Term Support Release

	Branches
	Commits
	Commit messages
	Squashing commits
	How to squash commits

	Changelog

	Guidelines for django CMS projects
	Acceptance criteria for new projects or existing ones
	Approval by Tech Committee of the django CMS Association
	Viability
	Documentation
	Tests
	Conduct
	Contributing Guidelines

	Move an existing project to the django CMS Github organization

	Code and project management
	Issues
	Raising an issue
	Getting your issue accepted

	How we process tickets
	django CMS ticket processing system rules
	Status
	Needs
	Kinds and components
	Other labels
	Comments

	Label reference
	Statuses
	Needs
	Critical needs
	Non-critical needs
	Other


	Running and writing tests
	Running tests
	Problems running the tests
	OS X users
	ERROR: test_copy_to_from_clipboard (cms.tests.frontend.PlaceholderBasicTests)
	ERROR: zlib is required unless explicitly disabled using --disable-zlib, aborting
	Advanced testing options

	Running Frontend Tests
	Unit tests

	Writing tests
	What we need


	Code of Conduct
	Raising a concern


	Who is behind django CMS
	the django CMS Association
	The dCA Tech Committee
	Mission
	Team
	Tasks
	Processes




	Python Module Index
	Index

