

django CMS documentation

[image: django CMS logo]

Overview

django CMS is a modern web publishing platform built with Django [https://www.djangoproject.com], the web application framework “for
perfectionists with deadlines”.

django CMS offers out-of-the-box support for the common features you’d expect
from a CMS, but can also be easily customised and extended by developers to
create a site that is tailored to their precise needs.

Tutorials - start here

For the new django CMS developer, from installation to creating your own addon applications.

How-to guides

Practical step-by-step guides for the more experienced developer, covering several important topics.

Key topics

Explanation and analysis of some key concepts in django CMS.

Reference

Technical reference material, for classes, methods, APIs, commands.

Join us online

django CMS is supported by a friendly and very knowledgeable community.

Our IRC channel, #django-cms, is on irc.freenode.net. If you don’t have an IRC client, you can
join our IRC channel using the KiwiIRC web client [https://kiwiirc.com/client/irc.freenode.net/django-cms], which works pretty well.

Our django CMS users email list [https://groups.google.com/forum/#!forum/django-cms] is for
general discussions and the django CMS developers email list [https://groups.google.com/forum/#!forum/django-cms-developers] for the
development of django CMS.

Our StackOverflow [https://stackoverflow.com/questions/tagged/django-cms] is for
questions around django CMS and it’s plugin ecosystem.

Why django CMS?

django CMS is a well-tested CMS platform that powers sites both large and
small. Here are a few of the key features:

	robust internationalisation (i18n) support for creating multilingual sites

	front-end editing, providing rapid access to the content management interface

	support for a variety of editors with advanced text editing features.

	a flexible plugins system that lets developers put powerful tools at the
fingertips of editors, without overwhelming them with a difficult interface

	…and much more

There are other capable Django-based CMS platforms but here’s why you should
consider django CMS:

	thorough documentation

	easy and comprehensive integration into existing projects - django CMS isn’t a monolithic application

	a healthy, active and supportive developer community

	a strong culture of good code, including an emphasis on automated testing

Software version requirements and release notes

This document refers to version 3.8.0.

Django/Python compatibility table

LTS in the table indicates a combination of Django and django CMS both covered
by a long-term support policy.

✓ indicates that the version has been tested and works. x indicates that it has not been tested, or
is known to be incompatible.

	django CMS

	Python

	Django

	

	3.8

	3.7

	3.6

	3.5

	3.4

	3.3

	2.7

	2.6

	3.0

	2.2

	2.1

	2.0

	1.11

	1.10

	1.9

	1.8

	1.6

	1.4

	3.7.x

	✓

	✓

	✓

	✓

	✓

	✓

	✓

	⨯

	✓

	LTS

	✓

	✓

	LTS

	⨯

	⨯

	⨯

	⨯

	⨯

	3.6.x

	⨯

	✓

	✓

	✓

	✓

	✓

	✓

	⨯

	x

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	3.5.x

	⨯

	✓

	✓

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	✓

	✓

	⨯

	⨯

	3.4.5

	⨯

	⨯

	✓

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	LTS

	✓

	✓

	LTS

	⨯

	⨯

	3.4.2

	⨯

	⨯

	⨯

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	✓

	⨯

	⨯

	3.4.1

	⨯

	⨯

	⨯

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	⨯

	⨯

	3.3.x

	⨯

	⨯

	⨯

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	⨯

	⨯

	3.2.1

	⨯

	⨯

	⨯

	✓

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	✓

	⨯

	3.2.0

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	⨯

	3.1.7

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	⨯

	3.0.18

	⨯

	⨯

	⨯

	⨯

	✓

	✓

	✓

	✓

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	⨯

	✓

	✓

See the repository’s setup.py for more specific details of dependencies, or the Release notes & upgrade information for
information about what is required or has changed in particular versions of the CMS.

The installation how-to guide provides an overview of other packages required in a django CMS
project.

Tutorials

The pages in this section of the documentation are aimed at the newcomer to
django CMS. They’re designed to help you get started quickly, and show how
easy it is to work with django CMS as a developer who wants to customise it and
get it working according to their own requirements.

These tutorials take you step-by-step through some key aspects of this work.
They’re not intended to explain the topics in depth, or
provide reference material, but they will leave you
with a good idea of what is possible to achieve in just a few steps, and how
to go about it.

Once you’re familiar with the basics presented in these tutorials, you’ll find
the more in-depth coverage of the same topics in the How-to section.

The tutorials follow a logical progression, starting from installation of django CMS and the
creation of a brand new project, and build on each other, so it’s recommended to work through them
in the order presented here.

	1. Installing django CMS

	2. Templates & Placeholders

	3. Integrating applications

	4. Plugins

	5. Apphooks

	6. Extending the toolbar

	7. Extending the navigation menu

	8. Content creation wizards

	9. Integrating a third-party application

If you want to install django CMS into an existing project, or prefer to configure django CMS by
hand, rather than using the automated installer, see How to install django CMS by hand and then follow the
rest of the tutorials.

Either way, you’ll be able to find support and help from the numerous friendly
members of the django CMS community, either on our mailinglist [https://groups.google.com/forum/#!forum/django-cms] or IRC
channel #django-cms on the irc.freenode.net network.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client [https://kiwiirc.com/client/irc.freenode.net/django-cms], which works pretty well.

1. Installing django CMS

We’ll get started by setting up our environment.

1.1. Requirements

django CMS requires Django 1.11 or newer, and Python 2.7 or 3.3 or newer. This tutorial assumes
you are using Python 3.

1.2. Your working environment

We’re going to assume that you have a reasonably recent version of virtualenv
installed and that you have some basic familiarity with it.

1.2.1. Create and activate a virtual environment

python3.6 -m venv env # Python 2 usage: virtualenv env
source env/bin/activate

Note that if you’re using Windows, to activate the virtualenv you’ll need:

env\Scripts\activate

1.2.2. Update pip inside the virtual environment

pip is the Python installer. Make sure yours is up-to-date, as earlier versions can be less reliable:

pip install --upgrade pip

1.2.3. Use the django CMS installer

The django CMS installer [https://github.com/nephila/djangocms-installer] is
a helpful script that takes care of setting up a new project.

Install it:

pip install djangocms-installer

This provides you with a new command, djangocms.

Create a new directory to work in, and cd into it:

mkdir tutorial-project
cd tutorial-project

Run it to create a new Django project called mysite:

djangocms mysite

This means:

	run the django CMS installer

	call the new project directory mysite

Warning

djangocms-installer expects current directory to be empty at this stage, and will check for this,
and will warn if it’s not. You can get it to skip the check and go ahead anyway using the -s
flag; note that this may overwrite existing files.

Windows users may need to do a little extra to make sure Python files are associated correctly if that doesn’t work right away:

assoc .py=Python.file
ftype Python.File="C:\Users\Username\workspace\demo\env\Scripts\python.exe" "%1" %*

By default, the installer runs in Batch mode [https://djangocms-installer.readthedocs.io/en/latest/usage.html#batch-mode-default], and sets up your new project
with some default values.

Later, you may wish to manage some of these yourself, in which case you need to run it in Wizard mode [https://djangocms-installer.readthedocs.io/en/latest/usage.html#wizard-mode]. The default in Batch mode is to set
up an English-only project, which will be sufficient for the purposes of this tutorial. You can of course simply edit
the new project’s settings.py file at any time to change or add site languages or amend other settings.

The installer creates an admin user for you, with username/password admin/admin.

1.2.4. Start up the runserver

python manage.py runserver

Open http://localhost:8000/ in your browser, where you should be invited to login, and then create
a new page.

[image: a django CMS home page]
Congratulations, you now have installed a fully functional CMS.

If you need to log in at any time, append ?edit to the URL and hit Return. This will enable the
toolbar, from where you can log in and manage your website.

If you are not already familiar with django CMS, you can take a few minutes to run through the
basics of the django CMS tutorial for users.

2. Templates & Placeholders

In this tutorial we’ll introduce Placeholders, and we’re also going to show how
you can make your own HTML templates CMS-ready.

2.1. Templates

You can use HTML templates to customise the look of your website, define
Placeholders to mark sections for managed content and use special tags to
generate menus and more.

You can define multiple templates, with different layouts or built-in
components, and choose them for each page as required. A page’s template
can be switched for another at any time.

You’ll find the site’s templates in mysite/templates.

By default, pages in your site will use the fullwidth.html template, the first one listed in
the project’s settings.py CMS_TEMPLATES tuple:

CMS_TEMPLATES = (
 ## Customize this
 ('fullwidth.html', 'Fullwidth'),
 ('sidebar_left.html', 'Sidebar Left'),
 ('sidebar_right.html', 'Sidebar Right')
)

2.2. Placeholders

Placeholders are an easy way to define sections in an HTML template that will
be filled with content from the database when the page is rendered. This
content is edited using django CMS’s frontend editing mechanism, using Django
template tags.

fullwidth.html contains a single placeholder, {% placeholder "content" %}.

You’ll also see {% load cms_tags %} in that file - cms_tags is the
required template tag library.

If you’re not already familiar with Django template tags, you can find out more in the Django documentation [https://docs.djangoproject.com/en/dev/topics/templates/].

Add a couple of new placeholders to fullwidth.html, {% placeholder "feature" %} and {%
placeholder "splashbox" %} inside the {% block content %} section. For example:

 {% block content %}
 {% placeholder "feature" %}
 {% placeholder "content" %}
 {% placeholder "splashbox" %}
 {% endblock content %}

If you switch to Structure mode, you’ll see the new placeholders available for use.

[image: the new 'splashbox' placeholder]

2.3. Static Placeholders

The content of the placeholders we’ve encountered so far is different for
every page. Sometimes though you’ll want to have a section on your website
which should be the same on every single page, such as a footer block.

You could hard-code your footer into the template, but it would be nicer to be
able to manage it through the CMS. This is what static placeholders are for.

Static placeholders are an easy way to display the same content on multiple
locations on your website. Static placeholders act almost like normal
placeholders, except for the fact that once a static placeholder is created and
you added content to it, it will be saved globally. Even when you remove the
static placeholders from a template, you can reuse them later.

So let’s add a footer to all our pages. Since we want our footer on every
single page, we should add it to our base template
(mysite/templates/base.html). Place it near the end of the HTML <body> element:

 <footer>
 {% static_placeholder 'footer' %}
 </footer>

 {% render_block "js" %}
 </body>

Save the template and return to your browser. Refresh any page in Structure mode, and you’ll
see the new static placeholder.

[image: a static placeholder]

Note

To reduce clutter in the interface, the plugins in static placeholders are hidden by default.
Click or tap on the name of the static placeholder to reveal/hide them.

If you add some content to the new static placeholder in the usual way, you’ll see that it
appears on your site’s other pages too.

2.4. Rendering Menus

In order to render the CMS’s menu in your template you can use the show_menu tag.

Any template that uses show_menu must load the CMS’s menu_tags library
first:

{% load menu_tags %}

The menu we use in mysite/templates/base.html is:

<ul class="nav">
 {% show_menu 0 100 100 100 %}

The options control the levels of the site hierarchy that are displayed in the menu tree - but you don’t need to worry about exactly what they do at this stage.

Next we’ll look at Integrating applications.

3. Integrating applications

All the following sections of this tutorial are concerned with different ways of integrating other
applications into django CMS. The ease with which other applications can be built into django CMS
sites is an important feature of the system.

Integrating applications doesn’t merely mean installing them alongside django CMS, so that they peacefully co-exist. It
means using django CMS’s features to build them into a single coherent web project that speeds up the work of managing
the site, and makes possible richer and more automated publishing.

It’s key to the way that django CMS integration works that it doesn’t require you to modify your other applications
unless you want to. This is particularly important when you’re using third-party applications and don’t want to have to
maintain your own forked versions of them. (The only exception to this is if you decide to build django CMS features
directly into the applications themselves, for example when using placeholders in other applications.)

For this tutorial, we’re going to take a basic Django opinion poll application [https://github.com/divio/django-polls] and integrate it into the CMS.

So we will:

	incorporate the Polls application into the project

	create a second, independent, Polls/CMS Integration application to manage the integration

This way we can integrate the Polls application without having to change anything in it.

3.1. Incorporate the polls application

3.1.1. Install polls

Install the application from its GitHub repository using pip:

pip install git+http://git@github.com/divio/django-polls.git#egg=polls

Let’s add this application to our project. Add 'polls' to the end of INSTALLED_APPS in
your project’s settings.py (see the note on The INSTALLED_APPS setting about ordering).

Add the poll URL configuration to urlpatterns in the project’s urls.py:

urlpatterns += i18n_patterns(
 re_path(r'^admin/', include(admin.site.urls)),
 re_path(r'^polls/', include('polls.urls')),
 re_path(r'^', include('cms.urls')),
)

Note that it must be included before the line for the django CMS URLs. django CMS’s URL pattern
needs to be last, because it “swallows up” anything that hasn’t already been matched by a previous
pattern.

Now run the application’s migrations:

python manage.py migrate polls

At this point you should be able to log in to the Django
admin - http://localhost:8000/admin/ - and find the Polls application.

[image: the polls application admin]
Create a new Poll, for example:

	Question: Which browser do you prefer?

Choices:

	Safari

	Firefox

	Chrome

Now if you visit http://localhost:8000/en/polls/, you should be able to see the published poll
and submit a response.

[image: the polls application]

3.1.2. Improve the templates for Polls

You’ll have noticed that in the Polls application we only have minimal templates, and no navigation or styling.

Our django CMS pages on the other hand have access to a number of default templates in the project, all of which
extend one called base.html. So, let’s improve this by overriding the polls application’s base template.

We’ll do this in the project directory.

In mysite/templates, add polls/base.html, containing:

{% extends 'base.html' %}

{% block content %}
 {% block polls_content %}
 {% endblock %}
{% endblock %}

Refresh the /polls/ page again, which should now be properly integrated into the site.

[image: the polls application, integrated]

3.2. Set up a new polls_cms_integration application

So far, however, the Polls application has been integrated into the project, but not into django CMS itself. The two
applications are completely independent. They cannot make use of each other’s data or functionality.

Let’s create the new Polls/CMS Integration application where we will bring them together.

3.2.1. Create the application

Create a new package at the project root called polls_cms_integration:

python manage.py startapp polls_cms_integration

Our workspace now looks like this:

tutorial-project/
 media/
 mysite/
 polls_cms_integration/ # the newly-created application
 __init__.py
 admin.py
 models.py
 migrations.py
 tests.py
 views.py
 static/
 manage.py
 project.db
 requirements.txt

3.2.2. Add it to INSTALLED_APPS

Next is to integrate the polls_cms_integration application into the project.

Add polls_cms_integration to INSTALLED_APPS in settings.py - and now we’re ready to use it to begin
integrating Polls with django CMS. We’ll start by developing a Polls plugin.

Note

Adding templates to the project or to the application?

Earlier, we added new templates to the project. We could equally well have have added templates/polls/base.html
inside polls_cms_integration. After all, that’s where we’re going to be doing all the other integration work.

However, we’d now have an application that makes assumptions about the name of the template it should extend (see
the first line of the base.html template we created) which might not be correct for a different project.

Also, we’d have to make sure that polls_cms_integration came before polls in INSTALLED_APPS,
otherwise the templates in polls_cms_integration would not in fact override the ones in polls. Putting
them in the project guarantees that they will override those in all applications.

Either way of doing it is reasonable, as long as you understand their implications.

4. Plugins

In this tutorial we’re going to take a basic Django opinion poll application and integrate it into
the CMS.

4.1. Create a plugin model

In the models.py of polls_cms_integration add the following:

from django.db import models
from cms.models import CMSPlugin
from polls.models import Poll

class PollPluginModel(CMSPlugin):
 poll = models.ForeignKey(Poll, on_delete=models.CASCADE)

 def __str__(self):
 return self.poll.question

This creates a plugin model class; these all inherit from the
cms.models.pluginmodel.CMSPlugin base class.

Note

django CMS plugins inherit from cms.models.pluginmodel.CMSPlugin (or a
sub-class thereof) and not models.Model [https://docs.djangoproject.com/en/2.2/ref/models/instances/#django.db.models.Model].

Create and run migrations:

python manage.py makemigrations polls_cms_integration
python manage.py migrate polls_cms_integration

4.1.1. The Plugin Class

Now create a new file cms_plugins.py in the same folder your models.py is in.
The plugin class is responsible for providing django CMS with the necessary
information to render your plugin.

For our poll plugin, we’re going to write the following plugin class:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from polls_cms_integration.models import PollPluginModel
from django.utils.translation import gettext as _

@plugin_pool.register_plugin # register the plugin
class PollPluginPublisher(CMSPluginBase):
 model = PollPluginModel # model where plugin data are saved
 module = _("Polls")
 name = _("Poll Plugin") # name of the plugin in the interface
 render_template = "polls_cms_integration/poll_plugin.html"

 def render(self, context, instance, placeholder):
 context.update({'instance': instance})
 return context

Note

All plugin classes must inherit from cms.plugin_base.CMSPluginBase
and must register themselves with the plugin_pool.

A reasonable convention for plugin naming is:

	PollPluginModel: the model class

	PollPluginPublisher: the plugin class

You don’t need to follow this convention, but choose one that makes sense and stick to it.

4.1.2. The template

The render_template attribute in the plugin class is required, and tells the plugin which
render_template to use when rendering.

In this case the template needs to be at polls_cms_integration/templates/polls_cms_integration/poll_plugin.html and should look something like this:

<h1>{{ instance.poll.question }}</h1>

<form action="{% url 'polls:vote' instance.poll.id %}" method="post">
 {% csrf_token %}
 <div class="form-group">
 {% for choice in instance.poll.choice_set.all %}
 <div class="radio">
 <label>
 <input type="radio" name="choice" value="{{ choice.id }}">
 {{ choice.choice_text }}
 </label>
 </div>
 {% endfor %}
 </div>
 <input type="submit" value="Vote" />
</form>

4.2. Test the plugin

Now you can restart the runserver (required because you added the new cms_plugins.py file, and
visit http://localhost:8000/.

You can now drop the Poll Plugin into any placeholder on any page, just as
you would any other plugin.

[image: the 'Poll plugin' in the plugin selector]
Next we’ll integrate the Polls application more fully into our django CMS
project.

5. Apphooks

Right now, our Django Polls application is statically hooked into the project’s
urls.py. This is all right, but we can do more, by attaching applications to
django CMS pages.

5.1. Create an apphook

We do this with an apphook, created using a CMSApp sub-class, which tells the CMS how to include that application.

5.1.1. Create the apphook class

Apphooks live in a file called cms_apps.py, so create one in your Polls/CMS Integration
application, i.e. in polls_cms_integration.

This is a very basic example of an apphook for a django CMS application:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

@apphook_pool.register # register the application
class PollsApphook(CMSApp):
 app_name = "polls"
 name = "Polls Application"

 def get_urls(self, page=None, language=None, **kwargs):
 return ["polls.urls"]

In this PollsApphook class, we have done several key things:

	app_name attribute gives the system a unique way to refer to the apphook. You can see from
Django Polls [https://github.com/divio/django-polls/blob/master/polls/urls.py#L6] that the
application namespace polls is hard-coded into the application, so this attribute must
also be polls.

	name is a human-readable name, and will be displayed to the admin user.

	get_urls() method is what actually hooks the application in, returning a
list of URL configurations that will be made active wherever the apphook is used - in this case,
it will use the urls.py from polls.

5.1.2. Remove the old polls entry from the project’s urls.py

You must now remove the entry for the Polls application:

re_path(r'^polls/', include('polls.urls', namespace='polls'))

from your project’s urls.py.

Not only is it not required there, because we reach the polls via the apphook
instead, but if you leave it there, it will conflict with the apphook’s URL handling. You’ll
receive a warning in the logs:

URL namespace 'polls' isn't unique. You may not be able to reverse all URLs in this namespace.

5.1.3. Restart the runserver

Restart the runserver. This is necessary because we have created a new file containing Python
code that won’t be loaded until the server restarts. You only have to do this the first time the
new file has been created.

5.2. Apply the apphook to a page

Now we need to create a new page, and attach the Polls application to it through this apphook.

Create and save a new page, then publish it.

Note

Your apphook won’t work until the page has been published.

In its Advanced settings (from the toolbar, select Page > Advanced settings…) choose “Polls
Application” from the Application pop-up menu, and save once more.

[image: select the 'Polls' application]
Refresh the page, and you’ll find that the Polls application is now available
directly from the new django CMS page.

Important

Don’t add child pages to a page with an apphook.

The apphook “swallows” all URLs below that of the page, handing them over to the attached
application. If you have any child pages of the apphooked page, django CMS will not be
able to serve them reliably.

6. Extending the toolbar

django CMS allows you to control what appears in the toolbar. This allows you
to integrate your application in the frontend editing mode of django CMS and
provide your users with a streamlined editing experience.

In this section of the tutorial, we will add a new Polls menu to the toolbar.

6.1. Add a basic PollToolbar class

We’ll add various controls to the toolbar, using a cms.toolbar_base.CMSToolbar sub-class.

6.1.1. Add a menu to the toolbar

Start by adding a new file, cms_toolbars.py, to your Polls/CMS Integration application, and
create the CMSToolbar class:

from cms.toolbar_base import CMSToolbar
from cms.toolbar_pool import toolbar_pool
from polls.models import Poll

class PollToolbar(CMSToolbar):

 def populate(self):
 self.toolbar.get_or_create_menu(
 'polls_cms_integration-polls', # a unique key for this menu
 'Polls', # the text that should appear in the menu
)

register the toolbar
toolbar_pool.register(PollToolbar)

Note

Don’t forget to restart the runserver to have your new cms_toolbars.py file recognised.

You will now find, in every page of the site, a new item in the toolbar:

[image: The Polls menu in the toolbars]
The populate() method is what gets called when the toolbar is built. In it, we’re using
get_or_create_menu() to add a Polls
item to the toolbar.

6.1.1.1. Add nodes to the Polls menu

So far, the Polls menu is empty. We can extend populate() to add some items.
get_or_create_menu returns a menu that we can manipulate, so let’s change the populate()
method to add an item that allows us to see the full list of polls in the sideframe, with
add_sideframe_item().

from cms.utils.urlutils import admin_reverse
[...]

class PollToolbar(CMSToolbar):

 def populate(self):
 menu = self.toolbar.get_or_create_menu('polls_cms_integration-polls', 'Polls')

 menu.add_sideframe_item(
 name='Poll list', # name of the new menu item
 url=admin_reverse('polls_poll_changelist'), # the URL it should open with
)

After refreshing the page to load the changes, you can now see the list of polls directly from
the menu.

Also useful would be an option to create new polls. We’ll use a modal window for this, invoked with
add_modal_item(). Add the new code to the
end of the populate() method:

class PollToolbar(CMSToolbar):

 def populate(self):
 [...]

 menu.add_modal_item(
 name='Add a new poll', # name of the new menu item
 url=admin_reverse('polls_poll_add'), # the URL it should open with
)

6.1.2. Add buttons to the toolbar

As well as menus, you can add buttons to the toolbar in a very similar way. Rewrite the
populate() method, noting how closely the structure of this code matches that for adding menus.

def populate(self):

 buttonlist = self.toolbar.add_button_list()

 buttonlist.add_sideframe_button(
 name='Poll list',
 url=admin_reverse('polls_poll_changelist'),
)

 buttonlist.add_modal_button(
 name='Add a new poll',
 url=admin_reverse('polls_poll_add'),
)

6.2. Further refinements

The buttons and menu for Polls appear in the toolbar everywhere in the site. It would be useful to
restrict this to pages that are actually relevant.

The first thing to add is a test right at the start of the populate() method:

 def populate(self):

 if not self.is_current_app:
 return

 [...]

The is_current_app flag tells us if the function handling this view (e.g. the list of polls)
belongs to the same application as the one responsible for this toolbar menu.

Often, this can be detected automatically, but in this case, the view belongs to the polls
application, whereas the toolbar menu belongs to polls_cms_integration. So, we need to tell the
PollToolbar class explicitly that it’s actually associated with the polls application:

class PollToolbar(CMSToolbar):

 supported_apps = ['polls']

Now, the buttons/menu will only appear in relevant pages.

6.3. The complete cms_toolbars.py

For completeness, here is the full example:

from cms.utils.urlutils import admin_reverse
from cms.toolbar_base import CMSToolbar
from cms.toolbar_pool import toolbar_pool
from polls.models import Poll

class PollToolbar(CMSToolbar):
 supported_apps = ['polls']

 def populate(self):

 if not self.is_current_app:
 return

 menu = self.toolbar.get_or_create_menu('polls_cms_integration-polls', 'Polls')

 menu.add_sideframe_item(
 name='Poll list',
 url=admin_reverse('polls_poll_changelist'),
)

 menu.add_modal_item(
 name=('Add a new poll'),
 url=admin_reverse('polls_poll_add'),
)

 buttonlist = self.toolbar.add_button_list()

 buttonlist.add_sideframe_button(
 name='Poll list',
 url=admin_reverse('polls_poll_changelist'),
)

 buttonlist.add_modal_button(
 name='Add a new poll',
 url=admin_reverse('polls_poll_add'),
)

toolbar_pool.register(PollToolbar) # register the toolbar

This is just a basic example, and there’s a lot more to django CMS toolbar classes than this - see
How to extend the Toolbar for more.

7. Extending the navigation menu

You may have noticed that while our Polls application has been integrated into
the CMS, with plugins, toolbar menu items and so on, the site’s navigation menu
is still only determined by django CMS Pages.

We can hook into the django CMS menu system to add our own nodes to that
navigation menu.

7.1. Create the navigation menu

We create the menu using a CMSAttachMenu sub-class, and use the get_nodes()
method to add the nodes.

For this we need a file called cms_menus.py in our application. Add cms_menus.py in polls_cms_integration/:

from django.urls import reverse
from django.utils.translation import gettext_lazy as _

from cms.menu_bases import CMSAttachMenu
from menus.base import NavigationNode
from menus.menu_pool import menu_pool

from polls.models import Poll

class PollsMenu(CMSAttachMenu):
 name = _("Polls Menu") # give the menu a name this is required.

 def get_nodes(self, request):
 """
 This method is used to build the menu tree.
 """
 nodes = []
 for poll in Poll.objects.all():
 node = NavigationNode(
 title=poll.question,
 url=reverse('polls:detail', args=(poll.pk,)),
 id=poll.pk, # unique id for this node within the menu
)
 nodes.append(node)
 return nodes

menu_pool.register_menu(PollsMenu)

What’s happening here:

	we define a PollsMenu class, and register it

	we give the class a name attribute (will be displayed in admin)

	in its get_nodes() method, we build and return a list of nodes, where:

	first we get all the Poll objects

	… and then create a NavigationNode object from each one

	… and return a list of these NavigationNodes

This menu class won’t actually do anything until attached to a page. In the Advanced settings of the page to which
you attached the apphook earlier, select “Polls Menu” from the list of Attached menu options, and save once more.
(You could add the menu to any page, but it makes most sense to add it to this page.)

[image: select the 'Polls Menu']
You can force the menu to be added automatically to the page by the apphook if you consider this appropriate. See
Adding menus to apphooks for information on how to do that.

Note

The point here is to illustrate the basic principles. In this actual case, note that:

	If you’re going to use sub-pages, you’ll need to improve the menu styling to make it work a
bit better.

	Since the Polls page lists all the Polls in it anyway, this isn’t really the most practical
addition to the menu.

8. Content creation wizards

Content creation wizards allow you to make use of the toolbar’s Create button in your own
applications. It opens up a simple dialog box with the basic fields required to create a new item.

django CMS uses it for creating Pages, but you can add your own models to it.

In the polls_cms_integration application, add a forms.py file:

from django import forms

from polls.models import Poll

class PollWizardForm(forms.ModelForm):
 class Meta:
 model = Poll
 exclude = []

Then add a cms_wizards.py file, containing:

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

from polls_cms_integration.forms import PollWizardForm

class PollWizard(Wizard):
 pass

poll_wizard = PollWizard(
 title="Poll",
 weight=200, # determines the ordering of wizards in the Create dialog
 form=PollWizardForm,
 description="Create a new Poll",
)

wizard_pool.register(poll_wizard)

Refresh the Polls page, hit the Create button in the toolbar - and the wizard dialog will open,
offering you a new wizard for creating Polls.

Note

Once again, this particular example is for illustration only. In the case of a Poll, with
its multiple Questions associated with it via foreign keys, we really want to be able to
edit those questions at the same time too.

That would require a much more sophisticated form and processing than is possible within the
scope of this tutorial.

9. Integrating a third-party application

We’ve already written our own django CMS plugins and apps, but now we want to
extend our CMS with a third-party application,
Aldryn News & Blog [https://github.com/aldryn/aldryn-newsblog].

9.1. Basic installation

First, we need to install the app into our virtual environment from
PyPI [https://pypi.python.org]:

pip install aldryn-newsblog

9.2. Django settings

9.2.1. INSTALLED_APPS

Add the application and any of its requirements that are not there already to
INSTALLED_APPS in settings.py. Some will be already present; it’s up
to you to check them because you need to avoid duplication:

you will probably need to add:
'aldryn_apphooks_config',
'aldryn_boilerplates',
'aldryn_categories',
'aldryn_common',
'aldryn_newsblog',
'aldryn_people',
'parler',
'sortedm2m',
'taggit',

and you will probably find the following already listed:
'easy_thumbnails',
'filer',

9.2.2. THUMBNAIL_PROCESSORS

One of the dependencies is Django Filer. It provides a special feature that allows more
sophisticated image cropping.

 THUMBNAIL_PROCESSORS = (
 'easy_thumbnails.processors.colorspace',
 'easy_thumbnails.processors.autocrop',
 'filer.thumbnail_processors.scale_and_crop_with_subject_location',
 'easy_thumbnails.processors.filters',
)

If THUMBNAIL_PROCESSORS is not defined in your settings.py or has different
entries, just copy and paste the code above.

9.2.3. ALDRYN_BOILERPLATE_NAME

Aldryn News & Blog uses aldryn-boilerplates [https://github.com/aldryn/aldryn-boilerplates] to provide multiple sets of templates and static files
for different CSS frameworks. We’re using the Bootstrap 3 in this tutorial, so let’s choose
bootstrap3 by adding the setting:

ALDRYN_BOILERPLATE_NAME='bootstrap3'

9.2.4. STATICFILES_FINDERS

Add the boilerplates static files finder to STATICFILES_FINDERS, immediately before
django.contrib.staticfiles.finders.AppDirectoriesFinder:

 STATICFILES_FINDERS = [
 'django.contrib.staticfiles.finders.FileSystemFinder',
 'aldryn_boilerplates.staticfile_finders.AppDirectoriesFinder',
 'django.contrib.staticfiles.finders.AppDirectoriesFinder',
]

If STATICFILES_FINDERS is not defined in your settings.py just copy and paste the code
above.

9.2.5. TEMPLATES

Important

In Django 1.8, the TEMPLATE_LOADERS and TEMPLATE_CONTEXT_PROCESSORS settings are
rolled into the TEMPLATES setting. We’re assuming you’re using Django 1.8 here.

 TEMPLATES = [
 {
 # ...
 'OPTIONS': {
 'context_processors': [
 # ...
 'aldryn_boilerplates.context_processors.boilerplate',
],
 'loaders': [
 # ...
 'aldryn_boilerplates.template_loaders.AppDirectoriesLoader',
],
 },
 },
]

9.3. Migrate the database

We’ve added a new application so we need to update our database:

python manage.py migrate

Start the server again.

9.4. Create a new apphooked page

The News & Blog application comes with a django CMS apphook, so add a new django CMS page (call it
News), and add the News & Blog application to it just as you did for Polls.

For this application we also need to create and select an Application configuration.

Give this application configuration some settings:

	Instance namespace: news (this is used for reversing URLs)

	Application title: News (the name that will represent the application configuration in the
admin)

	Permalink type: choose a format you prefer for news article URLs

Save this application configuration, and make sure it’s selected in Application configurations.

Publish the new page, and you should find the News & Blog application at work there. (Until you
actually create any articles, it will simply inform you that there are No items available.)

9.5. Add new News & Blog articles

You can add new articles using the admin or the new News menu that now appears in the toolbar when you are on a page belonging to News & Blog.

You can also insert a Latest articles plugin into another page - like all good
django CMS applications, Aldryn News & Blog comes with plugins.

How-to guides

These guides presuppose some familiarity with django CMS. They cover some of
the same territory as the Tutorials, but in more detail.

Set-up

	Install django CMS by hand

Using core functionality

	Use placeholders outside the CMS

	Serve multiple languages

	Work with templates

	Manage caching

	Enable frontend editing for Page and Django models

	Create sitemaps

	Manage Page Types

Creating new functionality

	Create plugins

	Create apphooks

	Manage complex apphook configuration

	Extend the Toolbar

	Customise navigation menus

	Create content creation wizards

	Extend Page & Title models

	Test your extensions

Contributing

	Contribute a patch

How to install django CMS by hand

The easiest way to install django CMS is by using the automated django CMS installer [https://github.com/nephila/djangocms-installer]. This is the recommended way to start with new projects, and it’s
what we use in the tutorial section of this documentation.

If you prefer to do things manually, this how-to guide will take you through the process.

Note

You can also use this guide to help you install django CMS as part of an existing project. However, the guide
assumes that you are starting with a blank project, so you will need to adapt the steps below appropriately as
required.

This document assumes you have some basic familiarity with Python and Django. After you’ve integrated django CMS into
your project, you should be able to follow the Tutorials for an introduction to developing with django
CMS.

Install the django CMS package

Check the Python/Django requirements for this version of django CMS.

django CMS also has other requirements, which it lists as dependencies in its setup.py.

Important

We strongly recommend doing all of the following steps in a virtual environment. You ought to know how to create,
activate and dispose of virtual environments using virtualenv [https://virtualenv.pypa.io]. If you don’t, you
can use the steps below to get started, but you are advised to take a few minutes to learn the basics of using
virtualenv before proceeding further.

virtualenv django-cms-site # create a virtualenv
source django-cms-site/bin/activate # activate it

In an activated virtualenv, run:

pip install --upgrade pip

to make sure pip is up-to-date, as earlier versions can be less reliable.

Then:

pip install django-cms

to install the latest stable version of django CMS.

Create a new project

Create a new project:

django-admin startproject myproject

If this is new to you, you ought to read the official Django tutorial [https://docs.djangoproject.com/en/dev/intro/tutorial01/], which covers starting a new project.

Your new project will look like this:

myproject
 myproject
 __init__.py
 settings.py
 urls.py
 wsgi.py
 manage.py

Minimally-required applications and settings

Open the new project’s settings.py file in your text editor.

INSTALLED_APPS

You will need to add the following to its list of INSTALLED_APPS:

'django.contrib.sites',
'cms',
'menus',
'treebeard',

	django CMS needs to use Django’s django.contrib.sites [https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#module-django.contrib.sites] framework. You’ll need to set a SITE_ID
in the settings - SITE_ID = 1 will suffice.

	cms and menus are the core django CMS modules.

	django-treebeard [http://django-treebeard.readthedocs.io] is used to manage django CMS’s page and plugin tree
structures.

django CMS installs django CMS admin style [https://github.com/divio/djangocms-admin-style].
This provides some styling that helps make django CMS administration components easier to work with.
Technically it’s an optional component and does not need to be enabled in your project,
but it’s strongly recommended.

In the INSTALLED_APPS, before django.contrib.admin, add:

'djangocms_admin_style',

Language settings

django CMS requires you to set the LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES] setting. This should list all the languages you want
your project to serve, and must include the language in LANGUAGE_CODE [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGE_CODE].

For example:

LANGUAGES = [
 ('en', 'English'),
 ('de', 'German'),
]

(For simplicity’s sake, at this stage it is worth changing the default en-us in that you’ll find in the
LANGUAGE_CODE setting to en.)

Database

django CMS requires a relational database backend. Each django CMS installation should have its own database.

You can use SQLite, which is included in Python and doesn’t need to be installed separately or configured further. You
are unlikely to be using that for a project in production, but it’s ideal for development and exploration, especially
as it is configured by default in a new Django project’s DATABASES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASES].

Note

For deployment, you’ll need to use a production-ready database with Django [https://docs.djangoproject.com/en/2.2/ref/databases/]. We
recommend using PostgreSQL [http://www.postgresql.org/] or MySQL [http://www.mysql.com].

Installing and maintaining database systems is far beyond the scope of this documentation, but is very well
documented on the systems’ respective websites.

Whichever database you use, it will also require the appropriate Python adaptor to be installed:

pip install psycopg2 # for Postgres
pip install mysqlclient # for MySQL

Refer to Django's DATABASES setting documentation [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASES] for the appropriate configuration
for your chosen database backend.

Database tables

Now run migrations to create database tables for the new applications:

python manage.py migrate

Admin user

Create an admin superuser:

python manage.py createsuperuser

Using cms check for configuration

Once you have completed the minimum required set-up described above, you can use django CMS’s built-in cms check
command to help you identify and install other components. Run:

python manage.py cms check

This will check your configuration, your applications and your database, and report on any problems.

Note

If key components are be missing, django CMS will be unable to run the cms check command and will simply raise
an error instead.

After each of the steps below run cms check to verify that you have resolved that item in its checklist.

Sekizai

Django Sekizai [https://github.com/ojii/django-sekizai] is required by the CMS for static files management. You need
to have:

'sekizai'

listed in INSTALLED_APPS, and:

'sekizai.context_processors.sekizai'

in the TEMPLATES['OPTIONS']['context_processors']:

TEMPLATES = [
 {
 ...
 'OPTIONS': {
 'context_processors': [
 ...
 'sekizai.context_processors.sekizai',
],
 },
 },
]

Middleware

in your MIDDLEWARE [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MIDDLEWARE] you’ll need django.middleware.locale.LocaleMiddleware [https://docs.djangoproject.com/en/2.2/ref/middleware/#django.middleware.locale.LocaleMiddleware] -
it’s not installed in Django projects by default.

Also add:

'cms.middleware.user.CurrentUserMiddleware',
'cms.middleware.page.CurrentPageMiddleware',
'cms.middleware.toolbar.ToolbarMiddleware',
'cms.middleware.language.LanguageCookieMiddleware',

to the list.

You can also add 'cms.middleware.utils.ApphookReloadMiddleware'. It’s not absolutely necessary, but it’s
useful. If included, should be at the start of the list.

add the following configuration to your settings.py:

X_FRAME_OPTIONS = 'SAMEORIGIN'

Context processors

Add 'cms.context_processors.cms_settings' to TEMPLATES['OPTIONS']['context_processors'].

Also add 'django.template.context_processors.i18n' if it’s not already present.

cms check should now be unable to identify any further issues with your project. Some additional configuration is
required however.

Further required configuration

URLs

In the project’s urls.py, add url(r'^', include('cms.urls')) to the urlpatterns list. It should come after
other patterns, so that specific URLs for other applications can be detected first. Note: when using Django 2.0 or
later the syntax is re_path(r'^', include('cms.urls'))

You’ll also need to have an import for django.urls.include. For example:

from django.urls import re_path, include

urlpatterns = [
 re_path(r'^admin/', admin.site.urls),
 re_path(r'^', include('cms.urls')),
]

The django CMS project will now run, as you’ll see if you launch it with python manage.py runserver. You’ll be able
to reach it at http://localhost:8000/, and the admin at http://localhost:8000/admin/. You won’t yet actually be able to
do anything very useful with it though.

Templates

django CMS requires at least one template for its pages, so you’ll need to add CMS_TEMPLATES to your
settings. The first template in the CMS_TEMPLATES list will be the project’s default template.

CMS_TEMPLATES = [
 ('home.html', 'Home page template'),
]

In the root of the project, create a templates directory, and in that, home.html, a minimal django CMS
template:

{% load cms_tags sekizai_tags %}
<html>
 <head>
 <title>{% page_attribute "page_title" %}</title>
 {% render_block "css" %}
 </head>
 <body>
 {% cms_toolbar %}
 {% placeholder "content" %}
 {% render_block "js" %}
 </body>
</html>

This is worth explaining in a little detail:

	{% load cms_tags sekizai_tags %} loads the template tag libraries we use in the template.

	{% page_attribute "page_title" %} extracts the page’s page_title attribute.

	{% render_block "css" %} and {% render_block "js" %} are Sekizai template tags that load blocks of HTML
defined by Django applications. django CMS defines blocks for CSS and JavaScript, and requires these two tags. We
recommended placing {% render_block "css" %} just before the </head> tag, and and {% render_block "js" %}
tag just before the </body>.

	{% cms_toolbar %} renders the django CMS toolbar.

	{% placeholder "content" %} defines a placeholder, where plugins can be inserted. A template needs at
least one {% placeholder %} template tag to be useful for django CMS. The name of the placeholder is simply a
descriptive one, for your reference.

Django needs to be know where to look for its templates, so add templates to the TEMPLATES['DIRS'] list:

TEMPLATES = [
 {
 ...
 'DIRS': ['templates'],
 ...
 },
]

Note

The way we have set up the template here is just for illustration. In a real project, we’d recommend creating a
base.html template, shared by all the applications in the project, that your django CMS templates can extend.

See Django’s template language documentation [https://docs.djangoproject.com/en/2.2/ref/templates/language/#template-inheritance] for more on how template
inheritance works.

Media and static file handling

A django CMS site will need to handle:

	static files, that are a core part of an application or project, such as its necessary images, CSS or
JavaScript

	media files, that are uploaded by the site’s users or applications.

STATIC_URL [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_URL] is defined (as "/static/") in a new project’s settings by default.
STATIC_ROOT [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT], the location that static files will be copied to and served from, is not required for
development - only for production [https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/].

For now, using the runserver and with DEBUG = True in your settings, you don’t need to worry about either of these.

However, MEDIA_URL [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA_URL] (where media files will be served) and MEDIA_ROOT [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA_ROOT] (where they
will be stored) need to be added to your settings:

MEDIA_URL = "/media/"
MEDIA_ROOT = os.path.join(BASE_DIR, "media")

For deployment, you need to configure suitable media file serving. For development purposes only, the following will
work in your urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
 ...
] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

(See the Django documentation for guidance on serving media files in production [https://docs.djangoproject.com/en/2.2/howto/static-files/].)

Adding content-handling functionality

You now have the basics set up for a django CMS site, which is able to manage and serve up pages. However the project
so far has no plugins installed, which means it has no way of handling content in those pages. All content in django
CMS is managed via plugins. So, we now need to install some additional addon applications to provide plugins and other
functionality.

You don’t actually need to install any of these. django CMS doesn’t commit you to any particular applications for
content handling. The ones listed here however provide key functionality and are strongly recommended.

Django Filer

Django Filer [https://github.com/divio/django-filer] provides file and image management. Many other applications also rely on Django Filer - it’s very
unusual to have a django CMS site that does not run Django Filer. The configuration in this section will get you
started, but you should refer to the Django Filer documentation [https://django-filer.readthedocs.io] for more
comprehensive configuration information.

To install:

pip install django-filer

A number of applications will be installed as dependencies. Easy Thumbnails [https://github.com/SmileyChris/easy-thumbnails] is required to create new versions of images in different sizes;
Django MPTT [https://github.com/django-mptt/django-mptt/] manages the tree structure of the folders in Django Filer.

Pillow, the Python imaging library, will be installed. Pillow [https://github.com/python-pillow/Pillow] needs some
system-level libraries - the Pillow documentation [https://pillow.readthedocs.io] describes in detail what is
required to get this running on various operating systems.

Add:

'filer',
'easy_thumbnails',
'mptt',

to INSTALLED_APPS.

You also need to add:

THUMBNAIL_HIGH_RESOLUTION = True

THUMBNAIL_PROCESSORS = (
 'easy_thumbnails.processors.colorspace',
 'easy_thumbnails.processors.autocrop',
 'filer.thumbnail_processors.scale_and_crop_with_subject_location',
 'easy_thumbnails.processors.filters'
)

New database tables will need to be created for Django Filer and Easy Thumbnails, so run migrations:

python manage.py migrate filer
python manage.py migrate easy_thumbnails

(or simply, python manage.py migrate).

Django CMS CKEditor

Django CMS CKEditor [https://github.com/divio/djangocms-text-ckeditor] is the default text editor for django CMS.

Install: pip install djangocms-text-ckeditor.

Add djangocms_text_ckeditor to your INSTALLED_APPS.

Run migrations:

python manage.py migrate djangocms_text_ckeditor

Miscellaneous plugins

There are plugins for django CMS that cover a vast range of functionality. To get started, it’s useful to be able to
rely on a set of well-maintained plugins that cover some general content management needs.

	djangocms-link [https://github.com/divio/djangocms-link]

	djangocms-file [https://github.com/divio/djangocms-file]

	djangocms-picture [https://github.com/divio/djangocms-picture]

	djangocms-video [https://github.com/divio/djangocms-video]

	djangocms-googlemap [https://github.com/divio/djangocms-googlemap]

	djangocms-snippet [https://github.com/divio/djangocms-snippet]

	djangocms-style [https://github.com/divio/djangocms-style]

To install:

pip install djangocms-link djangocms-file djangocms-picture djangocms-video djangocms-googlemap djangocms-snippet
 djangocms-style

and add:

'djangocms_link',
'djangocms_file',
'djangocms_picture',
'djangocms_video',
'djangocms_googlemap',
'djangocms_snippet',
'djangocms_style',

to INSTALLED_APPS.

Then run migrations:

python manage.py migrate.

These and other plugins are described in more detail in Some commonly-used plugins. More are listed
plugins available on the django CMS Marketplace [https://marketplace.django-cms.org/en/addons/].

Launch the project

Start up the runserver:

python manage.py runserver

and access the new site, which you should now be able to reach at http://localhost:8000. Login if you haven’t
done so already.

[image: it-works-cms]

Next steps

If this is your first django CMS project, read through the Tutorial for a walk-through of some basics.

The tutorials for developers will help you understand how to approach django CMS as a developer.
Note that the tutorials assume you have installed the CMS using the django CMS Installer, but with a little
adaptation you’ll be able to use it as a basis.

To deploy your django CMS project on a production web server, please refer to the Django deployment documentation [https://docs.djangoproject.com/en/2.2/howto/deployment/].

How to use placeholders outside the CMS

Placeholders are special model fields that django CMS uses to render
user-editable content (plugins) in templates. That is, it’s the place where a
user can add text, video or any other plugin to a webpage, using the same
frontend editing as the CMS pages.

Placeholders can be viewed as containers for CMSPlugin instances, and
can be used outside the CMS in custom applications using the
PlaceholderField.

By defining one (or several) PlaceholderField on a
custom model you can take advantage of the full power of CMSPlugin.

Get started

You need to define a PlaceholderField on the model you would like to
use:

from django.db import models
from cms.models.fields import PlaceholderField

class MyModel(models.Model):
 # your fields
 my_placeholder = PlaceholderField('placeholder_name')
 # your methods

The PlaceholderField has one required parameter, a string slotname.

The slotname is used in templates, to determine where the placeholder’s plugins should appear
in the page, and in the placeholder configuration CMS_PLACEHOLDER_CONF, which determines
which plugins may be inserted into this placeholder.

You can also use a callable for the slotname, as in:

from django.db import models
from cms.models.fields import PlaceholderField

def my_placeholder_slotname(instance):
 return 'placeholder_name'

class MyModel(models.Model):
 # your fields
 my_placeholder = PlaceholderField(my_placeholder_slotname)
 # your methods

Warning

For security reasons the related_name for a
PlaceholderField may not be suppressed using
'+'; this allows the cms to check permissions properly. Attempting to do
so will raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

Note

If you add a PlaceholderField to an existing model, you’ll be able to see
the placeholder in the frontend editor only after saving the relevant instance.

Admin Integration

Changed in version 3.0.

Your model with PlaceholderFields can still be edited in the admin. However, any
PlaceholderFields in it will only be available for editing from the frontend.
PlaceholderFields must not be present in any fieldsets, fields, form or other
ModelAdmin field’s definition attribute.

To provide admin support for a model with a PlaceholderField in your application’s admin, you
need to use the mixin PlaceholderAdminMixin along with the
ModelAdmin [https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin]. Note that the PlaceholderAdminMixin must precede
the ModelAdmin in the class definition:

from django.contrib import admin
from cms.admin.placeholderadmin import PlaceholderAdminMixin
from myapp.models import MyModel

class MyModelAdmin(PlaceholderAdminMixin, admin.ModelAdmin):
 pass

admin.site.register(MyModel, MyModelAdmin)

I18N Placeholders

Out of the box PlaceholderAdminMixin supports multiple
languages and will display language tabs. If you extend your model admin class derived from
PlaceholderAdminMixin and overwrite change_form_template have a look at
admin/placeholders/placeholder/change_form.html to see how to display the language tabs.

If you need other fields translated as well, django CMS has support for django-hvad [https://github.com/kristianoellegaard/django-hvad]. If you use
a TranslatableModel model be sure to not include the placeholder fields amongst the
translated fields:

class MultilingualExample1(TranslatableModel):
 translations = TranslatedFields(
 title=models.CharField('title', max_length=255),
 description=models.CharField('description', max_length=255),
)
 placeholder_1 = PlaceholderField('placeholder_1')

 def __unicode__(self):
 return self.title

Be sure to combine both hvad’s TranslatableAdmin and PlaceholderAdminMixin when
registering your model with the admin site:

from cms.admin.placeholderadmin import PlaceholderAdminMixin
from django.contrib import admin
from hvad.admin import TranslatableAdmin
from myapp.models import MultilingualExample1

class MultilingualModelAdmin(TranslatableAdmin, PlaceholderAdminMixin, admin.ModelAdmin):
 pass

admin.site.register(MultilingualExample1, MultilingualModelAdmin)

Templates

To render the placeholder in a template you use the render_placeholder tag from the
cms_tags template tag library:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder "640" %}

The render_placeholder tag takes the following parameters:

	PlaceholderField instance

	width parameter for context sensitive plugins (optional)

	language keyword plus language-code string to render content in the
specified language (optional)

The view in which you render your placeholder field must return the
request [https://docs.djangoproject.com/en/2.2/ref/request-response/#django.http.HttpRequest] object in the context. This is
typically achieved in Django applications by using RequestContext [https://docs.djangoproject.com/en/2.2/ref/templates/api/#django.template.RequestContext]:

from django.shortcuts import get_object_or_404, render

def my_model_detail(request, id):
 object = get_object_or_404(MyModel, id=id)
 return render(request, 'my_model_detail.html', {
 'object': object,
 })

If you want to render plugins from a specific language, you can use the tag
like this:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder language 'en' %}

Adding content to a placeholder

Changed in version 3.0.

Placeholders can be edited from the frontend by visiting the page displaying your model (where you
put the render_placeholder tag), then appending ?edit to the page’s URL.

This will make the frontend editor top banner appear (and if necessary will require you to login).

Once in frontend editing mode, the interface for your application’s PlaceholderFields will work
in much the same way as it does for CMS Pages, with a switch for Structure and Content modes and so
on.

There is no automatic draft/live functionality for general Django models, so content is updated
instantly whenever you add/edit them.

Options

If you need to change ?edit to a custom string (say, ?admin_on) you may
set CMS_TOOLBAR_URL__EDIT_ON variable in your settings.py to
"admin_on".

You may also change other URLs with similar settings:

	?edit_off (CMS_TOOLBAR_URL__EDIT_OFF)

	?build (CMS_TOOLBAR_URL__BUILD)

	?toolbar_off (CMS_TOOLBAR_URL__DISABLE)

When changing these settings, please be careful because you might inadvertently replace reserved
strings in system (such as ?page). We recommended you use safely unique strings for this option
(such as secret_admin or company_name).

Permissions

To be able to edit a placeholder user must be a staff member and needs either edit permissions
on the model that contains the PlaceholderField, or permissions for
that specific instance of that model. Required permissions for edit actions are:

	to add: require add or change permission on related Model or instance.

	to change: require add or change permission on related Model or instance.

	to delete: require add or change or delete permission on related Model
or instance.

With this logic, an user who can change a Model’s instance but can not add a new
Model’s instance will be able to add some placeholders or plugins to existing Model’s instances.

Model permissions are usually added through the default Django auth application and its admin
interface. Object-level permission can be handled by writing a custom authentication backend as
described in django docs [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#handling-object-permissions]

For example, if there is a UserProfile model that contains a PlaceholderField then the
custom backend can refer to a has_perm method (on the model) that grants all rights to current
user only based on the user’s UserProfile object:

def has_perm(self, user_obj, perm, obj=None):
 if not user_obj.is_staff:
 return False
 if isinstance(obj, UserProfile):
 if user_obj.get_profile()==obj:
 return True
 return False

How to serve multiple languages

If you used the django CMS installer [https://github.com/nephila/djangocms-installer] to start your project, you’ll find
that it’s already set up for serving multilingual content. Our How to install django CMS by hand guide also does the same.

This guide specifically describes the steps required to enable multilingual support, in case you need to it manually.

Multilingual URLs

If you use more than one language, django CMS urls, including the admin URLS, need to be
referenced via i18n_patterns() [https://docs.djangoproject.com/en/2.2/topics/i18n/translation/#django.conf.urls.i18n.i18n_patterns]. For more information about this see
the official Django documentation [https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns]
on the subject.

Here’s a full example of urls.py:

from django.conf.urls.i18n import i18n_patterns
from django.contrib import admin
from django.contrib.staticfiles.urls import staticfiles_urlpatterns
from django.urls import include, re_path
from django.views.i18n import JavaScriptCatalog

admin.autodiscover()

urlpatterns = i18n_patterns(
 re_path(r'^jsi18n/$', JavaScriptCatalog.as_view(), name='javascript-catalog'),
)
urlpatterns += staticfiles_urlpatterns()

note the django CMS URLs included via i18n_patterns
urlpatterns += i18n_patterns(
 re_path(r'^admin/', include(admin.site.urls)),
 re_path(r'^', include('cms.urls')),
)

Monolingual URLs

Of course, if you want only monolingual URLs, without a language code, simply don’t use i18n_patterns() [https://docs.djangoproject.com/en/2.2/topics/i18n/translation/#django.conf.urls.i18n.i18n_patterns]:

urlpatterns += [
 re_path(r'^admin/', admin.site.urls),
 re_path(r'^', include('cms.urls')),
]

Store the user’s language preference

The user’s preferred language is maintained through a browsing session. So that django CMS remembers the user’s preference in
subsequent sessions, it must be stored in a cookie. To enable this, cms.middleware.language.LanguageCookieMiddleware must
be added to the project’s MIDDLEWARE setting.

See How django CMS determines which language to serve for more information about how this works.

Working in templates

Display a language chooser in the page

The language_chooser template tag will display a language chooser for the
current page. You can modify the template in menu/language_chooser.html or
provide your own template if necessary.

Example:

{% load menu_tags %}
{% language_chooser "myapp/language_chooser.html" %}

If you are in an apphook and have a detail view of an object you can
set an object to the toolbar in your view. The cms will call get_absolute_url in
the corresponding language for the language chooser:

Example:

class AnswerView(DetailView):
 def get(self, *args, **kwargs):
 self.object = self.get_object()
 if hasattr(self.request, 'toolbar'):
 self.request.toolbar.set_object(self.object)
 response = super().get(*args, **kwargs)
 return response

With this you can more easily control what url will be returned on the language chooser.

Note

If you have a multilingual objects be sure that you return the right url if you don’t have
a translation for this language in get_absolute_url

Get the URL of the current page for a different language

The page_language_url returns the URL of the current page in another language.

Example:

{% page_language_url "de" %}

Configuring language-handling behaviour

CMS_LANGUAGES describes the all options available for determining how django CMS serves content across multiple
languages.

How to work with templates

Application can reuse cms templates by mixing cms template tags and normal django
templating language.

static_placeholder

Plain placeholder cannot be used in templates used by external applications,
use static_placeholder instead.

CMS_TEMPLATE

New in version 3.0.

CMS_TEMPLATE is a context variable available in the context; it contains
the template path for CMS pages and application using apphooks, and the default
template (i.e.: the first template in CMS_TEMPLATES) for non-CMS
managed URLs.

This is mostly useful to use it in the extends template tag in the application
templates to get the current page template.

Example: cms template

{% load cms_tags %}
<html>
 <body>
 {% cms_toolbar %}
 {% block main %}
 {% placeholder "main" %}
 {% endblock main %}
 </body>
</html>

Example: application template

{% extends CMS_TEMPLATE %}
{% load cms_tags %}
{% block main %}
{% for item in object_list %}
 {{ item }}
{% endfor %}
{% static_placeholder "sidebar" %}
{% endblock main %}

CMS_TEMPLATE memorises the path of the cms template so the application
template can dynamically import it.

render_model

New in version 3.0.

render_model allows to edit the django models from the frontend by
reusing the django CMS frontend editor.

How to manage caching

Set-up

To setup caching configure a caching backend in django.

Details for caching can be found here: https://docs.djangoproject.com/en/dev/topics/cache/

In your middleware settings be sure to add django.middleware.cache.UpdateCacheMiddleware at the first and
django.middleware.cache.FetchFromCacheMiddleware at the last position:

MIDDLEWARE=[
 'django.middleware.cache.UpdateCacheMiddleware',
 ...
 'cms.middleware.language.LanguageCookieMiddleware',
 'cms.middleware.user.CurrentUserMiddleware',
 'cms.middleware.page.CurrentPageMiddleware',
 'cms.middleware.toolbar.ToolbarMiddleware',
 'django.middleware.cache.FetchFromCacheMiddleware',
],

Plugins

New in version 3.0.

Normally all plugins will be cached. If you have a plugin that is dynamic based on the current user or other
dynamic properties of the request set the cache=False attribute on the plugin class:

class MyPlugin(CMSPluginBase):
 name = _("MyPlugin")
 cache = False

Warning

If you disable a plugin cache be sure to restart the server and clear the cache afterwards.

Content Cache Duration

Default: 60

This can be changed in CMS_CACHE_DURATIONS

Settings

Caching is set default to true.
Have a look at the following settings to enable/disable various caching behaviours:

	CMS_PAGE_CACHE

	CMS_PLACEHOLDER_CACHE

	CMS_PLUGIN_CACHE

How to enable frontend editing for Page and Django models

New in version 3.0.

As well as PlaceholderFields, ‘ordinary’ Django model fields (both on CMS Pages and your own
Django models) can also be edited through django CMS’s frontend editing interface. This is very
convenient for the user because it saves having to switch between frontend and admin views.

Using this interface, model instance values that can be edited show the “Double-click to edit”
hint on hover. Double-clicking opens a pop-up window containing the change form for that model.

Note

This interface is not currently available for touch-screen users, but will be improved in
future releases.

Warning

This feature is only partially compatible with django-hvad: using
render_model with hvad-translated fields (say
{% render_model object 'translated_field' %} returns an error if the
hvad-enabled object does not exists in the current language.
As a workaround render_model_icon can be used instead.

Template tags

This feature relies on five template tags sharing common code. All require that you {% load
cms_tags %} in your template:

	render_model (for editing a specific field)

	render_model_block (for editing any of the fields in a defined block)

	render_model_icon (for editing a field represented by another value, such as an image)

	render_model_add (for adding an instance of the specified model)

	render_model_add_block (for adding an instance of the specified model)

Look at the tag-specific page for more detailed reference and discussion of limitations and caveats.

Page titles edit

For CMS pages you can edit the titles from the frontend; according to the
attribute specified a default field, which can also be overridden, will be editable.

Main title:

{% render_model request.current_page "title" %}

Page title:

{% render_model request.current_page "page_title" %}

Menu title:

{% render_model request.current_page "menu_title" %}

All three titles:

{% render_model request.current_page "titles" %}

You can always customise the editable fields by providing the
edit_field parameter:

{% render_model request.current_page "title" "page_title,menu_title" %}

Page menu edit

By using the special keyword changelist as edit field the frontend
editing will show the page tree; a common pattern for this is to enable
changes in the menu by wrapping the menu template tags:

{% render_model_block request.current_page "changelist" %}
 <h3>Menu</h3>

 {% show_menu 1 100 0 1 "sidebar_submenu_root.html" %}

{% endrender_model_block %}

Will render to:

<template class="cms-plugin cms-plugin-start cms-plugin-cms-page-changelist-1"></tempate>
 <h3>Menu</h3>

 Home
 another
 [...]
<template class="cms-plugin cms-plugin-end cms-plugin-cms-page-changelist-1"></tempate>

Editing ‘ordinary’ Django models

As noted above, your own Django models can also present their fields for editing in the frontend.
This is achieved by using the FrontendEditableAdminMixin base class.

Note that this is only required for fields other than PlaceholderFields.
PlaceholderFields are automatically made available for frontend editing.

Configure the model’s admin class

Configure your admin class by adding the FrontendEditableAdminMixin mixin to it (see
Django admin documentation [https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#module-django.contrib.admin] for general Django admin information):

from cms.admin.placeholderadmin import FrontendEditableAdminMixin
from django.contrib import admin

class MyModelAdmin(FrontendEditableAdminMixin, admin.ModelAdmin):
 ...

The ordering is important: as usual, mixins must come first.

Then set up the templates where you want to expose the model for editing, adding a render_model
template tag:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" %}</h1>
{% endblock content %}

See template tag reference for arguments documentation.

Selected fields edit

Frontend editing is also possible for a set of fields.

Set up the admin

You need to add to your model admin a tuple of fields editable from the frontend
admin:

from cms.admin.placeholderadmin import FrontendEditableAdminMixin
from django.contrib import admin

class MyModelAdmin(FrontendEditableAdminMixin, admin.ModelAdmin):
 frontend_editable_fields = ("foo", "bar")
 ...

Set up the template

Then add comma separated list of fields (or just the name of one field) to
the template tag:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" "some_field,other_field" %}</h1>
{% endblock content %}

Special attributes

The attribute argument of the template tag is not required to be a model field,
property or method can also be used as target; in case of a method, it will be
called with request as argument.

Custom views

You can link any field to a custom view (not necessarily an admin view) to handle
model-specific editing workflow.

The custom view can be passed either as a named url (view_url parameter)
or as name of a method (or property) on the instance being edited
(view_method parameter).
In case you provide view_method it will be called whenever the template tag is
evaluated with request as parameter.

The custom view does not need to obey any specific interface; it will get
edit_fields value as a GET parameter.

See template tag reference for arguments documentation.

Example view_url:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" "some_field,other_field" "" "admin:exampleapp_example1_some_view" %}</h1>
{% endblock content %}

Example view_method:

class MyModel(models.Model):
 char = models.CharField(max_length=10)

 def some_method(self, request):
 return "/some/url"

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" "some_field,other_field" "" "" "some_method" %}</h1>
{% endblock content %}

Model changelist

By using the special keyword changelist as edit field the frontend
editing will show the model changelist:

{% render_model instance "name" "changelist" %}

Will render to:

<div class="cms-plugin cms-plugin-myapp-mymodel-changelist-1">
 My Model Instance Name
</div>

Filters

If you need to apply filters to the output value of the template tag, add quoted
sequence of filters as in Django filter [https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-filter] template tag:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "attribute" "" "" "truncatechars:9" %}</h1>
{% endblock content %}

Context variable

The template tag output can be saved in a context variable for later use, using
the standard as syntax:

{% load cms_tags %}

{% block content %}
{% render_model instance "attribute" as variable %}

<h1>{{ variable }}</h1>

{% endblock content %}

How to create sitemaps

Sitemap

Sitemaps are XML files used by Google to index your website by using their
Webmaster Tools and telling them the location of your sitemap.

The cms.sitemaps.CMSSitemap will create a sitemap with all the published pages of
your CMS.

Configuration

	add django.contrib.sitemaps [https://docs.djangoproject.com/en/2.2/ref/contrib/sitemaps/#module-django.contrib.sitemaps] to your project’s INSTALLED_APPS [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-INSTALLED_APPS]
setting

	add from cms.sitemaps import CMSSitemap to the top of your main urls.py

	add from django.contrib.sitemaps.views import sitemap to urls.py`

	add url(r'^sitemap\.xml$', sitemap, {'sitemaps': {'cmspages': CMSSitemap}}),
to your urlpatterns

django.contrib.sitemaps

More information about django.contrib.sitemaps [https://docs.djangoproject.com/en/2.2/ref/contrib/sitemaps/#module-django.contrib.sitemaps] can be found in the official
Django documentation [http://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/].

New in version 3.0.

How to manage Page Types

Page Types make it easier for content editors to create pages from predefined types.

The examples contain content such as plugins that will be copied over to the newly-created page,
leaving the type untouched.

Creating Page Types

First you need to create a new page in the usual way; this will become the template for your new
page type.

Use this page as your template to add example content and plugins until you
reach a satisfied result.

Once ready, choose Save as Page Type… from the Page menu and give it an appropriate name.
Don’t worry about making it perfect, you can continue to change its content and settings.

This will create a new page type, and makes it available from Add Page command and the Create
wizard dialog.

[image: Creating a page type]
If you don’t want or need the original page from which you create the new page type, you can simply
delete it.

Managing Page Types

When you save a page as a page type, it is placed in the page list under Page Types node.

This node behaves differently from regular pages:

	They are not publicly accessible.

	All pages listed in Page Types will be rendered in the Page Types
drop-down menu.

There’s also a quick way to create a new page type: simply drag an existing page to the Page
Types node, whereupon it will become a new page type.

Selecting a Page Type

You can now select a page type when creating a new page. You’ll find a drop-down menu named Page
Type from which you can select the type for your new page.

[image: Selecting a page type]

How to create Plugins

The simplest plugin

We’ll start with an example of a very simple plugin.

You may use python manage.py startapp to set up the basic layout for your
plugin app (remember to add your plugin to INSTALLED_APPS). Alternatively, just add a file called cms_plugins.py to an
existing Django application.

Place your plugins in cms_plugins.py. For our example, include the following code:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from cms.models.pluginmodel import CMSPlugin
from django.utils.translation import gettext_lazy as _

@plugin_pool.register_plugin
class HelloPlugin(CMSPluginBase):
 model = CMSPlugin
 render_template = "hello_plugin.html"
 cache = False

Now we’re almost done. All that’s left is to add the template. Add the
following into the root template directory in a file called
hello_plugin.html:

<h1>Hello {% if request.user.is_authenticated %}{{ request.user.first_name }} {{ request.user.last_name}}{% else %}Guest{% endif %}</h1>

This plugin will now greet the users on your website either by their name if
they’re logged in, or as Guest if they’re not.

Now let’s take a closer look at what we did there. The cms_plugins.py files
are where you should define your sub-classes of
cms.plugin_base.CMSPluginBase, these classes define the different
plugins.

There are two required attributes on those classes:

	model: The model you wish to use for storing information about this plugin.
If you do not require any special information, for example configuration, to
be stored for your plugins, you can simply use
cms.models.pluginmodel.CMSPlugin (we’ll look at that model more
closely in a bit). In a normal admin class, you don’t need to supply this
information because admin.site.register(Model, Admin) takes care of it,
but a plugin is not registered in that way.

	name: The name of your plugin as displayed in the admin. It is generally
good practice to mark this string as translatable using
django.utils.translation.gettext_lazy() [https://docs.djangoproject.com/en/2.2/ref/utils/#django.utils.translation.gettext_lazy], however this is optional. By
default the name is a nicer version of the class name.

And one of the following must be defined if render_plugin attribute
is True (the default):

	render_template: The template to render this plugin with.

or

	get_render_template: A method that returns a template path to render the
plugin with.

In addition to those attributes, you can also override the render() method
which determines the template context variables that are used to render your
plugin. By default, this method only adds instance and placeholder
objects to your context, but plugins can override this to include any context
that is required.

A number of other methods are available for overriding on your CMSPluginBase
sub-classes. See: CMSPluginBase for further details.

Troubleshooting

Since plugin modules are found and loaded by django’s importlib, you might
experience errors because the path environment is different at runtime. If
your cms_plugins isn’t loaded or accessible, try the following:

$ python manage.py shell
>>> from importlib import import_module
>>> m = import_module("myapp.cms_plugins")
>>> m.some_test_function()

Storing configuration

In many cases, you want to store configuration for your plugin instances. For
example, if you have a plugin that shows the latest blog posts, you might want
to be able to choose the amount of entries shown. Another example would be a
gallery plugin where you want to choose the pictures to show for the plugin.

To do so, you create a Django model by sub-classing
cms.models.pluginmodel.CMSPlugin in the models.py of an installed
application.

Let’s improve our HelloPlugin from above by making its fallback name for
non-authenticated users configurable.

In our models.py we add the following:

from cms.models.pluginmodel import CMSPlugin

from django.db import models

class Hello(CMSPlugin):
 guest_name = models.CharField(max_length=50, default='Guest')

If you followed the Django tutorial, this shouldn’t look too new to you. The
only difference to normal models is that you sub-class
cms.models.pluginmodel.CMSPlugin rather than
django.db.models.Model [https://docs.djangoproject.com/en/2.2/ref/models/instances/#django.db.models.Model].

Now we need to change our plugin definition to use this model, so our new
cms_plugins.py looks like this:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from django.utils.translation import gettext_lazy as _

from .models import Hello

@plugin_pool.register_plugin
class HelloPlugin(CMSPluginBase):
 model = Hello
 name = _("Hello Plugin")
 render_template = "hello_plugin.html"
 cache = False

 def render(self, context, instance, placeholder):
 context = super().render(context, instance, placeholder)
 return context

We changed the model attribute to point to our newly created Hello
model and pass the model instance to the context.

As a last step, we have to update our template to make use of this
new configuration:

<h1>Hello {% if request.user.is_authenticated %}
 {{ request.user.first_name }} {{ request.user.last_name}}
{% else %}
 {{ instance.guest_name }}
{% endif %}</h1>

The only thing we changed there is that we use the template variable {{
instance.guest_name }} instead of the hard-coded Guest string in the else
clause.

Warning

You cannot name your model fields the same as any installed plugins lower-
cased model name, due to the implicit one-to-one relation Django uses for
sub-classed models. If you use all core plugins, this includes: file,
googlemap, link, picture, snippetptr, teaser,
twittersearch, twitterrecententries and video.

Additionally, it is recommended that you avoid using page as a model
field, as it is declared as a property of cms.models.pluginmodel.CMSPlugin,
and your plugin will not work as intended in the administration without
further work.

Warning

If you are using Python 2.x and overriding the __unicode__ method of the
model file, make sure to return its results as UTF8-string. Otherwise
saving an instance of your plugin might fail with the frontend editor showing
an <Empty> plugin instance. To return in Unicode use a return statement like
return u'{0}'.format(self.guest_name).

Handling Relations

Every time the page with your custom plugin is published the plugin is copied.
So if your custom plugin has foreign key (to it, or from it) or many-to-many
relations you are responsible for copying those related objects, if required,
whenever the CMS copies the plugin - it won’t do it for you automatically.

Every plugin model inherits the empty
cms.models.pluginmodel.CMSPlugin.copy_relations() method from the base
class, and it’s called when your plugin is copied. So, it’s there for you to
adapt to your purposes as required.

Typically, you will want it to copy related objects. To do this you should
create a method called copy_relations on your plugin model, that receives
the old instance of the plugin as an argument.

You may however decide that the related objects shouldn’t be copied - you may
want to leave them alone, for example. Or, you might even want to choose some
altogether different relations for it, or to create new ones when it’s
copied… it depends on your plugin and the way you want it to work.

If you do want to copy related objects, you’ll need to do this in two slightly
different ways, depending on whether your plugin has relations to or from
other objects that need to be copied too:

For foreign key relations from other objects

Your plugin may have items with foreign keys to it, which will typically be
the case if you set it up so that they are inlines in its admin. So you might
have two models, one for the plugin and one for those items:

class ArticlePluginModel(CMSPlugin):
 title = models.CharField(max_length=50)

class AssociatedItem(models.Model):
 plugin = models.ForeignKey(
 ArticlePluginModel,
 related_name="associated_item"
)

You’ll then need the copy_relations() method on your plugin model to loop
over the associated items and copy them, giving the copies foreign keys to the
new plugin:

class ArticlePluginModel(CMSPlugin):
 title = models.CharField(max_length=50)

 def copy_relations(self, oldinstance):
 # Before copying related objects from the old instance, the ones
 # on the current one need to be deleted. Otherwise, duplicates may
 # appear on the public version of the page
 self.associated_item.all().delete()

 for associated_item in oldinstance.associated_item.all():
 # instance.pk = None; instance.pk.save() is the slightly odd but
 # standard Django way of copying a saved model instance
 associated_item.pk = None
 associated_item.plugin = self
 associated_item.save()

For many-to-many or foreign key relations to other objects

Let’s assume these are the relevant bits of your plugin:

class ArticlePluginModel(CMSPlugin):
 title = models.CharField(max_length=50)
 sections = models.ManyToManyField(Section)

Now when the plugin gets copied, you want to make sure the sections stay, so
it becomes:

class ArticlePluginModel(CMSPlugin):
 title = models.CharField(max_length=50)
 sections = models.ManyToManyField(Section)

 def copy_relations(self, oldinstance):
 self.sections.set(oldinstance.sections.all())

If your plugins have relational fields of both kinds, you may of course need
to use both the copying techniques described above.

Relations between plugins

It is much harder to manage the copying of relations when they are from one plugin to another.

See the GitHub issue copy_relations() does not work for relations between cmsplugins #4143 [https://github.com/divio/django-cms/issues/4143] for more details.

Advanced

Inline Admin

If you want to have the foreign key relation as a inline admin, you can create an
admin.StackedInline class and put it in the Plugin to “inlines”. Then you can use the inline
admin form for your foreign key references:

class ItemInlineAdmin(admin.StackedInline):
 model = AssociatedItem

class ArticlePlugin(CMSPluginBase):
 model = ArticlePluginModel
 name = _("Article Plugin")
 render_template = "article/index.html"
 inlines = (ItemInlineAdmin,)

 def render(self, context, instance, placeholder):
 context = super().render(context, instance, placeholder)
 items = instance.associated_item.all()
 context.update({
 'items': items,
 })
 return context

Plugin form

Since cms.plugin_base.CMSPluginBase extends
django.contrib.admin.ModelAdmin [https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin], you can customise the form
for your plugins just as you would customise your admin interfaces.

The template that the plugin editing mechanism uses is
cms/templates/admin/cms/page/plugin/change_form.html. You might need to
change this.

If you want to customise this the best way to do it is:

	create a template of your own that extends cms/templates/admin/cms/page/plugin/change_form.html
to provide the functionality you require;

	provide your cms.plugin_base.CMSPluginBase sub-class with a
change_form_template attribute pointing at your new template.

Extending admin/cms/page/plugin/change_form.html ensures that you’ll keep
a unified look and functionality across your plugins.

There are various reasons why you might want to do this. For example, you
might have a snippet of JavaScript that needs to refer to a template
variable), which you’d likely place in {% block extrahead %}, after a {{
block.super }} to inherit the existing items that were in the parent
template.

Handling media

If your plugin depends on certain media files, JavaScript or stylesheets, you
can include them from your plugin template using django-sekizai [https://github.com/ojii/django-sekizai]. Your CMS
templates are always enforced to have the css and js sekizai namespaces,
therefore those should be used to include the respective files. For more
information about django-sekizai, please refer to the
django-sekizai documentation [https://django-sekizai.readthedocs.io].

Note that sekizai can’t help you with the admin-side plugin templates -
what follows is for your plugins’ output templates.

Sekizai style

To fully harness the power of django-sekizai, it is helpful to have a consistent
style on how to use it. Here is a set of conventions that should be followed
(but don’t necessarily need to be):

	One bit per addtoblock. Always include one external CSS or JS file per
addtoblock or one snippet per addtoblock. This is needed so
django-sekizai properly detects duplicate files.

	External files should be on one line, with no spaces or newlines between the
addtoblock tag and the HTML tags.

	When using embedded javascript or CSS, the HTML tags should be on a newline.

A good example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myjsfile.js"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}<link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.css">{% endaddtoblock %}
{% addtoblock "js" %}
<script type="text/javascript">
 $(document).ready(function(){
 doSomething();
 });
</script>
{% endaddtoblock %}

A bad example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myjsfile.js"></script>
<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}
 <link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.css"></script>
{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript">
 $(document).ready(function(){
 doSomething();
 });
</script>{% endaddtoblock %}

Plugin Context

The plugin has access to the django template context. You can override
variables using the with tag.

Example:

{% with 320 as width %}{% placeholder "content" %}{% endwith %}

Plugin Context Processors

Plugin context processors are callables that modify all plugins’ context before
rendering. They are enabled using the CMS_PLUGIN_CONTEXT_PROCESSORS
setting.

A plugin context processor takes 3 arguments:

	instance: The instance of the plugin model

	placeholder: The instance of the placeholder this plugin appears in.

	context: The context that is in use, including the request.

The return value should be a dictionary containing any variables to be added to
the context.

Example:

def add_verbose_name(instance, placeholder, context):
 '''
 This plugin context processor adds the plugin model's verbose_name to context.
 '''
 return {'verbose_name': instance._meta.verbose_name}

Plugin Processors

Plugin processors are callables that modify all plugins’ output after rendering.
They are enabled using the CMS_PLUGIN_PROCESSORS setting.

A plugin processor takes 4 arguments:

	instance: The instance of the plugin model

	placeholder: The instance of the placeholder this plugin appears in.

	rendered_content: A string containing the rendered content of the plugin.

	original_context: The original context for the template used to render
the plugin.

Note

Plugin processors are also applied to plugins embedded in Text
plugins (and any custom plugin allowing nested plugins). Depending on
what your processor does, this might break the output. For example,
if your processor wraps the output in a div tag, you might end up
having div tags inside of p tags, which is invalid. You can
prevent such cases by returning rendered_content unchanged if
instance._render_meta.text_enabled is True, which is the case
when rendering an embedded plugin.

Example

Suppose you want to wrap each plugin in the main placeholder in a colored box
but it would be too complicated to edit each individual plugin’s template:

In your settings.py:

CMS_PLUGIN_PROCESSORS = (
 'yourapp.cms_plugin_processors.wrap_in_colored_box',
)

In your yourapp.cms_plugin_processors.py:

def wrap_in_colored_box(instance, placeholder, rendered_content, original_context):
 '''
 This plugin processor wraps each plugin's output in a colored box if it is in the "main" placeholder.
 '''
 # Plugins not in the main placeholder should remain unchanged
 # Plugins embedded in Text should remain unchanged in order not to break output
 if placeholder.slot != 'main' or (instance._render_meta.text_enabled and instance.parent):
 return rendered_content
 else:
 from django.template import Context, Template
 # For simplicity's sake, construct the template from a string:
 t = Template('<div style="border: 10px {{ border_color }} solid; background: {{ background_color }};">{{ content|safe }}</div>')
 # Prepare that template's context:
 c = Context({
 'content': rendered_content,
 # Some plugin models might allow you to customise the colors,
 # for others, use default colors:
 'background_color': instance.background_color if hasattr(instance, 'background_color') else 'lightyellow',
 'border_color': instance.border_color if hasattr(instance, 'border_color') else 'lightblue',
 })
 # Finally, render the content through that template, and return the output
 return t.render(c)

Nested Plugins

You can nest CMS Plugins in themselves. There’s a few things required to
achieve this functionality:

models.py:

class ParentPlugin(CMSPlugin):
 # add your fields here

class ChildPlugin(CMSPlugin):
 # add your fields here

cms_plugins.py:

from .models import ParentPlugin, ChildPlugin

@plugin_pool.register_plugin
class ParentCMSPlugin(CMSPluginBase):
 render_template = 'parent.html'
 name = 'Parent'
 model = ParentPlugin
 allow_children = True # This enables the parent plugin to accept child plugins
 # You can also specify a list of plugins that are accepted as children,
 # or leave it away completely to accept all
 # child_classes = ['ChildCMSPlugin']

 def render(self, context, instance, placeholder):
 context = super().render(context, instance, placeholder)
 return context

@plugin_pool.register_plugin
class ChildCMSPlugin(CMSPluginBase):
 render_template = 'child.html'
 name = 'Child'
 model = ChildPlugin
 require_parent = True # Is it required that this plugin is a child of another plugin?
 # You can also specify a list of plugins that are accepted as parents,
 # or leave it away completely to accept all
 # parent_classes = ['ParentCMSPlugin']

 def render(self, context, instance, placeholder):
 context = super(ChildCMSPlugin, self).render(context, instance, placeholder)
 return context

parent.html:

{% load cms_tags %}

<div class="plugin parent">
 {% for plugin in instance.child_plugin_instances %}
 {% render_plugin plugin %}
 {% endfor %}
</div>

child.html:

<div class="plugin child">
 {{ instance }}
</div>

If you have attributes of the parent plugin which you need to access in the
child you can access the parent instance using get_bound_plugin:

class ChildPluginForm(forms.ModelForm):

 class Meta:
 model = ChildPlugin
 exclude = ()

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 if self.instance:
 parent, parent_cls = self.instance.parent.get_bound_plugin()

Extending context menus of placeholders or plugins

There are three possibilities to extend the context menus
of placeholders or plugins.

	You can either extend a placeholder context menu.

	You can extend all plugin context menus.

	You can extend the current plugin context menu.

For this purpose you can overwrite 3 methods on CMSPluginBase.

	get_extra_placeholder_menu_items()

	get_extra_global_plugin_menu_items()

	get_extra_local_plugin_menu_items()

Example:

class AliasPlugin(CMSPluginBase):
 name = _("Alias")
 allow_children = False
 model = AliasPluginModel
 render_template = "cms/plugins/alias.html"

 def render(self, context, instance, placeholder):
 context = super().render(context, instance, placeholder)
 if instance.plugin_id:
 plugins = instance.plugin.get_descendants(
 include_self=True
).order_by('placeholder', 'tree_id', 'level', 'position')
 plugins = downcast_plugins(plugins)
 plugins[0].parent_id = None
 plugins = build_plugin_tree(plugins)
 context['plugins'] = plugins
 if instance.alias_placeholder_id:
 content = render_placeholder(instance.alias_placeholder, context)
 print content
 context['content'] = mark_safe(content)
 return context

 def get_extra_global_plugin_menu_items(self, request, plugin):
 return [
 PluginMenuItem(
 _("Create Alias"),
 reverse("admin:cms_create_alias"),
 data={
 'plugin_id': plugin.pk,
 'csrfmiddlewaretoken': get_token(request)
 },
)
]

 def get_extra_placeholder_menu_items(self, request, placeholder):
 return [
 PluginMenuItem(
 _("Create Alias"),
 reverse("admin:cms_create_alias"),
 data={
 'placeholder_id': placeholder.pk,
 'csrfmiddlewaretoken': get_token(request)
 },
)
]

 def get_plugin_urls(self):
 urlpatterns = [
 re_path(r'^create_alias/$', self.create_alias, name='cms_create_alias'),
]
 return urlpatterns

 def create_alias(self, request):
 if not request.user.is_staff:
 return HttpResponseForbidden("not enough privileges")
 if not 'plugin_id' in request.POST and not 'placeholder_id' in request.POST:
 return HttpResponseBadRequest(
 "plugin_id or placeholder_id POST parameter missing."
)
 plugin = None
 placeholder = None
 if 'plugin_id' in request.POST:
 pk = request.POST['plugin_id']
 try:
 plugin = CMSPlugin.objects.get(pk=pk)
 except CMSPlugin.DoesNotExist:
 return HttpResponseBadRequest(
 "plugin with id %s not found." % pk
)
 if 'placeholder_id' in request.POST:
 pk = request.POST['placeholder_id']
 try:
 placeholder = Placeholder.objects.get(pk=pk)
 except Placeholder.DoesNotExist:
 return HttpResponseBadRequest(
 "placeholder with id %s not found." % pk
)
 if not placeholder.has_change_permission(request):
 return HttpResponseBadRequest(
 "You do not have enough permission to alias this placeholder."
)
 clipboard = request.toolbar.clipboard
 clipboard.cmsplugin_set.all().delete()
 language = request.LANGUAGE_CODE
 if plugin:
 language = plugin.language
 alias = AliasPluginModel(
 language=language, placeholder=clipboard,
 plugin_type="AliasPlugin"
)
 if plugin:
 alias.plugin = plugin
 if placeholder:
 alias.alias_placeholder = placeholder
 alias.save()
 return HttpResponse("ok")

Plugin data migrations

Due to the migration from Django MPTT to django-treebeard in version 3.1, the plugin model is
different between the two versions. Schema migrations are not affected as the migration systems
(both South and Django) detects the different bases.

Data migrations are a different story, though.

If your data migration does something like:

MyPlugin = apps.get_model('my_app', 'MyPlugin')

for plugin in MyPlugin.objects.all():
 ... do something ...

You may end up with an error like
django.db.utils.OperationalError: (1054, "Unknown column 'cms_cmsplugin.level' in 'field list'")
because depending on the order the migrations are executed, the historical models may be out of
sync with the applied database schema.

To keep compatibility with 3.0 and 3.x you can force the data migration to run before the django CMS
migration that creates treebeard fields, by doing this the data migration will always be executed
on the “old” database schema and no conflict will exist.

For South migrations add this:

from distutils.version import LooseVersion
import cms
USES_TREEBEARD = LooseVersion(cms.__version__) >= LooseVersion('3.1')

class Migration(DataMigration):

 if USES_TREEBEARD:
 needed_by = [
 ('cms', '0070_auto__add_field_cmsplugin_path__add_field_cmsplugin_depth__add_field_c')
]

For Django migrations add this:

from distutils.version import LooseVersion
import cms
USES_TREEBEARD = LooseVersion(cms.__version__) >= LooseVersion('3.1')

class Migration(migrations.Migration):

 if USES_TREEBEARD:
 run_before = [
 ('cms', '0004_auto_20140924_1038')
]

How to create apphooks

An apphook allows you to attach a Django application to a page. For example,
you might have a news application that you’d like integrated with django CMS. In
this case, you can create a normal django CMS page without any content of its
own, and attach the news application to the page; the news application’s content
will be delivered at the page’s URL.

All URLs in that URL path will be passed to the attached application’s URL configs.

The Tutorials section contains a basic guide to getting started with
apphooks. This document assumes more familiarity with the CMS generally.

The basics of apphook creation

To create an apphook, create a cms_apps.py file in your application.

The file needs to contain a CMSApp sub-class. For example:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

@apphook_pool.register
class MyApphook(CMSApp):
 app_name = "myapp" # must match the application namespace
 name = "My Apphook"

 def get_urls(self, page=None, language=None, **kwargs):
 return ["myapp.urls"] # replace this with the path to your application's URLs module

Changed in version 3.3: CMSApp.get_urls() replaces CMSApp.urls. urls was removed
in version 3.5.

Apphooks for namespaced applications

Your application should use namespaced URLs [https://docs.djangoproject.com/en/2.2/topics/http/urls/#topics-http-defining-url-namespaces].

In the example above, the application uses the myapp namespace. Your CMSApp
sub-class must reflect the application’s namespace in the app_name attribute.

The application may specify a namespace by supplying an app_name in its urls.py, or its
documentation might advise that you when include its URLs, you do it thus:

re_path(r'^myapp/', include('myapp.urls', app_name='myapp'))

If you fail to do this, then any templates in the application that invoke URLs using the form {% url
'myapp:index' %} or views that call (for example) reverse('myapp:index') will throw a
NoReverseMatch error.

Apphooks for non-namespaced applications

If you are writing apphooks for third-party applications, you may find one that in fact does
not have an application namespace for its URLs. Such an application is liable to tun into namespace
conflicts, and doesn’t represent good practice.

However if you do encounter such an application, your own apphook for it will need in turn to forgo the
app_name attribute.

Note that unlike apphooks without app_name attributes can be attached only to one page at a
time; attempting to apply them a second time will cause an error. Only one instance of these
apphooks can exist.

See Attaching an application multiple times for more on having multiple apphook instances.

Returning apphook URLs manually

Instead of defining the URL patterns in another file myapp/urls.py, it also is possible
to return them manually, for example if you need to override the set provided. An example:

from django.urls import re_path
from myapp.views import SomeListView, SomeDetailView

class MyApphook(CMSApp):
 # ...
 def get_urls(self, page=None, language=None, **kwargs):
 return [
 re_path(r'^$', SomeListView.as_view()),
 re_path(r'^(?P<slug>[\w-]+)/?$', SomeDetailView.as_view()),
]

However, it’s much neater to keep them in the application’s urls.py, where they can easily be
reused.

Loading new and re-configured apphooks

Certain apphook-related changes require server restarts in order to be loaded.

Whenever you:

	add or remove an apphook

	change the slug of a page containing an apphook or the slug of a page which has a descendant with
an apphook

the URL caches must be reloaded.

If you have the cms.middleware.utils.ApphookReloadMiddleware installed, which is recommended, the server will do
it for you by re-initialising the URL patterns automatically.

Otherwise, you will need to restart the server manually.

Using an apphook

Once your apphook has been set up and loaded, you’ll now be able to select the Application that’s
hooked into that page from its Advanced settings.

Note

An apphook won’t actually do anything until the page it belongs to is published. Take note that
this also means all parent pages must also be published.

The apphook attaches all of the apphooked application’s URLs to the page; its root URL will be the
page’s own URL, and any lower-level URLs will be on the same URL path.

So, given an application with the urls.py for the views index_view and archive_view:

urlpatterns = [
 re_path(r'^$', index_view),
 re_path(r'^archive/$', archive_view),
]

attached to a page whose URL path is /hello/world/, the views will be exposed as follows:

	index_view at /hello/world/

	archive_view at /hello/world/archive/

Sub-pages of an apphooked page

Important

Don’t add child pages to a page with an apphook.

The apphook “swallows” all URLs below that of the page, handing them over to the attached
application. If you have any child pages of the apphooked page, django CMS will not be
able to serve them reliably.

Managing apphooks

Uninstalling an apphook with applied instances

If you remove an apphook class from your system (in effect uninstalling it) that still has
instances applied to pages, django CMS tries to handle this as gracefully as possible:

	Affected pages still maintain a record of the applied apphook; if the apphook class is
subsequently reinstated, it will work as before.

	The page list will show apphook indicators where appropriate.

	The page will otherwise behave like a normal django CMS page, and display its placeholders in the
usual way.

	If you save the page’s Advanced settings, the apphook will be removed.

Management commands

You can clear uninstalled apphook instances using the CMS management command uninstall apphooks. For example:

manage.py cms uninstall apphooks MyApphook MyOtherApphook

You can get a list of installed apphooks using the cms list; in this case:

manage.py cms list apphooks

See the Management commands reference for more information.

Adding menus to apphooks

Generally, it is recommended to allow the user to control whether a menu is attached to a page (See
Attach Menus for more on these menus). However, an apphook can be made to do
this automatically if required. It will behave just as if the menu had been attached to the page
using its Advanced settings).

Menus can be added to an apphook using the get_menus() method. On the basis of the example above:

[...]
from myapp.cms_menus import MyAppMenu

class MyApphook(CMSApp):
 # [...]
 def get_menus(self, page=None, language=None, **kwargs):
 return [MyAppMenu]

Changed in version 3.3: CMSApp.get_menus() replaces CMSApp.menus. The menus attribute is now deprecated and
has been removed in version 3.5.

The menus returned in the get_menus() method need to return a list of nodes, in their
get_nodes() methods. Attach Menus has more information on creating menu
classes that generate nodes.

You can return multiple menu classes; all will be attached to the same page:

def get_menus(self, page=None, language=None, **kwargs):
 return [MyAppMenu, CategoryMenu]

Managing permissions on apphooks

By default the content represented by an apphook has the same permissions set as the page it is
assigned to. So if for example a page requires the user to be logged in, then the attached apphook
and all its URLs will have the same requirements.

To disable this behaviour set permissions = False on your apphook:

class MyApphook(CMSApp):
 [...]
 permissions = False

If you still want some of your views to use the CMS’s permission checks you can enable them via a decorator, cms.utils.decorators.cms_perms

Here is a simple example:

from cms.utils.decorators import cms_perms

@cms_perms
def my_view(request, **kw):
 ...

If you make your own permission checks in your application, then use the exclude_permissions property of the apphook:

class MyApphook(CMSApp):
 [...]
 permissions = True
 exclude_permissions = ["some_nested_app"]

where you provide the name of the application in question

Automatically restart server on apphook changes

As mentioned above, whenever you:

	add or remove an apphook

	change the slug of a page containing an apphook

	change the slug of a page with a descendant with an apphook

The CMS the server will reload its URL caches. It does this by listening for
the signal cms.signals.urls_need_reloading.

Warning

This signal does not actually do anything itself. For automated server
restarting you need to implement logic in your project that gets executed
whenever this signal is fired. Because there are many ways of deploying
Django applications, there is no way we can provide a generic solution for
this problem that will always work.

The signal is fired after a request - for example, upon saving a page’s settings. If you
change and apphook’s setting via an API the signal won’t fire until a subsequent request.

Apphooks and placeholder template tags

It’s important to understand that while an apphooked application takes over the CMS page at that
location completely, depending on how the application’s templates extend other templates, a
django CMS {% placeholder %} template tag may be invoked - but will not work.

{% static_placeholder %} tags on the other hand are not page-specific and will function
normally.

How to manage complex apphook configuration

In How to create apphooks we discuss some basic points of using apphooks. In this document we will cover some more
complex implementation possibilities.

Attaching an application multiple times

Define a namespace at class-level

If you want to attach an application multiple times to different pages, then the class defining the apphook must
have an app_name attribute:

class MyApphook(CMSApp):
 name = _("My Apphook")
 app_name = "myapp"

 def get_urls(self, page=None, language=None, **kwargs):
 return ["myapp.urls"]

The app_name does three key things:

	It provides the fallback namespace for views and templates that reverse URLs.

	It exposes the Application instance name field in the page admin when applying an apphook.

	It sets the default apphook instance name (which you’ll see in the Application instance name field).

We’ll explain these with an example. Let’s suppose that your application’s views or templates use
reverse('myapp:index') or {% url 'myapp:index' %}.

In this case the namespace of any apphooks you apply must match myapp. If they don’t, your pages using them will
throw up a NoReverseMatch error.

You can set the namespace for the instance of the apphook in the Application instance name field. However, you’ll
need to set that to something different if an instance with that value already exists. In this case, as long as
app_name = "myapp" it doesn’t matter; even if the system doesn’t find a match with the name of the instance it will
fall back to the one hard-wired into the class.

In other words setting app_name correctly guarantees that URL-reversing will work, because it sets the fallback
namespace appropriately.

Set a namespace at instance-level

On the other hand, the Application instance name will override the app_name if a match is found.

This arrangement allows you to use multiple application instances and namespaces if that flexibility is required, while
guaranteeing a simple way to make it work when it’s not.

Django’s Reversing namespaced URLs [https://docs.djangoproject.com/en/2.2/topics/http/urls/#topics-http-reversing-url-namespaces] documentation provides more information on how this works,
but the simplified version is:

	First, it’ll try to find a match for the Application instance name.

	If it fails, it will try to find a match for the app_name.

Apphook configurations

Namespacing your apphooks also makes it possible to manage additional database-stored apphook configuration, on an
instance-by-instance basis.

Basic concepts

To capture the configuration that different instances of an apphook can take, a Django model needs to be created - each
apphook instance will be an instance of that model, and administered through the Django admin in the usual way.

Once set up, an apphook configuration can be applied to to an apphook instance, in the Advanced settings of the page
the apphook instance belongs to:

[image: selecting an apphook configuration application]
The configuration is then loaded in the application’s views for that namespace, and will be used to determined how it
behaves.

Creating an application configuration in fact creates an apphook instance namespace. Once created, the namespace of a
configuration cannot be changed - if a different namespace is required, a new configuration will also need to be
created.

An example apphook configuration

In order to illustrate how this all works, we’ll create a new FAQ application, that provides a simple list
of questions and answers, together with an apphook class and an apphook configuration model that allows it to
exist in multiple places on the site in multiple configurations.

We’ll assume that you have a working django CMS project running already.

Using helper applications

We’ll use a couple of simple helper applications for this example, just to make our work easier.

Aldryn Apphooks Config

Aldryn Apphooks Config [https://github.com/aldryn/aldryn-apphooks-config] is a helper application that makes it
easier to develop configurable apphooks. For example, it provides an AppHookConfig for you to subclass, and other
useful components to save you time.

In this example, we’ll use Aldryn Apphooks Config, as we recommend it. However, you don’t have to use it in your own
projects; if you prefer to can build the code you require by hand.

Use pip install aldryn-apphooks-config to install it.

Aldryn Apphooks Config in turn installs Django AppData [https://github.com/ella/django-appdata], which provides an
elegant way for an application to extend another; we’ll make use of this too.

Create the new FAQ application

python manage.py startapp faq

Create the FAQ Entry model

models.py:

from aldryn_apphooks_config.fields import AppHookConfigField
from aldryn_apphooks_config.managers import AppHookConfigManager
from django.db import models
from faq.cms_appconfig import FaqConfig

class Entry(models.Model):
 app_config = AppHookConfigField(FaqConfig)
 question = models.TextField(blank=True, default='')
 answer = models.TextField()

 objects = AppHookConfigManager()

 def __unicode__(self):
 return self.question

 class Meta:
 verbose_name_plural = 'entries'

The app_config field is a ForeignKey to an apphook configuration model; we’ll create it in a moment. This model
will hold the specific namespace configuration, and makes it possible to assign each FAQ Entry to a namespace.

The custom AppHookConfigManager is there to make it easy to filter the queryset of Entries using a convenient
shortcut: Entry.objects.namespace('foobar').

Define the AppHookConfig subclass

In a new file cms_appconfig.py in the FAQ application:

from aldryn_apphooks_config.models import AppHookConfig
from aldryn_apphooks_config.utils import setup_config
from app_data import AppDataForm
from django.db import models
from django import forms
from django.utils.translation import gettext_lazy as _

class FaqConfig(AppHookConfig):
 paginate_by = models.PositiveIntegerField(
 _('Paginate size'),
 blank=False,
 default=5,
)

class FaqConfigForm(AppDataForm):
 title = forms.CharField()
setup_config(FaqConfigForm, FaqConfig)

The implementation can be left completely empty, as the minimal schema is already defined in
the abstract parent model provided by Aldryn Apphooks Config.

Here though we’re defining an extra field on model, paginate_by. We’ll use it later
to control how many entries should be displayed per page.

We also set up a FaqConfigForm, which uses AppDataForm to add a field to FaqConfig without actually
touching its model.

The title field could also just be a model field, like paginate_by. But we’re using the AppDataForm to demonstrate
this capability.

Define its admin properties

In admin.py we need to define all fields we’d like to display:

from django.contrib import admin
from .cms_appconfig import FaqConfig
from .models import Entry
from aldryn_apphooks_config.admin import ModelAppHookConfig, BaseAppHookConfig

class EntryAdmin(ModelAppHookConfig, admin.ModelAdmin):
 list_display = (
 'question',
 'answer',
 'app_config',
)
 list_filter = (
 'app_config',
)
admin.site.register(Entry, EntryAdmin)

class FaqConfigAdmin(BaseAppHookConfig, admin.ModelAdmin):
 def get_config_fields(self):
 return (
 'paginate_by',
 'config.title',
)
admin.site.register(FaqConfig, FaqConfigAdmin)

get_config_fields defines the fields that should be displayed. Any fields
using the AppData forms need to be prefixed by config..

Define the apphook itself

Now let’s create the apphook, and set it up with support for multiple instances. In cms_apps.py:

from aldryn_apphooks_config.app_base import CMSConfigApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import gettext_lazy as _
from .cms_appconfig import FaqConfig

@apphook_pool.register
class FaqApp(CMSConfigApp):
 name = _("Faq App")
 app_name = "faq"
 app_config = FaqConfig

 def get_urls(self, page=None, language=None, **kwargs):
 return ["faq.urls"]

Define a list view for FAQ entries

We have all the basics in place. Now we’ll add a list view for the FAQ entries
that only displays entries for the currently used namespace. In views.py:

from aldryn_apphooks_config.mixins import AppConfigMixin
from django.views import generic
from .models import Entry

class IndexView(AppConfigMixin, generic.ListView):
 model = Entry
 template_name = 'faq/index.html'

 def get_queryset(self):
 qs = super().get_queryset()
 return qs.namespace(self.namespace)

 def get_paginate_by(self, queryset):
 try:
 return self.config.paginate_by
 except AttributeError:
 return 10

AppConfigMixin saves you the work of setting any attributes in your view - it automatically sets, for the view
class instance:

	current namespace in self.namespace

	namespace configuration (the instance of FaqConfig) in self.config

	current application in the current_app parameter passed to the
Response class

In this case we’re filtering to only show entries assigned to the current
namespace in get_queryset. qs.namespace, thanks to the model manager we defined earlier, is the equivalent of
qs.filter(app_config__namespace=self.namespace).

In get_paginate_by we use the value from our appconfig model.

Define a template

In faq/templates/faq/index.html:

{% extends 'base.html' %}

{% block content %}
 <h1>{{ view.config.title }}</h1>
 <p>Namespace: {{ view.namespace }}</p>
 <dl>
 {% for entry in object_list %}
 <dt>{{ entry.question }}</dt>
 <dd>{{ entry.answer }}</dd>
 {% endfor %}
 </dl>

 {% if is_paginated %}
 <div class="pagination">

 {% if page_obj.has_previous %}
 previous
 {% else %}
 previous
 {% endif %}

 Page {{ page_obj.number }} of {{ page_obj.paginator.num_pages }}.

 {% if page_obj.has_next %}
 next
 {% else %}
 next
 {% endif %}

 </div>
 {% endif %}
{% endblock %}

URLconf

urls.py:

from django.urls import re_path
from . import views

urlpatterns = [
 re_path(r'^$', views.IndexView.as_view(), name='index'),
]

Put it all together

Finally, we add faq to INSTALLED_APPS, then create and run migrations:

python manage.py makemigrations faq
python manage.py migrate faq

Now we should be all set.

Create two pages with the faq apphook (don’t forget to publish them), with different namespaces and different
configurations. Also create some entries assigned to the two namespaces.

You can experiment with the different configured behaviours (in this case, only pagination is available), and the way
that different Entry instances can be associated with a specific apphook.

How to extend the Toolbar

The django CMS toolbar provides an API that allows you to add, remove and manipulate toolbar items
in your own code. It helps you to integrate django CMS’s frontend editing mode into your
application, and provide your users with a streamlined editing experience.

See also

	Extending the Toolbar in the tutorial

	Toolbar API reference

Create a cms_toolbars.py file

In order to interact with the toolbar API, you need to create a
CMSToolbar sub-class in your own code, and register it.

This class should be created in your application’s cms_toolbars.py file, where it will be
discovered automatically when the Django runserver starts.

You can also use the CMS_TOOLBARS to control which toolbar classes are loaded.

Use the high-level toolbar APIs

You will find a toolbar object in the request in your views, and you may be tempted to
do things with it, like:

toolbar = request.toolbar
toolbar.add_modal_button('Do not touch', dangerous_button_url)

- but you should not, in the same way that it is not recommended to poke tweezers into
electrical sockets just because you can.

Instead, you should only interact with the toolbar using a CMSToolbar class, and the
documented APIs for managing it.

Similarly, although a generic add_item() method is
available, we provide higher-level methods for handling specific item types, and it is always
recommended that you use these instead.

Define and register a CMSToolbar sub-class

from cms.toolbar_base import CMSToolbar
from cms.toolbar_pool import toolbar_pool

class MyToolbarClass(CMSToolbar):
 [...]

toolbar_pool.register(MyToolbarClass)

The cms.toolbar_pool.ToolbarPool.register method can also be used as a decorator:

@toolbar_pool.register
class MyToolbarClass(CMSToolbar):
 [...]

Populate the toolbar

Two methods are available to control what will appear in the django CMS toolbar:

	populate(), which is called before the rest of the page is rendered

	post_template_populate(), which is called after the page’s template is rendered

The latter method allows you to manage the toolbar based on the contents of the page, such as the
state of plugins or placeholders, but unless you need to do this, you should opt for the more
simple populate() method.

class MyToolbar(CMSToolbar):

 def populate(self):

 # add items to the toolbar

Now you have to decide exactly what items will appear in your toolbar. These can include:

	menus

	buttons and button lists

	various other toolbar items

Add links and buttons to the toolbar

You can add links and buttons as entries to a menu instance, using the various
add_ methods.

	Action

	Text link variant

	Button variant

	Open link

	add_link_item()

	add_button()

	Open link in sideframe

	add_sideframe_item()

	add_sideframe_button()

	Open link in modal

	add_modal_item()

	add_modal_button()

	POST action

	add_ajax_item()

	

The basic form for using any of these is:

def populate(self):

 self.toolbar.add_link_item(# or add_button(), add_modal_item(), etc
 name='A link',
 url=url
)

Note that although these toolbar items may take various positional arguments in their methods, we
strongly recommend using named arguments, as above. This will help ensure that your own toolbar
classes and methods survive upgrades. See the reference documentation linked to in the table above
for details of the signature of each method.

Opening a URL in an iframe

A common case is to provide a URL that opens in a sideframe or modal dialog on the same page.
Administration… in the site menu, that opens the Django admin in a sideframe, is a good
example of this. Both the sideframe and modal are HTML iframes.

A typical use for a sideframe is to display an admin list (similar to that used in the
tutorial example):

from cms.utils.urlutils import admin_reverse
[...]

class PollToolbar(CMSToolbar):

 def populate(self):

 self.toolbar.add_sideframe_item(
 name='Poll list',
 url=admin_reverse('polls_poll_changelist')
)

A typical use for a modal item is to display the admin for a model instance:

self.toolbar.add_modal_item(name='Add new poll', url=admin_reverse('polls_poll_add'))

However, you are not restricted to these examples, and you may open any suitable resource inside
the modal or sideframe. Note that protocols may need to match and the requested resource must allow
it.

Adding buttons to the toolbar

A button is a sub-class of cms.toolbar.items.Button

Buttons can also be added in a list - a ButtonList is a group of
visually-linked buttons.

def populate(self):

 button_list = self.toolbar.add_button_list()
 button_list.add_button(name='Button 1', url=url_1)
 button_list.add_button(name='Button 2', url=url_2)

Create a toolbar menu

The text link items described above can also be added as nodes to menus in the toolbar.

A menu is an instance of cms.toolbar.items.Menu. In your CMSToolbar sub-class, you can
either create a menu, or identify one that already exists (in order to add new items to it, for
example), in the populate() or post_template_populate() methods, using
get_or_create_menu().

def populate(self):
 menu = self.toolbar.get_or_create_menu(
 key='polls_cms_integration',
 verbose_name='Polls'
)

The key is unique menu identifier; verbose_name is what will be displayed in the menu. If
you know a menu already exists, you can obtain it with
get_menu().

Note

It’s recommended to namespace your key with the application name. Otherwise, another
application could unexpectedly interfere with your menu.

Once you have your menu, you can add items to it in much the same way that you add them to the
toolbar. For example:

def populate(self):
 menu = [...]

 menu.add_sideframe_item(
 name='Poll list',
 url=admin_reverse('polls_poll_changelist')
)

To add a menu divider

add_break() will place a
Break, a visual divider, in a menu list, to allow grouping of items.
For example:

menu.add_break(identifier='settings_section')

To add a sub-menu

A sub-menu is a menu that belongs to another Menu:

def populate(self):
 menu = [...]

 submenu = menu.get_or_create_menu(
 key='sub_menu_key',
 verbose_name='My sub-menu'
)

You can then add items to the sub-menu in the same way as in the examples above. Note that a
sub-menu is an instance of SubMenu, and may not itself have further
sub-menus.

Finding existing toolbar items

get_or_create_menu() and get_menu()

A number of methods and useful constants exist to get hold of and manipulate existing toolbar
items. For example, to find (using get_menu()) and rename the Site menu:

from cms.cms_toolbars import ADMIN_MENU_IDENTIFIER

class ManipulativeToolbar(CMSToolbar):

 def populate(self):

 admin_menu = self.toolbar.get_menu(ADMIN_MENU_IDENTIFIER)

 admin_menu.name = "Site"

get_or_create_menu() will equally well find the same menu, and also has the advantages that:

	it can update the item’s attributes itself
(self.toolbar.get_or_create_menu(ADMIN_MENU_IDENTIFIER, 'Site'))

	if the item doesn’t exist, it will create it rather than raising an error.

find_items() and find_first()

Search for items by their type:

def populate(self):

 self.toolbar.find_items(item_type=LinkItem)

will find all LinkItems in the toolbar (but not for example in the menus in the toolbar - it
doesn’t search other items in the toolbar for items of their own).

find_items() returns a list of
ItemSearchResult objects;
find_first() returns the first object in that list. They
share similar behaviour so the examples here will use find_items() only.

The item_type argument is always required, but you can refine the search by using their other
attributes, for example:

self.toolbar.find_items(Menu, disabled=True))

Note that you can use these two methods to search Menu and SubMenu classes for items too.

Control the position of items in the toolbar

Methods to add menu items to the toolbar take an optional position argument, that can be
used to control where the item will be inserted.

By default (position=None) the item will be inserted after existing items in the same level of
the hierarchy (a new sub-menu will become the last sub-menu of the menu, a new menu will be become
the last menu in the toolbar, and so on).

A position of 0 will insert the item before all the others.

If you already have an object, you can use that as a reference too. For example:

def populate(self):

 link = self.toolbar.add_link_item('Link', url=link_url)
 self.toolbar.add_button('Button', url=button_url, position=link)

will add the new button before the link item.

Finally, you can use a ItemSearchResult as a position:

def populate(self):

 self.toolbar.add_link_item('Link', url=link_url)

 link = self.toolbar.find_first(LinkItem)

 self.toolbar.add_button('Button', url=button_url, position=link)

and since the ItemSearchResult can be cast to an integer, you could even do:

self.toolbar.add_button(‘Button’, url=button_url, position=link+1)

Control how and when the toolbar appears

By default, your CMSToolbar sub-class will be active (i.e. its
populate methods will be called) in the toolbar on every page, when the user is_staff.
Sometimes however a CMSToolbar sub-class should only populate the toolbar when visiting pages
associated with a particular application.

A CMSToolbar sub-class has a useful attribute that can help determine whether a toolbar should
be activated. is_current_app is True when the application containing the toolbar class
matches the application handling the request.

This allows you to activate it selectively, for example:

def populate(self):

 if not self.is_current_app:
 return

 [...]

If your toolbar class is in another application than the one you want it to be active for,
you can list any applications it should support when you create the class:

supported_apps = ['some_app']

supported_apps is a tuple of application dotted paths (e.g: supported_apps =
('whatever.path.app', 'another.path.app').

The attribute app_path will contain the name of the application handling the current request
- if app_path is in supported_apps, then is_current_app will be True.

Modifying an existing toolbar

If you need to modify an existing toolbar (say to change an attribute or the behaviour of a method)
you can do this by creating a sub-class of it that implements the required changes, and registering
that instead of the original.

The original can be unregistered using toolbar_pool.unregister(), as in the example below.
Alternatively if you originally invoked the toolbar class using CMS_TOOLBARS, you will
need to modify that to refer to the new one instead.

An example, in which we unregister the original and register our own:

from cms.toolbar_pool import toolbar_pool
from third_party_app.cms_toolbar import ThirdPartyToolbar

@toolbar_pool.register
class MyBarToolbar(ThirdPartyToolbar):
 [...]

toolbar_pool.unregister(ThirdPartyToolbar)

Detecting URL changes to an object

If you want to watch for object creation or editing of models and redirect after they have been
added or changed add a watch_models attribute to your toolbar.

Example:

class PollToolbar(CMSToolbar):

 watch_models = [Poll]

 def populate(self):
 ...

After you add this every change to an instance of Poll via sideframe or modal window will
trigger a redirect to the URL of the poll instance that was edited, according to the toolbar
status:

	in draft mode the get_draft_url() is returned (or get_absolute_url() if the former
does not exist)

	in live mode, and the method exists, get_public_url() is returned.

Frontend

If you need to interact with the toolbar, or otherwise account for it in your site’s frontend code,
it provides CSS and JavaScript hooks for you to use.

It will add various classes to the page’s <html> element:

	cms-ready, when the toolbar is ready

	cms-toolbar-expanded, when the toolbar is fully expanded

	cms-toolbar-expanding and cms-toolbar-collapsing during toolbar animation.

The toolbar also fires a JavaScript event called cms-ready on the document.
You can listen to this event using jQuery:

CMS.$(document).on('cms-ready', function () { ... });

How to customise navigation menus

In this document we discuss three different way of customising the navigation
menus of django CMS sites.

	Menus: Statically extend the menu entries

	Attach Menus: Attach your menu to a page.

	Navigation Modifiers: Modify the whole menu tree

Menus

Create a cms_menus.py in your application, with the following:

from menus.base import Menu, NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import gettext_lazy as _

class TestMenu(Menu):

 def get_nodes(self, request):
 nodes = []
 n = NavigationNode(_('sample root page'), "/", 1)
 n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
 n3 = NavigationNode(_('sample account page'), "/hello/", 3)
 n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
 nodes.append(n)
 nodes.append(n2)
 nodes.append(n3)
 nodes.append(n4)
 return nodes

menu_pool.register_menu(TestMenu)

Note

Up to version 3.1 this module was named menu.py. Please
update your existing modules to the new naming convention.
Support for the old name will be removed in version 3.5.

If you refresh a page you should now see the menu entries above.
The get_nodes function should return a list of
NavigationNode instances. A
menus.base.NavigationNode takes the following arguments:

	title

	Text for the menu node

	url

	URL for the menu node link

	id

	A unique id for this menu

	parent_id=None

	If this is a child of another node, supply the id of the parent here.

	parent_namespace=None

	If the parent node is not from this menu you can give it the parent
namespace. The namespace is the name of the class. In the above example that
would be: TestMenu

	attr=None

	A dictionary of additional attributes you may want to use in a modifier or
in the template

	visible=True

	Whether or not this menu item should be visible

Additionally, each menus.base.NavigationNode provides a number of methods which are
detailed in the NavigationNode API references.

Customise menus at runtime

To adapt your menus according to request dependent conditions (say: anonymous/logged in user), you
can use Navigation Modifiers or you can make use of existing ones.

For example it’s possible to add {'visible_for_anonymous':
False}/{'visible_for_authenticated': False} attributes recognised by the django CMS core
AuthVisibility modifier.

Complete example:

class UserMenu(Menu):
 def get_nodes(self, request):
 return [
 NavigationNode(_("Profile"), reverse(profile), 1, attr={'visible_for_anonymous': False}),
 NavigationNode(_("Log in"), reverse(login), 3, attr={'visible_for_authenticated': False}),
 NavigationNode(_("Sign up"), reverse(logout), 4, attr={'visible_for_authenticated': False}),
 NavigationNode(_("Log out"), reverse(logout), 2, attr={'visible_for_anonymous': False}),
]

Attach Menus

Classes that extend from menus.base.Menu always get attached to the
root. But if you want the menu to be attached to a CMS Page you can do that as
well.

Instead of extending from Menu you need to extend from
cms.menu_bases.CMSAttachMenu and you need to define a name.

We will do that with the example from above:

from menus.base import NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import gettext_lazy as _
from cms.menu_bases import CMSAttachMenu

class TestMenu(CMSAttachMenu):

 name = _("test menu")

 def get_nodes(self, request):
 nodes = []
 n = NavigationNode(_('sample root page'), "/", 1)
 n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
 n3 = NavigationNode(_('sample account page'), "/hello/", 3)
 n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
 nodes.append(n)
 nodes.append(n2)
 nodes.append(n3)
 nodes.append(n4)
 return nodes

menu_pool.register_menu(TestMenu)

Now you can link this Menu to a page in the Advanced tab of the page
settings under attached menu.

Navigation Modifiers

Navigation Modifiers give your application access to navigation menus.

A modifier can change the properties of existing nodes or rearrange entire
menus.

Example use-cases

A simple example: you have a news application that publishes pages
independently of django CMS. However, you would like to integrate the
application into the menu structure of your site, so that at appropriate
places a News node appears in the navigation menu.

In another example, you might want a particular attribute of your Pages to be available in
menu templates. In order to keep menu nodes lightweight (which can be important in a site with
thousands of pages) they only contain the minimum attributes required to generate a usable menu.

In both cases, a Navigation Modifier is the solution - in the first case, to add a new node at the
appropriate place, and in the second, to add a new attribute - on the attr attribute, rather
than directly on the NavigationNode, to help avoid conflicts - to all nodes in the menu.

How it works

Place your modifiers in your application’s cms_menus.py.

To make your modifier available, it then needs to be registered with
menus.menu_pool.menu_pool.

Now, when a page is loaded and the menu generated, your modifier will
be able to inspect and modify its nodes.

Here is an example of a simple modifier that places each Page’s changed_by attribute in the corresponding
NavigationNode:

from menus.base import Modifier
from menus.menu_pool import menu_pool

from cms.models import Page

class MyExampleModifier(Modifier):
 """
 This modifier makes the changed_by attribute of a page
 accessible for the menu system.
 """
 def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):
 # only do something when the menu has already been cut
 if post_cut:
 # only consider nodes that refer to cms pages
 # and put them in a dict for efficient access
 page_nodes = {n.id: n for n in nodes if n.attr["is_page"]}
 # retrieve the attributes of interest from the relevant pages
 pages = Page.objects.filter(id__in=page_nodes.keys()).values('id', 'changed_by')
 # loop over all relevant pages
 for page in pages:
 # take the node referring to the page
 node = page_nodes[page['id']]
 # put the changed_by attribute on the node
 node.attr["changed_by"] = page['changed_by']
 return nodes

menu_pool.register_modifier(MyExampleModifier)

It has a method modify() that should return a list
of NavigationNode instances.
modify() should take the following arguments:

	request

	A Django request instance. You want to modify based on sessions, or
user or permissions?

	nodes

	All the nodes. Normally you want to return them again.

	namespace

	A Menu Namespace. Only given if somebody requested a menu with only nodes
from this namespace.

	root_id

	Was a menu request based on an ID?

	post_cut

	Every modifier is called two times. First on the whole tree. After that the
tree gets cut to only show the nodes that are shown in the current menu.
After the cut the modifiers are called again with the final tree. If this is
the case post_cut is True.

	breadcrumb

	Is this a breadcrumb call rather than a menu call?

Here is an example of a built-in modifier that marks all node levels:

class Level(Modifier):
 """
 marks all node levels
 """
 post_cut = True

 def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):
 if breadcrumb:
 return nodes
 for node in nodes:
 if not node.parent:
 if post_cut:
 node.menu_level = 0
 else:
 node.level = 0
 self.mark_levels(node, post_cut)
 return nodes

 def mark_levels(self, node, post_cut):
 for child in node.children:
 if post_cut:
 child.menu_level = node.menu_level + 1
 else:
 child.level = node.level + 1
 self.mark_levels(child, post_cut)

menu_pool.register_modifier(Level)

Performance issues in menu modifiers

Navigation modifiers can quickly become a performance bottleneck. Each modifier is called
multiple times: For the breadcrumb (breadcrumb=True),
for the whole menu tree (post_cut=False),
for the menu tree cut to the visible part (post_cut=True) and perhaps for each level
of the navigation. Performing inefficient operations inside a navigation modifier
can hence lead to big performance issues.
Some tips for keeping a modifier implementation fast:

	Specify when exactly the modifier is necessary (in breadcrumb, before or after cut).

	Only consider nodes and pages relevant for the modification.

	Perform as less database queries as possible (i.e. not in a loop).

	In database queries, fetch exactly the attributes you are interested in.

	If you have multiple modifications to do, try to apply them in the same method.

New in version 3.2.

How to implement content creation wizards

django CMS offers a framework for creating ‘wizards’ - helpers - for content editors.

They provide a simplified workflow for common tasks.

A django CMS Page wizard already exists, but you can create your own for other content types very easily.

Create a content-creation wizard

Creating a CMS content creation wizard for your own module is fairly easy.

To begin, create a file in the root level of your module called forms.py
to create your form(s):

my_apps/forms.py

from django import forms

class MyAppWizardForm(forms.ModelForm):
 class Meta:
 model = MyApp
 exclude = []

Now create another file in the root level called cms_wizards.py.
In this file, import Wizard as follows:

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

Then, simply subclass Wizard, instantiate it, then register it. If you were to
do this for MyApp, it might look like this:

my_apps/cms_wizards.py

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

from .forms import MyAppWizardForm

class MyAppWizard(Wizard):
 pass

my_app_wizard = MyAppWizard(
 title="New MyApp",
 weight=200,
 form=MyAppWizardForm,
 description="Create a new MyApp instance",
)

wizard_pool.register(my_app_wizard)

Note

If your model doesn’t define a get_absolute_url function then your wizard
will require a get_success_url method.

class MyAppWizard(Wizard):

 def get_success_url(self, obj, **kwargs):
 """
 This should return the URL of the created object, «obj».
 """
 if 'language' in kwargs:
 with force_language(kwargs['language']):
 url = obj.get_absolute_url()
 else:
 url = obj.get_absolute_url()

 return url

That’s it!

Note

The module name cms_wizards is special, in that any such-named modules in
your project’s Python path will automatically be loaded, triggering the
registration of any wizards found in them. Wizards may be declared and
registered in other modules, but they might not be automatically loaded.

The above example is using a ModelForm, but you can also use forms.Form.
In this case, you must provide the model class as another keyword argument
when you instantiate the Wizard object.

For example:

my_apps/forms.py

from django import forms

class MyAppWizardForm(forms.Form):
 name = forms.CharField()

my_apps/cms_wizards.py

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

from .forms import MyAppWizardForm
from .models import MyApp

class MyAppWizard(Wizard):
 pass

my_app_wizard = MyAppWizard(
 title="New MyApp",
 weight=200,
 form=MyAppWizardForm,
 model=MyApp,
 description="Create a new MyApp instance",
)

wizard_pool.register(my_app_wizard)

You must subclass cms.wizards.wizard_base.Wizard to use it. This is because
each wizard’s uniqueness is determined by its class and module name.

See the Reference section on wizards for technical details of the wizards
API.

How to extend Page & Title models

You can extend the cms.models.Page and cms.models.Title models with your own fields (e.g. adding an
icon for every page) by using the extension models: cms.extensions.PageExtension and
cms.extensions.TitleExtension, respectively.

Title vs Page extensions

The difference between a page extension and a title extension is related to the difference
between the cms.models.Page and cms.models.Title models.

	PageExtension: use to add fields that should have the same values for the different language versions of a
page - for example, an icon.

	TitleExtension: use to add fields that should have language-specific values for different language versions
of a page - for example, keywords.

Implement a basic extension

Three basic steps are required:

	add the extension model

	add the extension admin

	add a toolbar menu item for the extension

Page model extension example

The model

To add a field to the Page model, create a class that inherits from cms.extensions.PageExtension. Your class should
live in one of your applications’ models.py (or module).

Note

Since PageExtension (and TitleExtension) inherit from django.db.models.Model, you
are free to add any field you want but make sure you don’t use a unique constraint on any of
your added fields because uniqueness prevents the copy mechanism of the extension from working
correctly. This means that you can’t use one-to-one relations on the extension model.

Finally, you’ll need to register the model using extension_pool.

Here’s a simple example which adds an icon field to the page:

from django.db import models
from cms.extensions import PageExtension
from cms.extensions.extension_pool import extension_pool

class IconExtension(PageExtension):
 image = models.ImageField(upload_to='icons')

extension_pool.register(IconExtension)

Of course, you will need to make and run a migration for this new model.

The admin

To make your extension editable, you must first create an admin class that
sub-classes cms.extensions.PageExtensionAdmin. This admin handles page
permissions.

Note

If you want to use your own admin class, make sure to exclude the live versions of the
extensions by using filter(extended_object__publisher_is_draft=True) on the queryset.

Continuing with the example model above, here’s a simple corresponding
PageExtensionAdmin class:

from django.contrib import admin
from cms.extensions import PageExtensionAdmin

from .models import IconExtension

class IconExtensionAdmin(PageExtensionAdmin):
 pass

admin.site.register(IconExtension, IconExtensionAdmin)

Since PageExtensionAdmin inherits from ModelAdmin, you’ll be able to use the
normal set of Django ModelAdmin properties appropriate to your
needs.

Note

Note that the field that holds the relationship between the extension and a
CMS Page is non-editable, so it does not appear directly in the Page admin views. This may be
addressed in a future update, but in the meantime the toolbar provides access to it.

The toolbar item

You’ll also want to make your model editable from the cms toolbar in order to
associate each instance of the extension model with a page.

To add toolbar items for your extension create a file named cms_toolbars.py
in one of your apps, and add the relevant menu entries for the extension on each page.

Here’s a simple version for our example. This example adds a node to the existing Page menu, called Page icon. When
selected, it will open a modal dialog in which the Page icon field can be edited.

from cms.toolbar_pool import toolbar_pool
from cms.extensions.toolbar import ExtensionToolbar
from django.utils.translation import gettext_lazy as _
from .models import IconExtension

@toolbar_pool.register
class IconExtensionToolbar(ExtensionToolbar):
 # defines the model for the current toolbar
 model = IconExtension

 def populate(self):
 # setup the extension toolbar with permissions and sanity checks
 current_page_menu = self._setup_extension_toolbar()

 # if it's all ok
 if current_page_menu:
 # retrieves the instance of the current extension (if any) and the toolbar item URL
 page_extension, url = self.get_page_extension_admin()
 if url:
 # adds a toolbar item in position 0 (at the top of the menu)
 current_page_menu.add_modal_item(_('Page Icon'), url=url,
 disabled=not self.toolbar.edit_mode_active, position=0)

Title model extension example

In this example, we’ll create a Rating extension field, that can be applied to each Title, in other words, to
each language version of each Page.

Note

Please refer to the more detailed discussion above of the Page model extension example, and in particular to the
special notes.

The model

from django.db import models
from cms.extensions import TitleExtension
from cms.extensions.extension_pool import extension_pool

class RatingExtension(TitleExtension):
 rating = models.IntegerField()

extension_pool.register(RatingExtension)

The admin

from django.contrib import admin
from cms.extensions import TitleExtensionAdmin
from .models import RatingExtension

class RatingExtensionAdmin(TitleExtensionAdmin):
 pass

admin.site.register(RatingExtension, RatingExtensionAdmin)

The toolbar item

In this example, we need to loop over the titles for the page, and populate the menu with those.

from cms.toolbar_pool import toolbar_pool
from cms.extensions.toolbar import ExtensionToolbar
from django.utils.translation import gettext_lazy as _
from .models import RatingExtension
from cms.utils import get_language_list # needed to get the page's languages
@toolbar_pool.register
class RatingExtensionToolbar(ExtensionToolbar):
 # defines the model for the current toolbar
 model = RatingExtension

 def populate(self):
 # setup the extension toolbar with permissions and sanity checks
 current_page_menu = self._setup_extension_toolbar()

 # if it's all ok
 if current_page_menu and self.toolbar.edit_mode_active:
 # create a sub menu labelled "Ratings" at position 1 in the menu
 sub_menu = self._get_sub_menu(
 current_page_menu, 'submenu_label', 'Ratings', position=1
)

 # retrieves the instances of the current title extension (if any)
 # and the toolbar item URL
 urls = self.get_title_extension_admin()

 # we now also need to get the titleset (i.e. different language titles)
 # for this page
 page = self._get_page()
 titleset = page.title_set.filter(language__in=get_language_list(page.node.site_id))

 # create a 3-tuple of (title_extension, url, title)
 nodes = [(title_extension, url, title.title) for (
 (title_extension, url), title) in zip(urls, titleset)
]

 # cycle through the list of nodes
 for title_extension, url, title in nodes:

 # adds toolbar items
 sub_menu.add_modal_item(
 'Rate %s' % title, url=url, disabled=not self.toolbar.edit_mode_active
)

Using extensions

In templates

To access a page extension in page templates you can simply access the
appropriate related_name field that is now available on the Page object.

Page extensions

As per the normal related_name naming mechanism, the appropriate field to
access is the same as your PageExtension model name, but lowercased. Assuming
your Page Extension model class is IconExtension, the relationship to the
page extension model will be available on page.iconextension. From there
you can access the extra fields you defined in your extension, so you can use
something like:

{% load static %}

{# rest of template omitted ... #}

{% if request.current_page.iconextension %}

{% endif %}

where request.current_page is the normal way to access the current page
that is rendering the template.

It is important to remember that unless the operator has already assigned a
page extension to every page, a page may not have the iconextension
relationship available, hence the use of the {% if ... %}...{% endif %}
above.

Title extensions

In order to retrieve a title extension within a template, get the Title object using
request.current_page.get_title_obj. Using the example above, we could use:

{{ request.current_page.get_title_obj.ratingextension.rating }}

With menus

Like most other Page attributes, extensions are not represented in the menu NavigationNodes,
and therefore menu templates will not have access to them by default.

In order to make the extension accessible, you’ll need to create a menu modifier (see the example provided) that does this.

Each page extension instance has a one-to-one relationship with its page. Get the extension by
using the reverse relation, along the lines of extension = page.yourextensionlowercased, and
place this attribute of page on the node - as (for example) node.extension.

In the menu template the icon extension we created above would therefore be available as
child.extension.icon.

Handling relations

If your PageExtension or TitleExtension includes a ForeignKey from another
model or includes a ManyToManyField, you should also override the method
copy_relations(self, oldinstance, language) so that these fields are
copied appropriately when the CMS makes a copy of your extension to support
versioning, etc.

Here’s an example that uses a ManyToManyField

from django.db import models
from cms.extensions import PageExtension
from cms.extensions.extension_pool import extension_pool

class MyPageExtension(PageExtension):

 page_categories = models.ManyToManyField(Category, blank=True)

 def copy_relations(self, oldinstance, language):
 for page_category in oldinstance.page_categories.all():
 page_category.pk = None
 page_category.mypageextension = self
 page_category.save()

extension_pool.register(MyPageExtension)

Complete toolbar API

The example above uses the Simplified Toolbar API.

If you need complete control over the layout of your extension toolbar items you can still use the
low-level API to edit the toolbar according to your needs:

from cms.api import get_page_draft
from cms.toolbar_pool import toolbar_pool
from cms.toolbar_base import CMSToolbar
from cms.utils import get_cms_setting
from cms.utils.page_permissions import user_can_change_page
from django.urls import reverse, NoReverseMatch
from django.utils.translation import gettext_lazy as _
from .models import IconExtension

@toolbar_pool.register
class IconExtensionToolbar(CMSToolbar):
 def populate(self):
 # always use draft if we have a page
 self.page = get_page_draft(self.request.current_page)

 if not self.page:
 # Nothing to do
 return

 if user_can_change_page(user=self.request.user, page=self.page):
 try:
 icon_extension = IconExtension.objects.get(extended_object_id=self.page.id)
 except IconExtension.DoesNotExist:
 icon_extension = None
 try:
 if icon_extension:
 url = reverse('admin:myapp_iconextension_change', args=(icon_extension.pk,))
 else:
 url = reverse('admin:myapp_iconextension_add') + '?extended_object=%s' % self.page.pk
 except NoReverseMatch:
 # not in urls
 pass
 else:
 not_edit_mode = not self.toolbar.edit_mode_active
 current_page_menu = self.toolbar.get_or_create_menu('page')
 current_page_menu.add_modal_item(_('Page Icon'), url=url, disabled=not_edit_mode)

Now when the operator invokes “Edit this page…” from the toolbar, there will
be an additional menu item Page Icon ... (in this case), which can be used
to open a modal dialog where the operator can affect the new icon field.

Note that when the extension is saved, the corresponding page is marked as
having unpublished changes. To see the new extension values publish the page.

Simplified Toolbar API

The simplified Toolbar API works by deriving your toolbar class from ExtensionToolbar
which provides the following API:

	ExtensionToolbar.get_page_extension_admin(): for page extensions, retrieves the correct admin
URL for the related toolbar item; returns the extension instance (or None if none exists) and
the admin URL for the toolbar item

	ExtensionToolbar.get_title_extension_admin(): for title extensions, retrieves the correct
admin URL for the related toolbar item; returns a list of the extension instances (or None if
none exists) and the admin URLs for each title of the current page

How to test your extensions

Testing Apps

Resolving View Names

Your apps need testing, but in your live site they aren’t in urls.py as
they are attached to a CMS page. So if you want to be able to use
reverse() [https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#django.urls.reverse] in your tests, or test templates that
use the url [https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-url] template tag, you need to hook up your app to a special
test version of urls.py and tell your tests to use that.

So you could create myapp/tests/urls.py with the following code:

from django.contrib import admin
from django.urls import re_path, include

urlpatterns = [
 re_path(r'^admin/', admin.site.urls),
 re_path(r'^myapp/', include('myapp.urls')),
 re_path(r'', include('cms.urls')),
]

And then in your tests you can plug this in with the
override_settings() [https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.override_settings] decorator:

from django.test.utils import override_settings
from cms.test_utils.testcases import CMSTestCase

class MyappTests(CMSTestCase):

 @override_settings(ROOT_URLCONF='myapp.tests.urls')
 def test_myapp_page(self):
 test_url = reverse('myapp_view_name')
 # rest of test as normal

If you want to the test url conf throughout your test class, then you can use
apply the decorator to the whole class:

from django.test.utils import override_settings
from cms.test_utils.testcases import CMSTestCase

@override_settings(ROOT_URLCONF='myapp.tests.urls')
class MyappTests(CMSTestCase):

 def test_myapp_page(self):
 test_url = reverse('myapp_view_name')
 # rest of test as normal

CMSTestCase

Django CMS includes CMSTestCase which has various utility methods that
might be useful for testing your CMS app and manipulating CMS pages.

Testing Plugins

To test plugins, you need to assign them to a placeholder. Depending on at what
level you want to test your plugin, you can either check the HTML generated by
it or the context provided to its template:

from django.test import TestCase
from django.test.client import RequestFactory

from cms.api import add_plugin
from cms.models import Placeholder
from cms.plugin_rendering import ContentRenderer

from myapp.cms_plugins import MyPlugin
from myapp.models import MyappPlugin

class MypluginTests(TestCase):
 def test_plugin_context(self):
 placeholder = Placeholder.objects.create(slot='test')
 model_instance = add_plugin(
 placeholder,
 MyPlugin,
 'en',
)
 plugin_instance = model_instance.get_plugin_class_instance()
 context = plugin_instance.render({}, model_instance, None)
 self.assertIn('key', context)
 self.assertEqual(context['key'], 'value')

 def test_plugin_html(self):
 placeholder = Placeholder.objects.create(slot='test')
 model_instance = add_plugin(
 placeholder,
 MyPlugin,
 'en',
)
 renderer = ContentRenderer(request=RequestFactory())
 html = renderer.render_plugin(model_instance, {})
 self.assertEqual(html, 'Test')

How to contribute a patch

Note

For more background on the material covered in this how-to section, see the
Contributing code and Running and writing tests sections of the documentation.

django CMS is an open project, and welcomes the participation of anyone who would like to
contribute, whatever their any level of knowledge.

As well as code, we welcome contributions to django CMS’s documentation and translations.

Note

Feel free to dive into coding for django CMS in whichever way suits you. However, you need to be
aware of the guidelines and policies for
django CMS project development. Adhering to them will make much easier for the core developers
to validate and accept your contribution.

The basics

The basic workflow for a code contribution will typically run as follows:

	Fork the django CMS project [https://github.com/divio/django-cms] GitHub repository to your
own GitHub account

	Clone your fork locally:

git clone git@github.com:YOUR_USERNAME/django-cms.git

	Create a virtualenv:

virtualenv cms-develop
source cms-develop/bin/activate

	Install its dependencies:

cd django-cms
pip install -r test_requirements/django-X.Y.txt

Replace X.Y with whichever version of Django you want to work with.

	Create a new branch for your work:

git checkout -b my_fix

	Edit the django CMS codebase to implement the fix or feature.

	Run the test suite:

python manage.py test

	Commit and push your code:

git commit
git push origin my_fix

	Open a pull request on GitHub.

Target branches

See Branches for information about branch policy.

How to write a test

The django CMS test suite contains a mix of unit tests, functional tests, regression tests and
integration tests.

Depending on your contribution, you will write a mix of them.

Let’s start with something simple. We’ll assume you have set up your environment correctly as
described above.

Let’s say you want to test the behaviour of the CMSPluginBase.render method:

class CMSPluginBase(admin.ModelAdmin, metaclass=CMSPluginBaseMetaclass):

 ...

 def render(self, context, instance, placeholder):
 context['instance'] = instance
 context['placeholder'] = placeholder
 return context

Writing a unit test for it will require us to test whether the returned context object contains
the declared attributes with the correct values.

We will start with a new class in an existing django CMS test module (cms.tests.plugins in
this case):

class SimplePluginTestCase(CMSTestCase):
 pass

Let’s try to run it:

python manage.py test cms.tests.test_plugins.SimplePluginTestCase

This will call the new test case class only and it’s handy when creating new tests and iterating
quickly through the steps. A full test run (python manage.py test) is required before opening
a pull request.

This is the output you’ll get:

Creating test database for alias 'default'...

--
Ran 0 tests in 0.000s

OK

Which is correct as we have no test in our test case. Let’s add an empty one:

class SimplePluginTestCase(CMSTestCase):

 def test_render_method(self):
 pass

Running the test command again will return a slightly different output:

Creating test database for alias 'default'...
.
--
Ran 1 test in 0.001s

OK

This looks better, but it’s not that meaningful as we’re not testing anything.

Write a real test:

class SimplePluginTestCase(CMSTestCase):

 def test_render_method(self):
 """
 Tests the CMSPluginBase.render method by checking that the appropriate variables
 are set in the returned context
 """
 from cms.api import create_page
 my_page = create_page('home', language='en', template='col_two.html')
 placeholder = my_page.placeholders.get(slot='col_left')
 context = self.get_context('/', page=my_page)
 plugin = CMSPluginBase()

 new_context = plugin.render(context, None, placeholder)
 self.assertTrue('placeholder' in new_context)
 self.assertEqual(placeholder, context['placeholder'])
 self.assertTrue('instance' in new_context)
 self.assertIsNone(new_context['instance'])

and run it:

Creating test database for alias 'default'...
.
--
Ran 1 test in 0.044s

OK

The output is quite similar to the previous run, but the longer execution time gives us a hint that
this test is actually doing something.

Let’s quickly check the test code.

To test CMSPluginBase.render method we need a RequestContext instance and a placeholder. As
CMSPluginBase does not have any configuration model,
the instance argument can be None.

	Create a page instance to get the placeholder

	Get the placeholder by filtering the placeholders of the page instance on the expected
placeholder name

	Create a context instance by using the provided super class method

	Call the render method on a CMSPluginBase instance; being stateless, it’s easy to call
render of a bare instance of the CMSPluginBase class, which helps in tests

	Assert a few things the method must provide on the returned context instance

As you see, even a simple test like this assumes and uses many feature of the test utilities
provided by django CMS. Before attempting to write a test, take your time to explore the content of
cms.test_utils package and check the shipped templates, example applications and, most of all,
the base testcases defined in cms.test_utils.testscases which provide a lot of useful
methods to prepare the environment for our tests or to create useful test data.

Submitting your code

After the code and the tests are ready and packed in commits, you must submit it for review and
merge in the django CMS GitHub project.

As noted above, always create a new branch for your code, be it a fix or a new feature, before
committing changes, then create your pull request from your branch to the target
branch on django CMS.

Acceptance criteria

Matching these criteria from the very beginning will help the core developers to be able
to review your submission more quickly and efficiently and will increase the chances of making a
successful pull request.

Please see our Development policies for guidance on which branches to use, how to prepare pull requests and so
on.

Features

To be accepted, proposed features should have at least:

	natural language documentation in the docs folder describing the feature, its usage and
potentially backward incompatibilities.

	inline documentation (comments and docstrings) in the critical areas of the code explaining
the behaviour

	appropriate test coverage

	Python 2/3 compatibility

	South and Django migrations (where applicable)

The pull request description must briefly describe the feature and the intended goal and benefits.

Bugs

To be accepted, proposed bug fixes should have at least:

	inline documentation (comments and docstrings) in the critical areas of the code explaining
the behaviour

	at least 1 regression test that demonstrates the issue and the fix

	Python 2/3 compatibility

	South and Django migrations (where applicable)

The pull request description must briefly describe the bug and the steps for its solution; in case
the bug has been opened elsewhere, it must be linked in the pull request description, describing
the fix.

Reference

Technical reference material.

	API References

	Command Line Interface

	Configuration

	Form and model fields

	Menus and navigation

	Models

	Permissions

	Placeholders

	Plugins

	Sitemaps

	Template Tags

	Titles

	The Toolbar

	Content creation wizards

API References

cms.api

Python APIs for creating CMS content. This is done in cms.api and not
on the models and managers, because the direct API via models and managers is
slightly counterintuitive for developers. Also the functions defined in this
module do sanity checks on arguments.

Warning

None of the functions in this module does any security or permission
checks. They verify their input values to be sane wherever
possible, however permission checks should be implemented manually
before calling any of these functions.

Warning

Due to potential circular dependency issues, it’s recommended
to import the api in the functions that uses its function.

e.g. use:

def my_function():
 from cms.api import api_function

 api_function(...)

instead of:

from cms.api import api_function

def my_function():
 api_function(...)

Functions and constants

	
cms.api.VISIBILITY_ALL

	Used for the limit_visibility_in_menu keyword argument to
create_page(). Does not limit menu visibility.

	
cms.api.VISIBILITY_USERS

	Used for the limit_visibility_in_menu keyword argument to
create_page(). Limits menu visibility to authenticated users.

	
cms.api.VISIBILITY_ANONYMOUS

	Used for the limit_visibility_in_menu keyword argument to
create_page(). Limits menu visibility to anonymous (not authenticated) users.

	
cms.api.create_page(title, template, language, menu_title=None, slug=None, apphook=None, apphook_namespace=None, redirect=None, meta_description=None, created_by='python-api', parent=None, publication_date=None, publication_end_date=None, in_navigation=False, soft_root=False, reverse_id=None, navigation_extenders=None, published=False, site=None, login_required=False, limit_visibility_in_menu=VISIBILITY_ALL, position="last-child", overwrite_url=None, xframe_options=Page.X_FRAME_OPTIONS_INHERIT)

	Creates a cms.models.Page instance and returns it. Also
creates a cms.models.Title instance for the specified
language.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the page

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) – Template to use for this page. Must be in CMS_TEMPLATES

	language (str [https://docs.python.org/3/library/stdtypes.html#str]) – Language code for this page. Must be in LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES]

	menu_title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Menu title for this page

	slug (str [https://docs.python.org/3/library/stdtypes.html#str]) – Slug for the page, by default uses a slugified version of title

	apphook (str or cms.app_base.CMSApp sub-class) – Application to hook on this page, must be a valid apphook

	apphook_namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the apphook namespace

	redirect (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL redirect

	meta_description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Description of this page for SEO

	created_by (str of django.contrib.auth.models.User [https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User] instance) – User that is creating this page

	parent (cms.models.Page instance) – Parent page of this page

	publication_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – Date to publish this page

	publication_end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – Date to unpublish this page

	in_navigation (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this page should be in the navigation or not

	soft_root (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this page is a soft root or not

	reverse_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reverse ID of this page (for template tags)

	navigation_extenders (str [https://docs.python.org/3/library/stdtypes.html#str]) – Menu to attach to this page. Must be a valid menu

	published (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this page should be published or not

	site (django.contrib.sites.models.Site [https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#django.contrib.sites.models.Site] instance) – Site to put this page on

	login_required (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether users must be logged in or not to view this page

	limit_visibility_in_menu (VISIBILITY_ALL or VISIBILITY_USERS or VISIBILITY_ANONYMOUS) – Limits visibility of this page in the menu

	position (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to insert this node if parent is given, must be 'first-child' or 'last-child'

	overwrite_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – Overwritten path for this page

	xframe_options (int [https://docs.python.org/3/library/functions.html#int]) – X Frame Option value for Clickjacking protection

	page_title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Overridden page title for HTML title tag

	
cms.api.create_title(language, title, page, menu_title=None, slug=None, redirect=None, meta_description=None, parent=None, overwrite_url=None)

	Creates a cms.models.Title instance and returns it.

	Parameters

	
	language (str [https://docs.python.org/3/library/stdtypes.html#str]) – Language code for this page. Must be in LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES]

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the page

	page (cms.models.Page instance) – The page for which to create this title

	menu_title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Menu title for this page

	slug (str [https://docs.python.org/3/library/stdtypes.html#str]) – Slug for the page, by default uses a slugified version of title

	redirect (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL redirect

	meta_description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Description of this page for SEO

	parent (cms.models.Page instance) – Used for automated slug generation

	overwrite_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – Overwritten path for this page

	page_title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Overridden page title for HTML title tag

	
cms.api.add_plugin(placeholder, plugin_type, language, position='last-child', target=None, **data)

	Adds a plugin to a placeholder and returns it.

	Parameters

	
	placeholder (cms.models.placeholdermodel.Placeholder instance) – Placeholder to add the plugin to

	plugin_type (str or cms.plugin_base.CMSPluginBase sub-class, must be a valid plugin) – What type of plugin to add

	language (str [https://docs.python.org/3/library/stdtypes.html#str]) – Language code for this plugin, must be in LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES]

	position (str [https://docs.python.org/3/library/stdtypes.html#str]) – Position to add this plugin to the placeholder, must be a valid django-treebeard pos
value for treebeard.models.Node.add_sibling() [https://django-treebeard.readthedocs.io/en/latest/api.html#treebeard.models.Node.add_sibling]

	target – Parent plugin. Must be plugin instance

	data – Data for the plugin type instance

	
cms.api.create_page_user(created_by, user, can_add_page=True, can_change_page=True, can_delete_page=True, can_recover_page=True, can_add_pageuser=True, can_change_pageuser=True, can_delete_pageuser=True, can_add_pagepermission=True, can_change_pagepermission=True, can_delete_pagepermission=True, grant_all=False)

	Creates a page user for the user provided and returns that page user.

	Parameters

	
	created_by (django.contrib.auth.models.User [https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User] instance) – The user that creates the page user

	user (django.contrib.auth.models.User [https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User] instance) – The user to create the page user from

	can_* (bool [https://docs.python.org/3/library/functions.html#bool]) – Permissions to give the user

	grant_all (bool [https://docs.python.org/3/library/functions.html#bool]) – Grant all permissions to the user

	
cms.api.assign_user_to_page(page, user, grant_on=ACCESS_PAGE_AND_DESCENDANTS, can_add=False, can_change=False, can_delete=False, can_change_advanced_settings=False, can_publish=False, can_change_permissions=False, can_move_page=False, grant_all=False)

	Assigns a user to a page and gives them some permissions. Returns the
cms.models.PagePermission object that gets
created.

	Parameters

	
	page (cms.models.Page instance) – The page to assign the user to

	user (django.contrib.auth.models.User [https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User] instance) – The user to assign to the page

	grant_on (cms.models.ACCESS_PAGE, cms.models.ACCESS_CHILDREN, cms.models.ACCESS_DESCENDANTS or cms.models.ACCESS_PAGE_AND_DESCENDANTS) – Controls which pages are affected

	can_* – Permissions to grant

	grant_all (bool [https://docs.python.org/3/library/functions.html#bool]) – Grant all permissions to the user

	
cms.api.publish_page(page, user, language)

	Publishes a page.

	Parameters

	
	page (cms.models.Page instance) – The page to publish

	user (django.contrib.auth.models.User [https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User] instance) – The user that performs this action

	language (str [https://docs.python.org/3/library/stdtypes.html#str]) – The target language to publish to

	
cms.api.publish_pages(include_unpublished=False, language=None, site=None)

	Publishes multiple pages defined by parameters.

	Parameters

	
	include_unpublished (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to publish all drafts, including unpublished ones; otherwise, only already published pages will be republished

	language (str [https://docs.python.org/3/library/stdtypes.html#str]) – If given, only pages in this language will be published; otherwise, all languages will be published

	site (django.contrib.sites.models.Site [https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#django.contrib.sites.models.Site] instance) – Specify a site to publish pages for specified site only; if not specified pages from all sites are published

	
get_page_draft(page):

	Returns the draft version of a page, regardless if the passed in
page is a published version or a draft version.

	Parameters

	page (cms.models.Page instance) – The page to get the draft version

	Return page

	draft version of the page

	
copy_plugins_to_language(page, source_language, target_language, only_empty=True):

	Copy the plugins to another language in the same page for all the page
placeholders.

By default plugins are copied only if placeholder has no plugin for the target language; use only_empty=False to change this.

Warning

This function skips permissions checks

	Parameters

	
	page (cms.models.Page instance) – the page to copy

	source_language (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source language code, must be in LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES]

	target_language (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source language code, must be in LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES]

	only_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, plugin are copied even if plugins exists in the
target language (on a placeholder basis).

	Return int

	number of copied plugins

Example workflows

Create a page called 'My Page using the template 'my_template.html' and
add a text plugin with the content 'hello world'. This is done in English:

from cms.api import create_page, add_plugin

page = create_page('My Page', 'my_template.html', 'en')
placeholder = page.placeholders.get(slot='body')
add_plugin(placeholder, 'TextPlugin', 'en', body='hello world')

cms.constants

	
cms.constants.TEMPLATE_INHERITANCE_MAGIC

	The token used to identify when a user selects “inherit” as template for a
page.

	
cms.constants.LEFT

	Used as a position indicator in the toolbar.

	
cms.constants.RIGHT

	Used as a position indicator in the toolbar.

	
cms.constants.REFRESH

	Constant used by the toolbar.

	
cms.constants.EXPIRE_NOW

	Constant of 0 (zero) used for cache control headers

	
cms.constants.MAX_EXPIRATION_TTL

	Constant of 31536000 or 365 days in seconds used for cache control headers

cms.app_base

	
class cms.app_base.CMSApp

	
	
_urls

	list of urlconfs: example: _urls = ["myapp.urls"]

	
_menus

	list of menu classes: example: _menus = [MyAppMenu]

	
name = None

	name of the apphook (required)

	
app_name = None

	name of the app, this enables Django namespaces support (optional)

	
app_config = None

	configuration model (optional)

	
permissions = True

	if set to true, apphook inherits permissions from the current page

	
exclude_permissions = []

	list of application names to exclude from inheriting CMS permissions

	
get_configs()

	Returns all the apphook configuration instances.

	
get_config(namespace)

	Returns the apphook configuration instance linked to the given namespace

	
get_config_add_url()

	Returns the url to add a new apphook configuration instance
(usually the model admin add view)

	
get_menus(page, language, **kwargs)

	
New in version 3.3: CMSApp.get_menus accepts page, language and generic keyword arguments:
you can customize this function to return different list of menu classes
according to the given arguments.

Returns the menus for the apphook instance, selected according
to the given arguments.

By default it returns the menus assigned to _menus

If no page and language are provided, this method must return all the
menus used by this apphook. Example:

if page and page.reverse_id == 'page1':
 return [Menu1]
elif page and page.reverse_id == 'page2':
 return [Menu2]
else:
 return [Menu1, Menu2]

	param page

	page the apphook is attached to

	param language

	current site language

	return

	list of menu classes

	
get_urls(page, language, **kwargs)

	
New in version 3.3.

Returns the URL configurations for the apphook instance, selected
according to the given arguments.

By default it returns the urls assigned to _urls

This method must return a non empty list of URL configurations,
even if no arguments are passed.

	Parameters

	
	page – page the apphook is attached to

	language – current site language

	Returns

	list of strings representing URL configurations

Command Line Interface

You can invoke the django CMS command line interface using the cms Django
command:

python manage.py cms

Informational commands

cms list

The list command is used to display information about your installation.

It has two sub-commands:

	cms list plugins lists all plugins that are used in your project.

	cms list apphooks lists all apphooks that are used in your project.

cms list plugins will issue warnings when it finds orphaned plugins (see
cms delete-orphaned-plugins below).

cms check

Checks your configuration and environment.

Plugin and apphook management commands

cms delete-orphaned-plugins

Warning

The delete-orphaned-plugins command permanently deletes data from
your database. You should make a backup of your database before using it!

Identifies and deletes orphaned plugins.

Orphaned plugins are ones that exist in the CMSPlugins table, but:

	have a plugin_type that is no longer even installed

	have no corresponding saved instance in that particular plugin type’s table

Such plugins will cause problems when trying to use operations that need to copy
pages (and therefore plugins), which includes cms moderator on as well as page
copy operations in the admin.

It is recommended to run cms list plugins periodically, and cms
delete-orphaned-plugins when required.

cms uninstall

The uninstall subcommand can be used to make uninstalling a CMS
plugin or an apphook easier.

It has two sub-commands:

	cms uninstall plugins <plugin name> [<plugin name 2> [...]] uninstalls
one or several plugins by removing them from all pages where they are
used. Note that the plugin name should be the name of the class that is
registered in the django CMS. If you are unsure about the plugin name, use
the cms list to see a list of installed plugins.

	cms uninstall apphooks <apphook name> [<apphook name 2> [...]] uninstalls
one or several apphooks by removing them from all pages where they are
used. Note that the apphook name should be the name of the class that is
registered in the django CMS. If you are unsure about the apphook name, use
the cms list to see a list of installed apphooks.

Warning

The uninstall commands permanently delete data from your database.
You should make a backup of your database before using them!

cms copy

The copy command is used to copy content from one language or site to another.

It has two sub-commands:

	cms copy lang copy content to a given language.

	cms copy site copy pages and content to a given site.

cms copy lang

The copy lang subcommand can be used to copy content (titles and plugins)
from one language to another.
By default the subcommand copy content from the current site
(e.g. the value of SITE_ID) and only if the target
placeholder has no content for the specified language; using the defined
options you can change this.

You must provide two arguments:

	--from-lang: the language to copy the content from;

	--to-lang: the language to copy the content to.

It accepts the following options

	--force: set to copy content even if a placeholder already has content;
if set, copied content will be appended to the original one;

	--site: specify a SITE_ID to operate on sites different from the current one;

	--verbosity: set for more verbose output.

	--skip-content: if set, content is not copied, and the command will only
create titles in the given language.

Example:

cms copy lang --from-lang=en --to-lang=de --force --site=2 --verbosity=2

cms copy site

The copy site subcommand can be used to copy content (pages and plugins)
from one site to another.
The subcommand copy content from the from-site to to-site; please note
that static placeholders are copied as they are shared across sites.
The whole source tree is copied, in the root of the target website.
Existing pages on the target website are not modified.

You must provide two arguments:

	--from-site: the site to copy the content from;

	--to-site: the site to copy the content to.

Example:

cms copy site --from-site=1 --to-site=2

Moderation commands

cms moderator

If you migrate from an earlier version, you should use the cms moderator on
command to ensure that your published pages are up to date, whether or not you
used moderation in the past.

Warning

This command alters data in your database. You should make a backup of
your database before using it! Never run this command without first
checking for orphaned plugins, using the cms list plugins command, and
if necessary delete-orphaned-plugins. Running cms moderator with
orphaned plugins will fail and leave bad data in your database.

cms publisher-publish

If you want to publish many pages at once, this command can help you. By default,
this command publishes drafts for all public pages.

It accepts the following options

	--unpublished: set to publish all drafts, including unpublished ones;
if not set, only already published pages will be republished.

	-l, --language: specify a language code to publish pages in only one language;
if not specified, this command publishes all page languages;

	--site: specify a site id to publish pages for specified site only;
if not specified, this command publishes pages for all sites;

Example:

#publish drafts for public pages in all languages
cms publisher-publish

#publish all drafts in all pages
cms publisher-publish --unpublished

#publish drafts for public pages in deutsch
cms publisher-publish --language=de

#publish all drafts in deutsch
cms publisher-publish --unpublished --language=de

#publish all drafts in deutsch, but only for site with id=2
cms publisher-publish --unpublished --language=de --site=2

Warning

This command publishes drafts. You should review drafts before using this
command, because they will become public.

Maintenance and repair

fix-tree

Occasionally, the pages and plugins tree can become corrupted.
Typical symptoms include problems when trying to copy or delete plugins or pages.

This command will fix small corruptions by rebuilding the tree.

fix-mptt

Occasionally, the MPTT tree can become corrupted (this is one of the reasons for our move
away from MPTT to MP in django CMS 3.1). Typical symptoms include problems when
trying to copy or delete plugins or pages.

This command has been removed in django CMS 3.1 and replaced with fix-tree.

Configuration

django CMS has a number of settings to configure its behaviour. These should
be available in your settings.py file.

The INSTALLED_APPS setting

The ordering of items in INSTALLED_APPS matters. Entries for applications with plugins
should come after cms.

The MIDDLEWARE setting

cms.middleware.utils.ApphookReloadMiddleware

Adding ApphookReloadMiddleware to the MIDDLEWARE tuple will enable automatic server
restarts when changes are made to apphook configurations. It should be placed as near to the top of
the classes as possible.

Note

This has been tested and works in many production environments and deployment configurations,
but we haven’t been able to test it with all possible set-ups. Please file an issue if you
discover one where it fails.

Custom User Requirements

When using a custom user model (i.e. the AUTH_USER_MODEL Django setting), there are a few
requirements that must be met.

django CMS expects a user model with at minimum the following fields: email, password,
is_active, is_staff, and is_superuser. Additionally, it should inherit from
AbstractBaseUser and PermissionsMixin (or AbstractUser), and must define one field as
the USERNAME_FIELD (see Django documentation for more details) and define a get_full_name()
method.

The models must also be editable via Django’s admin and have an admin class registered.

Additionally, the application in which the model is defined must be loaded before cms in INSTALLED_APPS.

Note

In most cases, it is better to create a UserProfile model with a one to one relationship to
auth.User rather than creating a custom user model. Custom user models are only necessary if
you intended to alter the default behaviour of the User model, not simply extend it.

Additionally, if you do intend to use a custom user model, it is generally advisable to do so
only at the beginning of a project, before the database is created.

Required Settings

CMS_TEMPLATES

	default

	() (Not a valid setting!)

A list of templates you can select for a page.

Example:

CMS_TEMPLATES = (
 ('base.html', gettext('default')),
 ('2col.html', gettext('2 Column')),
 ('3col.html', gettext('3 Column')),
 ('extra.html', gettext('Some extra fancy template')),
)

Note

All templates defined in CMS_TEMPLATES must contain at least the js and css sekizai
namespaces. For an example, see Templates.

Note

Alternatively you can use CMS_TEMPLATES_DIR to define a directory
containing templates for django CMS.

Warning

django CMS requires some special templates to function correctly. These are
provided within cms/templates/cms. You are strongly advised not to use
cms as a directory name for your own project templates.

Basic Customisation

CMS_TEMPLATE_INHERITANCE

	default

	True

Enables the inheritance of templates from parent pages.

When enabled, pages’ Template options will include a new default: Inherit
from the parent page (unless the page is a root page).

CMS_TEMPLATES_DIR

	default

	None

Instead of explicitly providing a set of templates via CMS_TEMPLATES
a directory can be provided using this configuration.

CMS_TEMPLATES_DIR can be set to the (absolute) path of the templates directory,
or set to a dictionary with SITE_ID: template path items:

CMS_TEMPLATES_DIR: {
 1: '/absolute/path/for/site/1/',
 2: '/absolute/path/for/site/2/',
}

The provided directory is scanned and all templates in it are loaded as templates for
django CMS.

Template loaded and their names can be customised using the templates dir as a
python module, by creating a __init__.py file in the templates directory.
The file contains a single TEMPLATES dictionary with the list of templates
as keys and template names as values:::

from django.utils.translation import gettext_lazy as _
TEMPLATES = {
 'col_two.html': _('Two columns'),
 'col_three.html': _('Three columns'),
}

Being a normal python file, templates labels can be passed through gettext
for translation.

Note

As templates are still loaded by the Django template loader, the given
directory must be reachable by the template loading system.
Currently filesystem and app_directory loader schemas are tested and
supported.

CMS_PLACEHOLDER_CONF

	default

	{}

Used to configure placeholders. If not given, all plugins will be available in
all placeholders.

Example:

CMS_PLACEHOLDER_CONF = {
 None: {
 "plugins": ['TextPlugin'],
 'excluded_plugins': ['InheritPlugin'],
 },
 'content': {
 'plugins': ['TextPlugin', 'PicturePlugin'],
 'text_only_plugins': ['LinkPlugin'],
 'extra_context': {"width":640},
 'name': gettext("Content"),
 'language_fallback': True,
 'default_plugins': [
 {
 'plugin_type': 'TextPlugin',
 'values': {
 'body':'<p>Lorem ipsum dolor sit amet...</p>',
 },
 },
],
 'child_classes': {
 'TextPlugin': ['PicturePlugin', 'LinkPlugin'],
 },
 'parent_classes': {
 'LinkPlugin': ['TextPlugin'],
 },
 },
 'right-column': {
 "plugins": ['TeaserPlugin', 'LinkPlugin'],
 "extra_context": {"width": 280},
 'name': gettext("Right Column"),
 'limits': {
 'global': 2,
 'TeaserPlugin': 1,
 'LinkPlugin': 1,
 },
 'plugin_modules': {
 'LinkPlugin': 'Extra',
 },
 'plugin_labels': {
 'LinkPlugin': 'Add a link',
 },
 },
 'base.html content': {
 "plugins": ['TextPlugin', 'PicturePlugin', 'TeaserPlugin'],
 'inherit': 'content',
 },
}

You can combine template names and placeholder names to define
plugins in a granular fashion, as shown above with base.html content.

Configuration is retrieved in the following order:

	CMS_PLACEHOLDER_CONF[‘template placeholder’]

	CMS_PLACEHOLDER_CONF[‘placeholder’]

	CMS_PLACEHOLDER_CONF[‘template’]

	CMS_PLACEHOLDER_CONF[None]

The first CMS_PLACEHOLDER_CONF key that matches for the required configuration attribute
is used.

E.g: given the example above if the plugins configuration is retrieved for the content
placeholder in a page using the base.html template, the value
['TextPlugin', 'PicturePlugin', 'TeaserPlugin'] will be returned as 'base.html content'
matches; if the same configuration is retrieved for the content placeholder in a page using
fullwidth.html template, the returned value will be ['TextPlugin', 'PicturePlugin']. If
plugins configuration is retrieved for sidebar_left placeholder, ['TextPlugin'] from
CMS_PLACEHOLDER_CONF key None will be returned.

	plugins

	A list of plugins that can be added to this placeholder. If not supplied,
all plugins can be selected.

	text_only_plugins

	A list of additional plugins available only in the TextPlugin, these
plugins can’t be added directly to this placeholder.

	excluded_plugins

	A list of plugins that will not be added to the given placeholder; this takes precedence
over plugins configuration: if a plugin is present in both lists, it will not be
available in the placeholder. This is basically a way to blacklist a plugin: even if
registered, it will not be available in the placeholder. If set on the None (default)
key, the plugins will not be available in any placeholder (except the excluded_plugins
configuration is overridden in more specific CMS_PLACEHOLDER_KEYS.

	extra_context

	Extra context that plugins in this placeholder receive.

	name

	The name displayed in the Django admin. With the gettext stub, the name can
be internationalised.

	limits

	Limit the number of plugins that can be placed inside this placeholder.
Dictionary keys are plugin names and the values are their respective
limits. Special case: global - Limit the absolute number of plugins in
this placeholder regardless of type (takes precedence over the
type-specific limits).

	language_fallback

	When True, if the placeholder has no plugin for the current language
it falls back to the fallback languages as specified in CMS_LANGUAGES.
Defaults to True since version 3.1.

	default_plugins

	You can specify the list of default plugins which will be automatically
added when the placeholder will be created (or rendered).
Each element of the list is a dictionary with following keys :

	plugin_type

	The plugin type to add to the placeholder
Example : TextPlugin

	values

	Dictionary to use for the plugin creation.
It depends on the plugin_type. See the documentation of each
plugin type to see which parameters are required and available.
Example for a text plugin:
{'body':'<p>Lorem ipsum</p>'}
Example for a link plugin:
{'name':'Django-CMS','url':'https://www.django-cms.org'}

	children

	It is a list of dictionaries to configure default plugins
to add as children for the current plugin (it must accepts children).
Each dictionary accepts same args than dictionaries of
default_plugins : plugin_type, values, children
(yes, it is recursive).

Complete example of default_plugins usage:

CMS_PLACEHOLDER_CONF = {
 'content': {
 'name' : _('Content'),
 'plugins': ['TextPlugin', 'LinkPlugin'],
 'default_plugins':[
 {
 'plugin_type':'TextPlugin',
 'values':{
 'body':'<p>Great websites : %(_tag_child_1)s and %(_tag_child_2)s</p>'
 },
 'children':[
 {
 'plugin_type':'LinkPlugin',
 'values':{
 'name':'django',
 'url':'https://www.djangoproject.com/'
 },
 },
 {
 'plugin_type':'LinkPlugin',
 'values':{
 'name':'django-cms',
 'url':'https://www.django-cms.org'
 },
 # If using LinkPlugin from djangocms-link which
 # accepts children, you could add some grandchildren :
 # 'children' : [
 # ...
 #]
 },
]
 },
]
 }
}

	plugin_modules

	A dictionary of plugins and custom module names to group plugin in the
toolbar UI.

	plugin_labels

	A dictionary of plugins and custom labels to show in the toolbar UI.

	child_classes

	A dictionary of plugin names with lists describing which plugins may be
placed inside each plugin. If not supplied, all plugins can be selected.

	parent_classes

	A dictionary of plugin names with lists describing which plugins may contain
each plugin. If not supplied, all plugins can be selected.

	require_parent

	A Boolean indication whether that plugin requires another plugin as parent or
not.

	inherit

	Placeholder name or template name + placeholder name which inherit. In the
example, the configuration for base.html content inherits from content
and just overwrites the plugins setting to allow TeaserPlugin, thus you
have not to duplicate the configuration of content.

CMS_PLUGIN_CONTEXT_PROCESSORS

	default

	[]

A list of plugin context processors. Plugin context processors are callables
that modify all plugins’ context before rendering. See
How to create Plugins for more information.

CMS_PLUGIN_PROCESSORS

	default

	[]

A list of plugin processors. Plugin processors are callables that modify all
plugins’ output after rendering. See How to create Plugins
for more information.

CMS_APPHOOKS

	default:

	()

A list of import paths for cms.app_base.CMSApp sub-classes.

By default, apphooks are auto-discovered in applications listed in all
INSTALLED_APPS [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-INSTALLED_APPS], by trying to import their cms_app module.

When CMS_APPHOOKS is set, auto-discovery is disabled.

Example:

CMS_APPHOOKS = (
 'myapp.cms_app.MyApp',
 'otherapp.cms_app.MyFancyApp',
 'sampleapp.cms_app.SampleApp',
)

Internationalisation and localisation (I18N and L10N)

CMS_LANGUAGES

	default

	Value of LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES] converted to this format

Defines the languages available in django CMS.

Example:

CMS_LANGUAGES = {
 1: [
 {
 'code': 'en',
 'name': gettext('English'),
 'fallbacks': ['de', 'fr'],
 'public': True,
 'hide_untranslated': True,
 'redirect_on_fallback': False,
 },
 {
 'code': 'de',
 'name': gettext('Deutsch'),
 'fallbacks': ['en', 'fr'],
 'public': True,
 },
 {
 'code': 'fr',
 'name': gettext('French'),
 'public': False,
 },
],
 2: [
 {
 'code': 'nl',
 'name': gettext('Dutch'),
 'public': True,
 'fallbacks': ['en'],
 },
],
 'default': {
 'fallbacks': ['en', 'de', 'fr'],
 'redirect_on_fallback': True,
 'public': True,
 'hide_untranslated': False,
 }
}

Note

Make sure you only define languages which are also in LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES].

Warning

Make sure you use language codes (en-us) and not locale names
(en_US) here and in LANGUAGES [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-LANGUAGES].
Use check command to check for correct syntax.

CMS_LANGUAGES has different options where you can define how different
languages behave, with granular control.

On the first level you can set values for each SITE_ID. In the example
above we define two sites. The first site has 3 languages (English, German and
French) and the second site has only Dutch.

The default node defines default behaviour for all languages. You can
overwrite the default settings with language-specific properties. For example
we define hide_untranslated as False globally, but the English language
overwrites this behaviour.

Every language node needs at least a code and a name property. code
is the ISO 2 code for the language, and name is the verbose name of the
language.

Note

With a gettext() lambda function you can make language names translatable.
To enable this add gettext = lambda s: s at the beginning of your
settings file.

What are the properties a language node can have?

code

String. RFC5646 code of the language.

	example

	"en".

Note

Is required for every language.

name

String. The verbose name of the language.

Note

Is required for every language.

public

Determines whether this language is accessible in the frontend. You may want for example to keep a language private until your content has been fully translated.

	type

	Boolean

	default

	True

fallbacks

A list of alternative languages, in order of preference, that are to be used if
a page is not translated yet..

	example

	['de', 'fr']

	default

	[]

hide_untranslated

Hides untranslated pages in menus.

When applied to the default directive, if False, all pages in menus will be listed in all languages, including those
that don’t yet have content in a particular language. If True, untranslated pages will be hidden.

When applied to a particular language, hides that language’s pages in menus until translations exist for them.

	type

	Boolean

	default

	True

redirect_on_fallback

Determines behaviour when the preferred language is not available. If True,
will redirect to the URL of the same page in the fallback language. If
False, the content will be displayed in the fallback language, but there
will be no redirect.

Note that this applies to the fallback behaviour of pages. Starting for 3.1 placeholders
will default to the same behaviour. If you do not want a placeholder to follow a page’s
fallback behaviour, you must set its language_fallback to False
in CMS_PLACEHOLDER_CONF, above.

	type

	Boolean

	default

	True

Unicode support for automated slugs

If your site has languages which use non-ASCII character sets, CMS_UNIHANDECODE_HOST and
CMS_UNIHANDECODE_VERSION will allow it to automate slug generation for those languages too.

Support for this is provided by the unihandecode.js project.

CMS_UNIHANDECODE_HOST

	default

	None

Must be set to the URL where you host your unihandecode.js files. For licensing
reasons, django CMS does not include unihandecode.js.

If set to None, the default, unihandecode.js is not used.

Note

Unihandecode.js is a rather large library, especially when loading support
for Japanese. It is therefore very important that you serve it from a
server that supports gzip compression. Further, make sure that those files
can be cached by the browser for a very long period.

CMS_UNIHANDECODE_VERSION

	default

	None

Must be set to the version number (eg '1.0.0') you want to use. Together
with CMS_UNIHANDECODE_HOST this setting is used to build the full
URLs for the javascript files. URLs are built like this:
<CMS_UNIHANDECODE_HOST>-<CMS_UNIHANDECODE_VERSION>.<DECODER>.min.js.

CMS_UNIHANDECODE_DECODERS

	default

	['ja', 'zh', 'vn', 'kr', 'diacritic']

If you add additional decoders to your CMS_UNIHANDECODE_HOST, you can add them to this setting.

CMS_UNIHANDECODE_DEFAULT_DECODER

	default

	'diacritic'

The default decoder to use when unihandecode.js support is enabled, but the
current language does not provide a specific decoder in
CMS_UNIHANDECODE_DECODERS. If set to None, failing to find a
specific decoder will disable unihandecode.js for this language.

Example

Add these to your project’s settings:

CMS_UNIHANDECODE_HOST = '/static/unihandecode/'
CMS_UNIHANDECODE_VERSION = '1.0.0'
CMS_UNIHANDECODE_DECODERS = ['ja', 'zh', 'vn', 'kr', 'diacritic']

Add the library files from GitHub ojii/unihandecode.js tree/dist [https://github.com/ojii/unihandecode.js/tree/master/dist] to your static folder:

project/
 static/
 unihandecode/
 unihandecode-1.0.0.core.min.js
 unihandecode-1.0.0.diacritic.min.js
 unihandecode-1.0.0.ja.min.js
 unihandecode-1.0.0.kr.min.js
 unihandecode-1.0.0.vn.min.js
 unihandecode-1.0.0.zh.min.js

More documentation is available on unihandecode.js’ Read the Docs [https://unihandecodejs.readthedocs.io/].

Media Settings

CMS_MEDIA_PATH

	default

	cms/

The path from MEDIA_ROOT [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA_ROOT] to the media files located in cms/media/

CMS_MEDIA_ROOT

	default

	MEDIA_ROOT [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA_ROOT] + CMS_MEDIA_PATH

The path to the media root of the cms media files.

CMS_MEDIA_URL

	default

	MEDIA_URL [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA_URL] + CMS_MEDIA_PATH

The location of the media files that are located in cms/media/cms/

CMS_PAGE_MEDIA_PATH

	default

	'cms_page_media/'

By default, django CMS creates a folder called cms_page_media in your
static files folder where all uploaded media files are stored. The media files
are stored in sub-folders numbered with the id of the page.

You need to ensure that the directory to which it points is writeable by the
user under which Django will be running.

Advanced Settings

CMS_INTERNAL_IPS

	default

	[]

By default CMS_INTERNAL_IPS is an empty list ([]).

If left as an empty list, this setting does not add any restrictions to the
toolbar. However, if set, the toolbar will only appear for client IP addresses
that are in this list.

This setting may also be set to an IpRangeList from the external package
iptools. This package allows convenient syntax for defining complex IP
address ranges.

The client IP address is obtained via the CMS_REQUEST_IP_RESOLVER
in the cms.middleware.toolbar.ToolbarMiddleware middleware.

CMS_REQUEST_IP_RESOLVER

	default

	‘cms.utils.request_ip_resolvers.default_request_ip_resolver’

This setting is used system-wide to provide a consistent and plug-able means
of extracting a client IP address from the HTTP request. The default
implementation should work for most project architectures, but if not, the
administrator can provide their own method to handle the project’s
specific circumstances.

The supplied method should accept a single argument request and return an
IP address String.

CMS_PERMISSION

	default

	False

When enabled, 3 new models are provided in Admin:

	Pages global permissions

	User groups - page

	Users - page

In the edit-view of the pages you can now assign users to pages and grant them
permissions. In the global permissions you can set the permissions for users
globally.

If a user has the right to create new users he can now do so in the “Users -
page”, but he will only see the users he created. The users he created can also
only inherit the rights he has. So if he only has been granted the right to
edit a certain page all users he creates can, in turn, only edit this page.
Naturally he can limit the rights of the users he creates even further,
allowing them to see only a subset of the pages to which he is allowed access.

CMS_RAW_ID_USERS

	default

	False

This setting only applies if CMS_PERMISSION is True

The view restrictions and page permissions inlines on the
cms.models.Page admin change forms can cause performance problems
where there are many thousands of users being put into simple select boxes. If
set to a positive integer, this setting forces the inlines on that page to use
standard Django admin raw ID widgets rather than select boxes if the number of
users in the system is greater than that number, dramatically improving
performance.

Note

Using raw ID fields in combination with limit_choices_to causes
errors due to excessively long URLs if you have many thousands of
users (the PKs are all included in the URL of the popup window). For
this reason, we only apply this limit if the number of users is
relatively small (fewer than 500). If the number of users we need to
limit to is greater than that, we use the usual input field instead
unless the user is a CMS superuser, in which case we bypass the
limit. Unfortunately, this means that non-superusers won’t see any
benefit from this setting.

Changed in version 3.2.1:: CMS_RAW_ID_USERS also applies to
GlobalPagePermission admin.

CMS_PUBLIC_FOR

	default

	all

Determines whether pages without any view restrictions are public by default or
staff only. Possible values are all and staff.

CMS_CACHE_DURATIONS

This dictionary carries the various cache duration settings.

'content'

	default

	60

Cache expiration (in seconds) for show_placeholder, page_url, placeholder and static_placeholder
template tags.

Note

This settings was previously called CMS_CONTENT_CACHE_DURATION

'menus'

	default

	3600

Cache expiration (in seconds) for the menu tree.

Note

This settings was previously called MENU_CACHE_DURATION

'permissions'

	default

	3600

Cache expiration (in seconds) for view and other permissions.

CMS_CACHE_PREFIX

	default

	cms-

The CMS will prepend the value associated with this key to every cache access
(set and get). This is useful when you have several django CMS installations,
and you don’t want them to share cache objects.

Example:

CMS_CACHE_PREFIX = 'mysite-live'

Note

Django 1.3 introduced a site-wide cache key prefix. See Django’s own docs
on cache key prefixing [https://docs.djangoproject.com/en/2.2/topics/cache/#cache-key-prefixing]

CMS_PAGE_CACHE

	default

	True

Should the output of pages be cached?
Takes the language, and time zone into account. Pages for logged in users are not cached.
If the toolbar is visible the page is not cached as well.

CMS_PLACEHOLDER_CACHE

	default

	True

Should the output of the various placeholder template tags be cached?
Takes the current language and time zone into account. If the toolbar is in edit mode or a plugin with cache=False is
present the placeholders will not be cached.

CMS_PLUGIN_CACHE

	default

	True

Default value of the cache attribute of plugins. Should plugins be cached by default if not set explicitly?

Warning

If you disable the plugin cache be sure to restart the server and clear the cache afterwards.

CMS_TOOLBARS

	default

	None

If defined, specifies the list of toolbar modifiers to be used to populate the
toolbar, as import paths. Otherwise, all available toolbars from both the CMS and
the third-party apps will be loaded.

Example:

CMS_TOOLBARS = [
 # CMS Toolbars
 'cms.cms_toolbars.PlaceholderToolbar',
 'cms.cms_toolbars.BasicToolbar',
 'cms.cms_toolbars.PageToolbar',

 # third-party Toolbar
 'aldryn_blog.cms_toolbars.BlogToolbar',
]

CMS_TOOLBAR_ANONYMOUS_ON

	default

	True

This setting controls if anonymous users can see the CMS toolbar with
a login form when ?edit is appended to a URL. The default behaviour
is to show the toolbar to anonymous users.

CMS_TOOLBAR_HIDE

	default

	False

By default, the django CMS toolbar is displayed to logged-in admin users on all pages that use the {% cms_toolbar
%} template tag. Its appearance can be optionally restricted to django CMS pages only (technically, pages that are
rendered by a django CMS view).

When this is set to True, all other pages will no longer display the toolbar. This includes pages with apphooks
applied to them, as they are handled by the other application’s views, and not django CMS’s.

Changed in version 3.2.1:: CMS_APP_NAME has been removed as it’s no longer required.

CMS_DEFAULT_X_FRAME_OPTIONS

	default

	constants.X_FRAME_OPTIONS_INHERIT

This setting is the default value for a Page’s X Frame Options setting.
This should be an integer preferably taken from the cms.constants e.g.

	X_FRAME_OPTIONS_INHERIT

	X_FRAME_OPTIONS_ALLOW

	X_FRAME_OPTIONS_SAMEORIGIN

	X_FRAME_OPTIONS_DENY

CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE

	default:

	True

The new structure board operates by default in “simple” mode. The older mode used absolute
positioning. Setting this attribute to False will allow the absolute positioning used in
versions prior to 3.2. This setting will be removed in 3.3.

Example:

CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE = False

CMS_PAGE_WIZARD_DEFAULT_TEMPLATE

	default

	TEMPLATE_INHERITANCE_MAGIC

This is the path of the template used to create pages in the wizard. It must be
one of the templates in CMS_TEMPLATES.

CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER

	default

	None

When set to an editable, non-static placeholder that is available on the page
template, the CMS page wizards will target the specified placeholder when
adding any content supplied in the wizards’ “Content” field. If this is left
unset, then the content will target the first suitable placeholder found on
the page’s template.

CMS_PAGE_WIZARD_CONTENT_PLUGIN

	default

	TextPlugin

This is the name of the plugin created in the Page Wizard when the “Content”
field is filled in. There should be no need to change it, unless you
don’t use djangocms-text-ckeditor in your project.

CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY

	default

	body

This is the name of the body field in the plugin created in the Page Wizard
when the “Content” field is filled in. There should be no need to change it,
unless you don’t use djangocms-text-ckeditor in your project and
your custom plugin defined in CMS_PAGE_WIZARD_CONTENT_PLUGIN have a
body field different than body.

Form and model fields

Model fields

	
class cms.models.fields.PageField

	This is a foreign key field to the cms.models.Page model
that defaults to the cms.forms.fields.PageSelectFormField form
field when rendered in forms. It has the same API as the
django.db.models.ForeignKey [https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ForeignKey] but does not require
the othermodel argument.

	
class cms.models.fields.PlaceholderField

	A foreign key field to the cms.models.placeholdermodel.Placeholder model.

Form fields

	
class cms.forms.fields.PageSelectFormField

	Behaves like a django.forms.ModelChoiceField [https://docs.djangoproject.com/en/2.2/ref/forms/fields/#django.forms.ModelChoiceField] field for the
cms.models.Page model, but displays itself as a split
field with a select drop-down for the site and one for the page. It also
indents the page names based on what level they’re on, so that the page
select drop-down is easier to use. This takes the same arguments as
django.forms.ModelChoiceField [https://docs.djangoproject.com/en/2.2/ref/forms/fields/#django.forms.ModelChoiceField].

	
class cms.forms.fields.PageSmartLinkField

	A field making use of cms.forms.widgets.PageSmartLinkWidget.
This field will offer you a list of matching internal pages as you type.
You can either pick one or enter an arbitrary URL to create a non existing entry.
Takes a placeholder_text argument to define the text displayed inside the
input before you type.

The widget uses an ajax request to try to find pages match. It will try to find
case insensitive matches amongst public and published pages on the title, path,
page_title, menu_title fields.

Menus and navigation

There are four template tags for use in the templates that are connected to the
menu:

	show_menu

	show_menu_below_id

	show_sub_menu

	show_breadcrumb

To use any of these template tags, you need to have {% load menu_tags %} in
your template before the line on which you call the template tag.

Note

Please note that menus live in the menus application, which though
tightly coupled to the cms application exists independently of it.
Menus are usable by any application, not just by django CMS.

show_menu

The show_menu tag renders the navigation of the current page.
You can overwrite the appearance and the HTML if you add a menu/menu.html
template to your project or edit the one provided with django CMS.
show_menu takes six optional parameters: start_level, end_level,
extra_inactive, extra_active, namespace and root_id.

The first two parameters, start_level (default=0) and end_level
(default=100) specify from which level the navigation should be rendered and at
which level it should stop. If you have home as a root node (i.e. level 0) and
don’t want to display the root node(s), set start_level to 1.

The third parameter, extra_inactive (default=0), specifies how many levels
of navigation should be displayed if a node is not a direct ancestor or
descendant of the current active node.

The fourth parameter, extra_active (default=100), specifies how
many levels of descendants of the currently active node should be displayed.

The fifth parameter, namespace, is currently not implemented.

The sixth parameter root_id specifies the id of the root node.

You can supply a template parameter to the tag.

Some Examples

Complete navigation (as a nested list):

{% load menu_tags %}

 {% show_menu 0 100 100 100 %}

Navigation with active tree (as a nested list):

 {% show_menu 0 100 0 100 %}

Navigation with only one active extra level:

 {% show_menu 0 100 0 1 %}

Level 1 navigation (as a nested list):

 {% show_menu 1 %}

Navigation with a custom template:

{% show_menu 0 100 100 100 "myapp/menu.html" %}

show_menu_below_id

If you have set an id in the advanced settings of a page, you can display the
sub-menu of this page with a template tag. For example, we have a page called
meta that is not displayed in the navigation and that has the id “meta”:

 {% show_menu_below_id "meta" %}

You can give it the same optional parameters as show_menu:

 {% show_menu_below_id "meta" 0 100 100 100 "myapp/menu.html" %}

Unlike show_menu, however, soft roots will not affect the menu when
using show_menu_below_id.

show_sub_menu

Displays the sub menu of the current page (as a nested list).

The first argument, levels (default=100), specifies how many levels deep
the sub menu should be displayed.

The second argument, root_level (default=None), specifies at what level, if
any, the menu should have its root. For example, if root_level is 0 the menu
will start at that level regardless of what level the current page is on.

The third argument, nephews (default=100), specifies how many levels of
nephews (children of siblings) are shown.

Fourth argument, template (default=menu/sub_menu.html), is the template
used by the tag; if you want to use a different template you must supply
default values for root_level and nephews.

Examples:

 {% show_sub_menu 1 %}

Rooted at level 0:

 {% show_sub_menu 1 0 %}

Or with a custom template:

 {% show_sub_menu 1 None 100 "myapp/submenu.html" %}

show_breadcrumb

Show the breadcrumb navigation of the current page. The template for the HTML
can be found at menu/breadcrumb.html.:

{% show_breadcrumb %}

Or with a custom template and only display level 2 or higher:

{% show_breadcrumb 2 "myapp/breadcrumb.html" %}

Usually, only pages visible in the navigation are shown in the
breadcrumb. To include all pages in the breadcrumb, write:

{% show_breadcrumb 0 "menu/breadcrumb.html" 0 %}

If the current URL is not handled by the CMS or by a navigation extender,
the current menu node can not be determined.
In this case you may need to provide your own breadcrumb via the template.
This is mostly needed for pages like login, logout and third-party apps.
This can easily be accomplished by a block you overwrite in your templates.

For example in your base.html:

 {% block breadcrumb %}
 {% show_breadcrumb %}
 {% endblock %}

And then in your app template:

{% block breadcrumb %}
home
My current page
{% endblock %}

Properties of Navigation Nodes in templates

{{ node.is_leaf_node }}

Is it the last in the tree? If true it doesn’t have any children.

{{ node.level }}

The level of the node. Starts at 0.

{{ node.menu_level }}

The level of the node from the root node of the menu. Starts at 0.
If your menu starts at level 1 or you have a “soft root” (described
in the next section) the first node would still have 0 as its menu_level.

{{ node.get_absolute_url }}

The absolute URL of the node, without any protocol, domain or port.

{{ node.title }}

The title in the current language of the node.

{{ node.selected }}

If true this node is the current one selected/active at this URL.

{{ node.ancestor }}

If true this node is an ancestor of the current selected node.

{{ node.sibling }}

If true this node is a sibling of the current selected node.

{{ node.descendant }}

If true this node is a descendant of the current selected node.

{{ node.soft_root }}

If true this node is a soft root. A page can be marked as a soft root
in its ‘Advanced Settings’.

Modifying & Extending the menu

Please refer to the How to customise navigation menus documentation

Menu system classes and function

menu application

	
class menus.base.Menu

	The base class for all menu-generating classes.

	
get_nodes(self, request)

	Each sub-class of Menu should return a list of NavigationNode instances.

	
class menus.base.Modifier

	The base class for all menu-modifying classes. A modifier add, removes or changes NavigationNodes in the list.

	
modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb)

	Each sub-class of Modifier should implement a modify() method.

	
class menus.menu_pool.MenuPool

	
	
get_nodes()

	

	
discover_menus()

	

	
apply_modifiers()

	

	
_build_nodes()

	

	
_mark_selected()

	

	
menus.menu_pool._build_nodes_inner_for_one_menu()

	

	
menus.templatetags.menu_tags.cut_levels()

	

	
class menus.templatetags.menu_tags.ShowMenu

	
	
get_context()

	

	
class menus.base.NavigationNode(title, url, id[, parent_id=None][, parent_namespace=None][, attr=None][, visible=True])

	Each node in a menu tree is represented by a NavigationNode instance.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The title to display this menu item with.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URL associated with this menu item.

	id – Unique (for the current tree) ID of this item.

	parent_id – Optional, ID of the parent item.

	parent_namespace – Optional, namespace of the parent.

	attr (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional, dictionary of additional information to store on
this node.

	visible (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, defaults to True, whether this item is
visible or not.

	
attr

	A dictionary, provided in order that arbitrary attributes may be added to the node -
placing them directly on the node itself could cause a clash with an existing or future attribute.

An important key in this dictionary is is_page: if True, the node represents a django CMS Page
object.

Nodes that represent CMS pages have the following keys in attr:

	auth_required (bool) – is authentication required to access this page

	is_page (bool) – Always True

	navigation_extenders (list) – navigation extenders connected to this node

	redirect_url (str) – redirect URL of page (if any)

	reverse_id (str) – unique identifier for the page

	soft_root (bool) – whether page is a soft root

	visible_for_authenticated (bool) – visible for authenticated users

	visible_for_anonymous (bool) – visible for anonymous users

	
get_descendants()

	Returns a list of all children beneath the current menu item.

	
get_ancestors()

	Returns a list of all parent items, excluding the current menu item.

	
get_absolute_url()

	Utility method to return the URL associated with this menu item,
primarily to follow naming convention asserted by Django.

	
get_menu_title()

	Utility method to return the associated title, using the same naming
convention used by cms.models.Page.

	
class menus.modifiers.Marker

	

	
class menus.modifiers.AuthVisibility

	

	
class menus.modifiers.Level

	
	
mark_levels()

	

cms application

	
class cms.menu.CMSMenu

	Subclass of menus.base.Menu. Its get_nodes() creates a list of NavigationNodes
based on Page objects.

	
class cms.menu.NavExtender

	

	
class cms.menu.SoftRootCutter

	

	
class cms.menu_bases.CMSAttachMenu

	

Models

	
class cms.models.Page

	A Page is the basic unit of site structure in django CMS. The CMS uses a hierarchical page model: each page
stands in relation to other pages as parent, child or sibling. This hierarchy is managed by the django-treebeard [http://django-treebeard.readthedocs.io/en/latest/] library.

A Page also has language-specific properties - for example, it will have a title and a slug for each language it
exists in. These properties are managed by the cms.models.Title model.

Permissions

	
class cms.models.PagePermission

	

	
cms.models.ACCESS_PAGE

	

	
cms.models.ACCESS_CHILDREN

	

	
cms.models.ACCESS_DESCENDANTS

	

	
cms.models.ACCESS_PAGE_AND_DESCENDANTS

	

Placeholders

	
class cms.models.placeholdermodel.Placeholder

	Placeholders can be filled with plugins, which store or generate content.

	
class cms.admin.placeholderadmin.PlaceholderAdminMixin

	

Plugins

CMSPluginBase Attributes and Methods Reference

	
class cms.plugin_base.CMSPluginBase

	Inherits django.contrib.admin.ModelAdmin [https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin] and in most respects behaves like a
normal sub-class. Note however that some attributes of ModelAdmin simply won’t make sense in the
context of a Plugin.

Attributes

	
admin_preview

	Default: False

If True, displays a preview in the admin.

	
allow_children

	Default: False

Allows this plugin to have child plugins - other plugins placed inside it?

If True you need to ensure that your plugin can render its children in the plugin template. For example:

{% load cms_tags %}
<div class="myplugin">
 {{ instance.my_content }}
 {% for plugin in instance.child_plugin_instances %}
 {% render_plugin plugin %}
 {% endfor %}
</div>

instance.child_plugin_instances provides access to all the plugin’s children.
They are pre-filled and ready to use. The child plugins should be rendered using
the {% render_plugin %} template tag.

See also: child_classes, parent_classes, require_parent.

	
cache

	Default: CMS_PLUGIN_CACHE

Is this plugin cacheable? If your plugin displays content based on the user or
request or other dynamic properties set this to False.

If present and set to False, the plugin will prevent the caching of
the resulting page.

Important

Setting this to False will effectively disable the
CMS page cache and all upstream caches for pages where
the plugin appears. This may be useful in certain cases
but for general cache management, consider using the much
more capable get_cache_expiration().

Warning

If you disable a plugin cache be sure to restart the server and clear the cache afterwards.

	
change_form_template

	Default: admin/cms/page/plugin_change_form.html

The template used to render the form when you edit the plugin.

Example:

class MyPlugin(CMSPluginBase):
 model = MyModel
 name = _("My Plugin")
 render_template = "cms/plugins/my_plugin.html"
 change_form_template = "admin/cms/page/plugin_change_form.html"

See also: frontend_edit_template.

	
child_classes

	Default: None

A list of Plugin Class Names. If this is set, only plugins listed here can be
added to this plugin.

See also: parent_classes.

	
disable_child_plugins

	Default: False

Disables dragging of child plugins in structure mode.

	
form

	Custom form class to be used to edit this plugin.

	
frontend_edit_template

	This attribute is deprecated and will be removed in 3.5.

Default: cms/toolbar/plugin.html

The template used for wrapping the plugin in frontend editing.

See also: change_form_template.

	
model

	Default: CMSPlugin

If the plugin requires per-instance settings, then this setting must be set to
a model that inherits from CMSPlugin.

See also: Storing configuration.

	
module

	Will group the plugin in the plugin picker. If the module
attribute is not provided plugin is listed in the “Generic”
group.

	
name

	Will be displayed in the plugin picker.

	
page_only

	Default: False

Set to True if this plugin should only be used in a placeholder that is attached to a django CMS page,
and not other models with PlaceholderFields.

See also: child_classes, parent_classes, require_parent.

	
parent_classes

	Default: None

A list of the names of permissible parent classes for this plugin.

See also: child_classes, require_parent.

	
render_plugin

	If set to False, this plugin will not be rendered at all.
Default: True

If True, render_template() must also be defined.

See also: render_template, get_render_template().

	
render_template

	Default: None

The path to the template used to render the template. If render_plugin
is True either this or get_render_template must be defined;

See also: render_plugin , get_render_template().

	
require_parent

	Default: False

Is it required that this plugin is a child of another plugin? Or can it be
added to any placeholder, even one attached to a page.

See also: child_classes, parent_classes.

	
text_enabled

	Default: False

This attribute controls whether your plugin will be usable (and rendered)
in a text plugin. When you edit a text plugin on a page, the plugin will show up in
the CMS Plugins dropdown and can be configured and inserted. The output will even
be previewed in the text editor.

Of course, not all plugins are usable in text plugins. Therefore the default of this
attribute is False. If your plugin is usable in a text plugin:

	set this to True

	make sure your plugin provides its own icon_alt(), this will be used as a tooltip in
the text-editor and comes in handy when you use multiple plugins in your text.

See also: icon_alt(), icon_src().

Methods

	
get_plugin_urls(instance)

	Returns the URL patterns the plugin wants to register views for.
They are included under django CMS’s page admin URLS in the plugin path
(e.g.: /admin/cms/page/plugin/<plugin-name>/ in the default case).

get_plugin_urls() is useful if your plugin needs to talk asynchronously to the admin.

	
get_render_template()

	If you need to determine the plugin render model at render time
you can implement the get_render_template() method on the plugin
class; this method takes the same arguments as render.

The method must return a valid template file path.

Example:

def get_render_template(self, context, instance, placeholder):
 if instance.attr = 'one':
 return 'template1.html'
 else:
 return 'template2.html'

See also: render_plugin() , render_template()

	
get_extra_placeholder_menu_items(self, request, placeholder)

	Extends the context menu for all placeholders.

To add one or more custom context menu items that are displayed in the context menu for all placeholders when
in structure mode, override this method in a related plugin to return a list of
cms.plugin_base.PluginMenuItem instances.

	
get_extra_global_plugin_menu_items(self, request, plugin)

	Extends the context menu for all plugins.

To add one or more custom context menu items that are displayed in the context menu for all plugins when in
structure mode, override this method in a related plugin to return a list of
cms.plugin_base.PluginMenuItem instances.

	
get_extra_local_plugin_menu_items()

	Extends the context menu for a specific plugin. To add one or more custom
context menu items that are displayed in the context menu for a given plugin
when in structure mode, override this method in the plugin to return a list of
cms.plugin_base.PluginMenuItem instances.

	
get_cache_expiration(self, request, instance, placeholder)

	Provides expiration value to the placeholder, and in turn to the page
for determining the appropriate Cache-Control headers to add to the
HTTPResponse object.

Must return one of:

	None

	This means the placeholder and the page will not even consider
this plugin when calculating the page expiration.

	datetime

	A specific date and time (timezone-aware) in the future when
this plugin’s content expires.

Important

The returned datetime must be timezone-aware
or the plugin will be ignored (with a warning)
during expiration calculations.

	int

	An number of seconds that this plugin’s content can be cached.

There are constants are defined in cms.constants that may be
useful: EXPIRE_NOW and MAX_EXPIRATION_TTL.

An integer value of 0 (zero) or EXPIRE_NOW effectively means
“do not cache”. Negative values will be treated as EXPIRE_NOW.
Values exceeding the value MAX_EXPIRATION_TTL will be set to
that value.

Negative timedelta values or those greater than MAX_EXPIRATION_TTL
will also be ranged in the same manner.

Similarly, datetime values earlier than now will be treated as EXPIRE_NOW. Values
greater than MAX_EXPIRATION_TTL seconds in the future will be treated as
MAX_EXPIRATION_TTL seconds in the future.

	Parameters

	
	request – Relevant HTTPRequest instance.

	instance – The CMSPlugin instance that is being rendered.

	Return type

	None or datetime or int

	
get_vary_cache_on(self, request, instance, placeholder)

	Returns an HTTP VARY header string or a list of them to be considered by the placeholder
and in turn by the page to caching behaviour.

Overriding this method is optional.

Must return one of:

	None

	This means that this plugin declares no headers for the cache
to be varied upon. (default)

	string

	The name of a header to vary caching upon.

	list of strings

	A list of strings, each corresponding to a header to vary the
cache upon.

	
icon_alt()

	By default icon_alt() will return a string of the form: “[plugin type] -
[instance]”, but can be modified to return anything you like.

This function accepts the instance as a parameter and returns a string to be
used as the alt text for the plugin’s preview or icon.

Authors of text-enabled plugins should consider overriding this function as
it will be rendered as a tooltip in most browser. This is useful, because if
the same plugin is used multiple times, this tooltip can provide information about
its configuration.

icon_alt() takes 1 argument:

	instance: The instance of the plugin model

The default implementation is as follows:

def icon_alt(self, instance):
 return "%s - %s" % (force_text(self.name), force_text(instance))

See also: text_enabled, icon_src().

	
icon_src(instance)

	By default, this returns an empty string, which, if left unoverridden would
result in no icon rendered at all, which, in turn, would render the plugin
uneditable by the operator inside a parent text plugin.

Therefore, this should be overridden when the plugin has text_enabled set to
True to return the path to an icon to display in the text of the text
plugin.

Since djangocms-text-ckeditor introduced inline previews of plugins, the icon
will not be rendered anymore.

icon_src takes 1 argument:

	instance: The instance of the plugin model

Example:

def icon_src(self, instance):
 return settings.STATIC_URL + "cms/img/icons/plugins/link.png"

See also: text_enabled, icon_alt()

	
render(context, instance, placeholder)

	This method returns the context to be used to render the template
specified in render_template.

The render() method takes three arguments:

	context: The context with which the page is rendered.

	instance: The instance of your plugin that is rendered.

	placeholder: The name of the placeholder that is rendered.

This method must return a dictionary or an instance of
django.template.Context [https://docs.djangoproject.com/en/2.2/ref/templates/api/#django.template.Context], which will be used as context to render the
plugin template.

By default this method will add instance and placeholder to the
context, which means for simple plugins, there is no need to overwrite this
method.

If you overwrite this method it’s recommended to always populate the context
with default values by calling the render method of the super class:

def render(self, context, instance, placeholder):
 context = super().render(context, instance, placeholder)
 ...
 return context

	Parameters

	
	context – Current template context.

	instance – Plugin instance that is being rendered.

	placeholder – Name of the placeholder the plugin is in.

	Return type

	dict

	
text_editor_button_icon()

	When text_enabled is True, this plugin can be added in a text editor and
there might be an icon button for that purpose. This method allows to override
this icon.

By default, it returns None and each text editor plugin may have its own
fallback icon.

text_editor_button_icon() takes 2 arguments:

	editor_name: The plugin name of the text editor

	icon_context: A dictionary containing information about the needed icon
like width, height, theme, etc

Usually this method should return the icon URL. But, it may depends on the text
editor because what is needed may differ. Please consult the documentation of
your text editor plugin.

This requires support from the text plugin; support for this is currently planned
for djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor/] 2.5.0.

See also: text_enabled.

	
class cms.plugin_base.PluginMenuItem

	
	
__init___(name, url, data, question=None, action='ajax', attributes=None)

	Creates an item in the plugin / placeholder menu

	Parameters

	
	name – Item name (label)

	url – URL the item points to. This URL will be called using POST

	data – Data to be POSTed to the above URL

	question – Confirmation text to be shown to the user prior to call the given URL (optional)

	action – Custom action to be called on click; currently supported: ‘ajax’, ‘ajax_add’

	attributes – Dictionary whose content will be added as data-attributes to the menu item

CMSPlugin Attributes and Methods Reference

	
class cms.models.pluginmodel.CMSPlugin

	See also: Storing configuration

Attributes

	
translatable_content_excluded_fields

	

Default: []

A list of plugin fields which will not be exported while using get_translatable_content().

See also: get_translatable_content(), set_translatable_content().

Methods

	
copy_relations()

	Handle copying of any relations attached to this plugin. Custom plugins have
to do this themselves.

copy_relations takes 1 argument:

	old_instance: The source plugin instance

See also: Handling Relations, post_copy().

	
get_translatable_content()

	Get a dictionary of all content fields (field name / field value pairs) from
the plugin.

Example:

from djangocms_text_ckeditor.models import Text

plugin = Text.objects.get(pk=1).get_bound_plugin()[0]
plugin.get_translatable_content()
returns {'body': u'<p>I am text!</p>\n'}

See also: translatable_content_excluded_fields, set_translatable_content.

	
post_copy()

	Can (should) be overridden to handle the copying of plugins which contain
children plugins after the original parent has been copied.

post_copy takes 2 arguments:

	old_instance: The old plugin instance instance

	new_old_ziplist: A list of tuples containing new copies and the old existing child plugins.

See also: Handling Relations, copy_relations().

	
set_translatable_content()

	Takes a dictionary of plugin fields (field name / field value pairs) and
overwrites the plugin’s fields. Returns True if all fields have been
written successfully, and False otherwise.

set_translatable_content takes 1 argument:

	fields: A dictionary containing the field names and translated content for each.

	get_translatable_content()

Example:

from djangocms_text_ckeditor.models import Text

plugin = Text.objects.get(pk=1).get_bound_plugin()[0]
plugin.set_translatable_content({'body': u'<p>This is a different text!</p>\n'})
returns True

See also: translatable_content_excluded_fields, get_translatable_content().

	
get_add_url()

	Returns the URL to call to add a plugin instance; useful to implement plugin-specific
logic in a custom view.

	
get_edit_url()

	Returns the URL to call to edit a plugin instance; useful to implement plugin-specific
logic in a custom view.

	
get_move_url()

	Returns the URL to call to move a plugin instance; useful to implement plugin-specific
logic in a custom view.

	
get_delete_url()

	Returns the URL to call to delete a plugin instance; useful to implement plugin-specific
logic in a custom view.

	
get_copy_url()

	Returns the URL to call to copy a plugin instance; useful to implement plugin-specific
logic in a custom view.

	
class cms.plugin_pool.PluginPool

	

Sitemaps

	
class cms.sitemaps.CMSSitemap

	

Template Tags

CMS template tags

To use any of the following template tags you first need to load them at the
top of your template:

{% load cms_tags %}

Placeholders

placeholder

The placeholder template tag defines a placeholder on a page. All
placeholders in a template will be auto-detected and can be filled with
plugins when editing a page that is using said template. When rendering, the
content of these plugins will appear where the placeholder tag was.

Example:

{% placeholder "content" %}

[image: a placeholder named 'content']
If you want additional content to be displayed in case the placeholder is
empty, use the or argument and an additional {% endplaceholder %}
closing tag. Everything between {% placeholder "..." or %} and {%
endplaceholder %} is rendered in the event that the placeholder has no plugins or
the plugins do not generate any output.

Example:

{% placeholder "content" or %}There is no content.{% endplaceholder %}

If you want to add extra variables to the context of the placeholder, you
should use Django’s with [https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-with] tag. For instance, if you want to re-size images
from your templates according to a context variable called width, you can
pass it as follows:

{% with 320 as width %}{% placeholder "content" %}{% endwith %}

If you want the placeholder to inherit the content of a placeholder with the
same name on parent pages, simply pass the inherit argument:

{% placeholder "content" inherit %}

This will walk up the page tree up until the root page and will show the first
placeholder it can find with content.

It’s also possible to combine this with the or argument to show an
ultimate fallback if the placeholder and none of the placeholders on parent
pages have plugins that generate content:

{% placeholder "content" inherit or %}There is no spoon.{% endplaceholder %}

See also the CMS_PLACEHOLDER_CONF setting where you can also add extra
context variables and change some other placeholder behaviour.

Important

{% placeholder %} will only work inside the template’s <body>.

static_placeholder

The {% static_placeholder %} template tag can be used anywhere in a template element after
the {% cms_toolbar %} tag. A static placeholder instance is not bound to any particular page
or model - in other words, everywhere it appears, a static placeholder will hold exactly the same
content.

The {% static_placeholder %} tag is normally used to display the same content on multiple
locations or inside of apphooks or other third party apps.

Otherwise, a static placeholder behaves like a “normal” placeholder, to which plugins can be added.

A static placeholder needs to be published to show up on live pages, and requires a name.

Example:

{% load cms_tags %}

{% static_placeholder "footer" %}

[image: a static placeholder]

Note

To reduce clutter in the interface, the plugins in static placeholders are hidden by default.
Click or tap on the name of the static placeholder to reveal/hide them.

If you want additional content to be displayed in case the static placeholder is
empty, use the or argument and an additional {% endstatic_placeholder %}
closing tag. Everything between {% static_placeholder "..." or %} and {%
endstatic_placeholder %} is rendered in the event that the placeholder has no plugins or
the plugins do not generate any output.

Example:

{% static_placeholder "footer" or %}There is no content.{% endstatic_placeholder %}

By default, a static placeholder applies to all sites in a project.

If you want to make your static placeholder site-specific, so that different sites can have their
own content in it, you can add the flag site to the template tag to achieve this.

Example:

{% static_placeholder "footer" site or %}There is no content.{% endstatic_placeholder %}

Note that the Django “sites” framework [https://docs.djangoproject.com/en/dev/ref/contrib/sites/] is required and
SITE_ID must be set in settings.py for this (not to mention other aspects of django CMS) to work correctly.

Important

{% static_placeholder %} will only work inside the template’s <body>.

render_placeholder

{% render_placeholder %} is used if you have a PlaceholderField in your own model and want
to render it in the template.

The render_placeholder tag takes the following parameters:

	PlaceholderField instance

	width parameter for context sensitive plugins (optional)

	language keyword plus language-code string to render content in the
specified language (optional)

	as keyword followed by varname (optional): the template tag output can
be saved as a context variable for later use.

The following example renders the my_placeholder field from the mymodel_instance and will
render only the English (en) plugins:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder language 'en' %}

New in version 3.0.2: This template tag supports the as argument. With this you can assign the result
of the template tag to a new variable that you can use elsewhere in the template.

Example:

{% render_placeholder mymodel_instance.my_placeholder as placeholder_content %}
<p>{{ placeholder_content }}</p>

When used in this manner, the placeholder will not be displayed for
editing when the CMS is in edit mode.

render_uncached_placeholder

The same as render_placeholder, but the placeholder contents will not be
cached or taken from the cache.

Arguments:

	PlaceholderField instance

	width parameter for context sensitive plugins (optional)

	language keyword plus language-code string to render content in the
specified language (optional)

	as keyword followed by varname (optional): the template tag output can
be saved as a context variable for later use.

Example:

{% render_uncached_placeholder mymodel_instance.my_placeholder language 'en' %}

show_placeholder

Displays a specific placeholder from a given page. This is useful if you want
to have some more or less static content that is shared among many pages, such
as a footer.

Arguments:

	placeholder_name

	page_lookup (see page_lookup for more information)

	language (optional)

	site (optional)

Examples:

{% show_placeholder "footer" "footer_container_page" %}
{% show_placeholder "content" request.current_page.parent_id %}
{% show_placeholder "teaser" request.current_page.get_root %}

show_uncached_placeholder

The same as show_placeholder, but the placeholder contents will not be
cached or taken from the cache.

Arguments:

	placeholder_name

	page_lookup (see page_lookup for more information)

	language (optional)

	site (optional)

Example:

{% show_uncached_placeholder "footer" "footer_container_page" %}

page_lookup

The page_lookup argument, passed to several template tags to retrieve a
page, can be of any of the following types:

	str [https://docs.python.org/3/library/stdtypes.html#str]: interpreted as the reverse_id field of the desired page, which
can be set in the “Advanced” section when editing a page.

	int [https://docs.python.org/3/library/functions.html#int]: interpreted as the primary key (pk field) of the desired page

	dict [https://docs.python.org/3/library/stdtypes.html#dict]: a dictionary containing keyword arguments to find the desired page
(for instance: {'pk': 1})

	Page: you can also pass a page object directly, in which case there will
be no database lookup.

If you know the exact page you are referring to, it is a good idea to use a
reverse_id (a string used to uniquely name a page) rather than a
hard-coded numeric ID in your template. For example, you might have a help
page that you want to link to or display parts of on all pages. To do this,
you would first open the help page in the admin interface and enter an ID
(such as help) under the ‘Advanced’ tab of the form. Then you could use
that reverse_id with the appropriate template tags:

{% show_placeholder "right-column" "help" %}
Help page

If you are referring to a page relative to the current page, you’ll probably
have to use a numeric page ID or a page object. For instance, if you want the
content of the parent page to display on the current page, you can use:

{% show_placeholder "content" request.current_page.parent_id %}

Or, suppose you have a placeholder called teaser on a page that, unless a
content editor has filled it with content specific to the current page, should
inherit the content of its root-level ancestor:

{% placeholder "teaser" or %}
 {% show_placeholder "teaser" request.current_page.get_root %}
{% endplaceholder %}

page_url

Displays the URL of a page in the current language.

Arguments:

	page_lookup (see page_lookup for more information)

	language (optional)

	site (optional)

	as var_name (version 3.0 or later, optional; page_url can now be used to assign the resulting
URL to a context variable var_name)

Example:

Help page
Parent page

If a matching page isn’t found and DEBUG [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DEBUG] is True, an
exception will be raised. However, if DEBUG [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DEBUG] is False, an
exception will not be raised.

New in version 3.0: page_url now supports the as argument. When used this way, the tag
emits nothing, but sets a variable in the context with the specified name
to the resulting value.

When using the as argument PageNotFound exceptions are always
suppressed, regardless of the setting of DEBUG [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DEBUG] and the
tag will simply emit an empty string in these cases.

Example:

{# Emit a 'canonical' tag when the page is displayed on an alternate url #}
{% page_url request.current_page as current_url %}{% if current_url and current_url != request.get_full_path %}<link rel="canonical" href="{% page_url request.current_page %}">{% endif %}

page_attribute

This template tag is used to display an attribute of the current page in the
current language.

Arguments:

	attribute_name

	page_lookup (optional; see page_lookup for more
information)

Possible values for attribute_name are: "title", "menu_title",
"page_title", "slug", "meta_description", "changed_date", "changed_by"
(note that you can also supply that argument without quotes, but this is
deprecated because the argument might also be a template variable).

Example:

{% page_attribute "page_title" %}

If you supply the optional page_lookup argument, you will get the page
attribute from the page found by that argument.

Example:

{% page_attribute "page_title" "my_page_reverse_id" %}
{% page_attribute "page_title" request.current_page.parent_id %}
{% page_attribute "slug" request.current_page.get_root %}

New in version 2.3.2: This template tag supports the as argument. With this you can assign the result
of the template tag to a new variable that you can use elsewhere in the template.

Example:

{% page_attribute "page_title" as title %}
<title>{{ title }}</title>

It even can be used in combination with the page_lookup argument.

Example:

{% page_attribute "page_title" "my_page_reverse_id" as title %}
{{ title }}

New in version 2.4.

render_plugin

This template tag is used to render child plugins of the current plugin and should be used inside plugin templates.

Arguments:

	plugin

Plugin needs to be an instance of a plugin model.

Example:

{% load cms_tags %}
<div class="multicolumn">
{% for plugin in instance.child_plugin_instances %}
 <div style="width: {{ plugin.width }}00px;">
 {% render_plugin plugin %}
 </div>
{% endfor %}
</div>

Normally the children of plugins can be accessed via the child_plugins attribute of plugins.
Plugins need the allow_children attribute to set to True for this to be enabled.

New in version 3.0.

render_plugin_block

This template tag acts like the template tag render_model_block but with a
plugin instead of a model as its target. This is used to link from a block of
markup to a plugin’s change form in edit/preview mode.

This is useful for user interfaces that have some plugins hidden from display
in edit/preview mode, but the CMS author needs to expose a way to edit them.
It is also useful for just making duplicate or alternate means of triggering
the change form for a plugin.

This would typically be used inside a parent-plugin’s render template. In this
example code below, there is a parent container plugin which renders a list of
child plugins inside a navigation block, then the actual plugin contents inside a
DIV.contentgroup-items block. In this example, the navigation block is always shown,
but the items are only shown once the corresponding navigation element is
clicked. Adding this render_plugin_block makes it significantly more intuitive
to edit a child plugin’s content, by double-clicking its navigation item in edit mode.

Arguments:

	plugin

Example:

{% load cms_tags l10n %}

{% block section_content %}
<div class="contentgroup-container">
 <nav class="contentgroup">
 <div class="inner">
 <ul class="contentgroup-items">{% for child in children %}
 {% if child.enabled %}
 <li class="item{{ forloop.counter0|unlocalize }}">
 {% render_plugin_block child %}
 {{ child.title|safe }}
 {% endrender_plugin_block %}
 {% endif %}
 {% endfor %}

 </div>
 </nav>

 <div class="contentgroup-items">{% for child in children %}
 <div class="contentgroup-item item{{ child.id|unlocalize }}{% if not forloop.counter0 %} active{% endif %}">
 {% render_plugin child %}
 </div>{% endfor %}
 </div>
</div>
{% endblock %}

New in version 3.0.

render_model

render_model is the way to add frontend editing to any Django model.
It both renders the content of the given attribute of the model instance and
makes it clickable to edit the related model.

If the toolbar is not enabled, the value of the attribute is rendered in the
template without further action.

If the toolbar is enabled, click to call frontend editing code is added.

By using this template tag you can show and edit page titles as well as fields in
standard django models, see How to enable frontend editing for Page and Django models for examples and
further documentation.

Example:

<h1>{% render_model my_model "title" "title,abstract" %}</h1>

This will render to:

<!-- The content of the H1 is the active area that triggers the frontend editor -->
<h1><cms-plugin class="cms-plugin cms-plugin-myapp-mymodel-title-1">{{ my_model.title }}</cms-plugin></h1>

Arguments:

	instance: instance of your model in the template

	attribute: the name of the attribute you want to show in the template; it
can be a context variable name; it’s possible to target field, property or
callable for the specified model; when used on a page object this argument
accepts the special titles value which will show the page title
field, while allowing editing title, menu title and page title
fields in the same form;

	edit_fields (optional): a comma separated list of fields editable in the
popup editor; when template tag is used on a page object this argument
accepts the special changelist value which allows editing the pages
changelist (items list);

	language (optional): the admin language tab to be linked. Useful only for
django-hvad [https://github.com/kristianoellegaard/django-hvad] enabled models.

	filters (optional): a string containing chained filters to apply to the
output content; works the same way as filter [https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-filter] template tag;

	view_url (optional): the name of a URL that will be reversed using the
instance pk and the language as arguments;

	view_method (optional): a method name that will return a URL to a view;
the method must accept request as first parameter.

	varname (optional): the template tag output can be saved as a context
variable for later use.

Note

By default this template tag escapes the content of the rendered
model attribute. This helps prevent a range of security vulnerabilities
stemming from HTML, JavaScript, and CSS Code Injection.

To change this behaviour, the project administrator should carefully review
each use of this template tag and ensure that all content which is rendered
to a page using this template tag is cleansed of any potentially harmful
HTML markup, CSS styles or JavaScript.

Once the administrator is satisfied that the content is
clean, he or she can add the “safe” filter parameter to the template tag
if the content should be rendered without escaping.

Warning

render_model is only partially compatible with django-hvad: using
it with hvad-translated fields
(say {% render_model object ‘translated_field’ %} return error if the
hvad-enabled object does not exists in the current language.
As a workaround render_model_icon can be used instead.

New in version 3.0.

render_model_block

render_model_block is the block-level equivalent of render_model:

{% render_model_block my_model %}
 <h1>{{ instance.title }}</h1>
 <div class="body">
 {{ instance.date|date:"d F Y" }}
 {{ instance.text }}
 </div>
{% endrender_model_block %}

This will render to:

<!-- This whole block is the active area that triggers the frontend editor -->
<template class="cms-plugin cms-plugin-start cms-plugin-myapp-mymodel-1"></template>
 <h1>{{ my_model.title }}</h1>
 <div class="body">
 {{ my_model.date|date:"d F Y" }}
 {{ my_model.text }}
 </div>
<template class="cms-plugin cms-plugin-end cms-plugin-myapp-mymodel-1"></template>

In the block the my_model is aliased as instance and every attribute and
method is available; also template tags and filters are available in the block.

Warning

If the {% render_model_block %} contains template tags or template code that rely on or
manipulate context data that the {% render_model_block %} also makes use of, you may
experience some unexpected effects. Unless you are sure that such conflicts will not occur
it is advised to keep the code within a {% render_model_block %} as simple and short as
possible.

Arguments:

	instance: instance of your model in the template

	edit_fields (optional): a comma separated list of fields editable in the
popup editor; when template tag is used on a page object this argument
accepts the special changelist value which allows editing the pages
changelist (items list);

	language (optional): the admin language tab to be linked. Useful only for
django-hvad [https://github.com/kristianoellegaard/django-hvad] enabled models.

	view_url (optional): the name of a URL that will be reversed using the
instance pk and the language as arguments;

	view_method (optional): a method name that will return a URL to a view;
the method must accept request as first parameter.

	varname (optional): the template tag output can be saved as a context
variable for later use.

Note

By default this template tag escapes the content of the rendered
model attribute. This helps prevent a range of security vulnerabilities
stemming from HTML, JavaScript, and CSS Code Injection.

To change this behaviour, the project administrator should carefully review
each use of this template tag and ensure that all content which is rendered
to a page using this template tag is cleansed of any potentially harmful
HTML markup, CSS styles or JavaScript.

Once the administrator is satisfied that the content is
clean, he or she can add the “safe” filter parameter to the template tag
if the content should be rendered without escaping.

New in version 3.0.

render_model_icon

render_model_icon is intended for use where the relevant object attribute
is not available for user interaction (for example, already has a link on it,
think of a title in a list of items and the titles are linked to the object
detail view); when in edit mode, it renders an edit icon, which will trigger
the editing change form for the provided fields.

<h3>{{ my_model.title }} {% render_model_icon my_model %}</h3>

It will render to something like:

<h3>
 {{ my_model.title }}
 <template class="cms-plugin cms-plugin-start cms-plugin-myapp-mymodel-1 cms-render-model-icon"></template>
 <!-- The image below is the active area that triggers the frontend editor -->

 <template class="cms-plugin cms-plugin-end cms-plugin-myapp-mymodel-1 cms-render-model-icon"></template>
</h3>

Note

Icon and position can be customised via CSS by setting a background
to the .cms-render-model-icon img selector.

Arguments:

	instance: instance of your model in the template

	edit_fields (optional): a comma separated list of fields editable in the
popup editor; when template tag is used on a page object this argument
accepts the special changelist value which allows editing the pages
changelist (items list);

	language (optional): the admin language tab to be linked. Useful only for
django-hvad [https://github.com/kristianoellegaard/django-hvad] enabled models.

	view_url (optional): the name of a URL that will be reversed using the
instance pk and the language as arguments;

	view_method (optional): a method name that will return a URL to a view;
the method must accept request as first parameter.

	varname (optional): the template tag output can be saved as a context
variable for later use.

Note

By default this template tag escapes the content of the rendered
model attribute. This helps prevent a range of security vulnerabilities
stemming from HTML, JavaScript, and CSS Code Injection.

To change this behaviour, the project administrator should carefully review
each use of this template tag and ensure that all content which is rendered
to a page using this template tag is cleansed of any potentially harmful
HTML markup, CSS styles or JavaScript.

Once the administrator is satisfied that the content is
clean, he or she can add the “safe” filter parameter to the template tag
if the content should be rendered without escaping.

New in version 3.0.

render_model_add

render_model_add is similar to render_model_icon but it will enable to
create instances of the given instance class; when in edit mode, it renders an
add icon, which will trigger the editing add form for the provided model.

<h3>{{ my_model.title }} {% render_model_add my_model %}</h3>

It will render to something like:

<h3>
 {{ my_model.title }}
 <template class="cms-plugin cms-plugin-start cms-plugin-myapp-mymodel-1 cms-render-model-add"></template>
 <!-- The image below is the active area that triggers the frontend editor -->

 <template class="cms-plugin cms-plugin-end cms-plugin-myapp-mymodel-1 cms-render-model-add"></template>
</h3>

Note

Icon and position can be customised via CSS by setting a background
to the .cms-render-model-add img selector.

Arguments:

	instance: instance of your model, or model class to be added

	edit_fields (optional): a comma separated list of fields editable in the
popup editor;

	language (optional): the admin language tab to be linked. Useful only for
django-hvad [https://github.com/kristianoellegaard/django-hvad] enabled models.

	view_url (optional): the name of a url that will be reversed using the
instance pk and the language as arguments;

	view_method (optional): a method name that will return a URL to a view;
the method must accept request as first parameter.

	varname (optional): the template tag output can be saved as a context
variable for later use.

Note

By default this template tag escapes the content of the rendered
model attribute. This helps prevent a range of security vulnerabilities
stemming from HTML, JavaScript, and CSS Code Injection.

To change this behaviour, the project administrator should carefully review
each use of this template tag and ensure that all content which is rendered
to a page using this template tag is cleansed of any potentially harmful
HTML markup, CSS styles or JavaScript.

Once the administrator is satisfied that the content is
clean, he or she can add the “safe” filter parameter to the template tag
if the content should be rendered without escaping.

Warning

If passing a class, instead of an instance, and using view_method,
please bear in mind that the method will be called over an empty instance
of the class, so attributes are all empty, and the instance does not
exists on the database.

New in version 3.1.

render_model_add_block

render_model_add_block is similar to render_model_add but instead of
emitting an icon that is linked to the add model form in a modal dialog, it
wraps arbitrary markup with the same “link”. This allows the developer to create
front-end editing experiences better suited to the project.

All arguments are identical to render_model_add, but the template tag is used
in two parts to wrap the markup that should be wrapped.

{% render_model_add_block my_model_instance %}<div>New Object</div>{% endrender_model_add_block %}

It will render to something like:

<template class="cms-plugin cms-plugin-start cms-plugin-myapp-mymodel-1 cms-render-model-add"></template>
 <div>New Object</div>
<template class="cms-plugin cms-plugin-end cms-plugin-myapp-mymodel-1 cms-render-model-add"></template>

Warning

You must pass an instance of your model as instance parameter. The
instance passed could be an existing models instance, or one newly created
in your view/plugin. It does not even have to be saved, it is introspected
by the template tag to determine the desired model class.

Arguments:

	instance: instance of your model in the template

	edit_fields (optional): a comma separated list of fields editable in the
popup editor;

	language (optional): the admin language tab to be linked. Useful only for
django-hvad [https://github.com/kristianoellegaard/django-hvad] enabled models.

	view_url (optional): the name of a URL that will be reversed using the
instance pk and the language as arguments;

	view_method (optional): a method name that will return a URL to a view;
the method must accept request as first parameter.

	varname (optional): the template tag output can be saved as a context
variable for later use.

page_language_url

Returns the URL of the current page in an other language:

{% page_language_url "de" %}
{% page_language_url "fr" %}
{% page_language_url "en" %}

If the current URL has no CMS Page and is handled by a navigation extender and
the URL changes based on the language, you will need to set a language_changer
function with the set_language_changer function in menus.utils.

For more information, see Internationalisation.

language_chooser

The language_chooser template tag will display a language chooser for the
current page. You can modify the template in menu/language_chooser.html or
provide your own template if necessary.

Example:

{% language_chooser %}

or with custom template:

{% language_chooser "myapp/language_chooser.html" %}

The language_chooser has three different modes in which it will display the
languages you can choose from: “raw” (default), “native”, “current” and “short”.
It can be passed as the last argument to the language_chooser tag as a string.
In “raw” mode, the language will be displayed like its verbose name in the
settings. In “native” mode the languages are displayed in their actual language
(eg. German will be displayed “Deutsch”, Japanese as “日本語” etc). In “current”
mode the languages are translated into the current language the user is seeing
the site in (eg. if the site is displayed in German, Japanese will be displayed
as “Japanisch”). “Short” mode takes the language code (eg. “en”) to display.

If the current URL has no CMS Page and is handled by a navigation extender and
the URL changes based on the language, you will need to set a language_changer
function with the set_language_changer function in menus.utils.

For more information, see Internationalisation.

Toolbar template tags

The cms_toolbar template tag is included in the cms_tags library and will add the required
CSS and javascript to the sekizai blocks in the base template. The template tag must be placed
before any {% placeholder %} occurrences within your HTML.

Important

{% cms_toolbar %} will only work correctly inside the template’s <body>.

Example:

<body>
{% cms_toolbar %}
{% placeholder "home" %}
...

Note

Be aware that you cannot surround the cms_toolbar tag with block tags.
The toolbar tag will render everything below it to collect all plugins and placeholders, before
it renders itself. Block tags interfere with this.

Titles

	
class cms.models.Title

	Titles support pages by providing a storage mechanism, amongst other things, for language-specific
properties of cms.models.Page, such as its title, slug, meta description and so on.

Each Title has a foreign key to cms.models.Page; each cms.models.Page may have several
Titles.

The Toolbar

The toolbar can contain various items, some of which in turn can contain other items. These items
are represented by the classes listed in cms.toolbar.items, and created using the various
APIs described below.

Do not instantiate these classes manually

These classes are described here for reference purposes only. It is strongly recommended
that you do not create instances yourself, but use the methods listed here.

Classes and methods

Common parameters (key, verbose_name, position,
on_close, disabled, active) and options are described at the end of this document.

	
class cms.toolbar.toolbar.CMSToolbar

	The toolbar is an instance of the cms.toolbar.toolbar.CMSToolbar class. This should not be
confused with the CMSToolbar, the base class for toolbar modifier
classes in other applications, that add items to and otherwise manipulates the toolbar.

It is strongly recommended that you only interact with the toolbar in your own code via:

	the APIs documented here

	toolbar modifier classes based on cms.toolbar_base.CMSToolbar

You will notice that some of the methods documented here do not include some arguments present
in the code. This is the public reference documentation, while the code may be subject to
change without warning.

Several of the following methods to create and add objects other objects to the toolbar are
inherited from ToolbarAPIMixin.

	
add_link_item()

	See ToolbarAPIMixin.add_link_item

	
add_sideframe_item()

	See ToolbarAPIMixin.add_sideframe_item

	
add_modal_item()

	See ToolbarAPIMixin.add_modal_item

	
add_ajax_item()

	See ToolbarAPIMixin.add_ajax_item

	
add_item()

	See ToolbarAPIMixin.add_item

	
get_or_create_menu(key, verbose_name, position=None, disabled=False)

	If a Menu with key already exists, this method will
return that menu. Otherwise it will create a menu with the key identifier.

	
get_menu(key)

	Will return the Menu identified with key, or None.

	
add_button(name, url, active=False, disabled=False, position=None)

	Adds a Button to the toolbar.

	
add_sideframe_button(name, url, active=False, disabled=False, on_close=None)

	Adds a SideframeButton to the toolbar.

	
add_modal_button(name, url, active=False, disabled=False, on_close=REFRESH_PAGE)

	Adds a ModalButton to the toolbar.

	
add_button_list(position=None)

	Adds an (empty) ButtonList to the toolbar and returns it.

	
edit_mode_active()

	Property; returns True if the content or structure board editing modes are active.

	
watch_models()

	Property; a list of models that the toolbar watches for URL changes,
so it can redirect to the new URL on saving.

	
class cms.toolbar.items.Menu

	Provides a menu in the toolbar. Use a CMSToolbar.get_or_create_menu method to create a Menu instance. Can
be added to CMSToolbar.

Inherits from SubMenu below, so shares all of its methods, but in addition has:

	
get_or_create_menu(key, verbose_name, disabled=False, position=None)

	Adds a new sub-menu, at position, and returns a SubMenu.

	
class cms.toolbar.items.SubMenu

	A child of a Menu. Use a Menu.get_or_create_menu method to create a SubMenu instance. Can be
added to Menu.

Several of the following methods to create and add objects are inherited from
ToolbarAPIMixin.

	
add_link_item()

	See ToolbarAPIMixin.add_link_item

	
add_sideframe_item()

	See ToolbarAPIMixin.add_sideframe_item

	
add_modal_item()

	See ToolbarAPIMixin.add_modal_item

	
add_ajax_item()

	See ToolbarAPIMixin.add_ajax_item

	
add_item()

	See ToolbarAPIMixin.add_item

	
get_item_count()

	Returns the number of items in the menu.

Other methods:

	
add_break(identifier=None, position=None)

	Adds a visual break in the menu, at position, and returns it. identifier may
be used to make this item searchable.

	
class cms.toolbar.items.LinkItem

	Sends a GET request. Use an add_link_item method to create a
LinkItem instance. Can be added to CMSToolbar,
Menu, SubMenu.

	
class cms.toolbar.items.SideframeItem

	Sends a GET request; loads response in a sideframe. Use an
add_sideframe_item method to create a SideframeItem instance. Can
be added to CMSToolbar, Menu,
SubMenu.

	
class cms.toolbar.items.ModalItem

	Sends a GET request; loads response in a modal window. Use an
add_modal_item method to create a ModalItem instance. Can be
added to CMSToolbar, Menu,
SubMenu.

	
class cms.toolbar.items.AjaxItem

	Sends a POST request. Use an add_ajax_item method to create a
AjaxItem instance. Can be added to CMSToolbar,
Menu, SubMenu.

	
class cms.toolbar.items.Break

	A visual break in a menu. Use an add_break method to create
a Break instance. Can be added to Menu,
SubMenu.

	
class cms.toolbar.items.ButtonList

	A visually-connected list of one or more buttons. Use an
add_button_list() method to create a Button instance.
Can be added to CMSToolbar.

	
add_button(name, url, active=False, disabled=False)

	Adds a Button to the list of buttons and returns it.

	
add_sideframe_button(name, url, active=False, disabled=False, on_close=None)

	Adds a ModalButton to the toolbar.

	
add_modal_button(name, url, active=False, disabled=False, on_close=REFRESH_PAGE)

	Adds an (empty) ButtonList to the toolbar and returns it.

	
get_buttons()

	

	
class cms.toolbar.items.Button

	Sends a GET request. Use a CMSToolbar.add_button or ButtonList.add_button() method to create
a Button instance. Can be added to CMSToolbar,
ButtonList.

	
class cms.toolbar.items.SideframeButton

	Sends a GET request. Use a CMSToolbar.add_sideframe_button or
ButtonList.add_sideframe_button() method to create a SideframeButton instance. Can be
added to CMSToolbar, ButtonList.

	
class cms.toolbar.items.ModalButton

	Sends a GET request. Use a CMSToolbar.add_modal_button or ButtonList.add_modal_button()
method to create a ModalButton instance. Can be added to
CMSToolbar, ButtonList.

	
class cms.toolbar.items.BaseItem

	All toolbar items inherit from BaseItem. If you need to create a custom toolbar item,
sub-class BaseItem.

	
template

	Must be set by sub-classes and point to a Django template

	
render()

	Renders the item and returns it as a string. By default calls
get_context() and renders template with the context
returned.

	
get_context()

	Returns the context (as dictionary) for this item.

	
class cms.toolbar.items.ToolbarAPIMixin

	Provides APIs used by CMSToolbar and Menu.

	
add_link_item(name, url, active=False, disabled=False, position=None)

	Adds a LinkItem that opens url, and returns it.

	
add_sideframe_item(name, url, active=False, disabled=False, on_close=None, position=None)

	Adds a SideframeItem that opens url in the sideframe and returns it.

	
add_modal_item(name, url, active=False, disabled=False, on_close=REFRESH_PAGE, position=None)

	Similar to add_sideframe_item(), but adds a ModalItem that opens opens the
url in a modal dialog instead of the sideframe, and returns it.

	
add_ajax_item(name, action, active=False, disabled=False, data=None, question=None, position=None)

	Adds AjaxItem that sends a POST request to action with data, and returns
it. data should be None or a dictionary. The CSRF token will automatically be added
to the item.

If a string is provided for question, it will be presented to the user to allow
confirmation before the request is sent.

	
add_item(item, position=None)

	Adds an item (which must be a sub-class of BaseItem), and
returns it. This is a low-level API, and you should always use one of the built-in
object-specific methods to add items in preference if possible, using this method only
for custom item classes.

	
find_items(item_type)

	Returns a list of ItemSearchResult objects matching all items of item_type
(e.g. LinkItem).

	
find_first(item_type, **attributes)

	Returns the first ItemSearchResult that matches the search, or None. The
search strategy is the same as in find_items(). The return value of this method is
safe to use as the position argument of the various APIs to add items.

	
class cms.toolbar.items.ItemSearchResult

	Returned by the find APIs in ToolbarAPIMixin.

An ItemSearchResult will have two useful attributes:

	
item

	The item found.

	
index

	The index of the item (its position amongst the other items).

The ItemSearchResult itself can be cast to an integer, and supports addition and
subtraction of numbers. See the position parameter for more details, and
Control the position of items in the toolbar for examples.

	
class cms.toolbar_base.CMSToolbar.CMSToolbar

	The base class for toolbar modifiers.

See How to extend the Toolbar for more information.

Parameters

The methods described below for creating/modifying toolbar items share a number of common
parameters:

	
key

	a unique identifier (typically a string)

	
verbose_name

	the displayed text in the item

	
position

	The position index of the new item in the list of items. May be:

	None - appends the item to the list

	an integer - inserts the item at that index in the list

	an object already in the list - Inserts the item into the list immediately before the object;
must be a sub-class of BaseItem, and must exist in the list

	an ItemSearchResult - inserts the item into the list immediately
before the ItemSearchResult. ItemSearchResult may be treated as an integer.

	
on_close:

	Determines what happens after closing a frame (sideframe or modal) that has been opened by a
menu item. May be:

	None - does nothing when the sideframe closes

	REFRESH_PAGE - refreshes the page when the frame closes

	a URL - opens the URLS when the frame is closed.

	
disabled

	Greys out the item and renders it inoperable.

	
active

	Applies to buttons only; renders the button it its ‘activated’ state.

django CMS constants used in toolbars

	
cms.constants.REFRESH_PAGE

	Supplied to on_close arguments to refresh the current page when the frame is closed, for
example:

from cms.constants import REFRESH_PAGE

self.toolbar.add_modal_item(
 'Modal item',
 url=modal_url,
 on_close=REFRESH_PAGE
)

	
cms.cms_toolbars.ADMIN_MENU_IDENTIFIER

	The Site menu (that usually shows the project’s domain name, example.com by default).
ADMIN_MENU_IDENTIFIER allows you to get hold of this object easily. See
Finding existing toolbar items for an example of usage.

New in version 3.2.

Content creation wizards

See the How-to section on wizards for an introduction to
creating wizards.

Wizard classes are sub-classes of cms.wizards.wizard_base.Wizard.

They need to be registered with the cms.wizards.wizard_pool.wizard_pool:

wizard_pool.register(my_app_wizard)

Finally, a wizard needs to be instantiated, for example:

my_app_wizard = MyAppWizard(
 title="New MyApp",
 weight=200,
 form=MyAppWizardForm,
 description="Create a new MyApp instance",
)

When instantiating a Wizard object, use the keywords:

	title

	The title of the wizard. This will appear in a large font size on
the wizard “menu”

	weight

	The “weight” of the wizard when determining the sort-order.

	form

	The form to use for this wizard. This is mandatory, but can be
sub-classed from django.forms.form or django.forms.ModelForm.

	model

	If a Form is used above, this keyword argument must be supplied and
should contain the model class. This is used to determine the unique
wizard “signature” amongst other things.

	template_name

	An optional template can be supplied.

	description

	The description is optional, but if it is not supplied, the
CMS will create one from the pattern:
“Create a new «model.verbose_name» instance.”

	edit_mode_on_success

	If set, the CMS will switch the user to edit-mode by
adding an edit param to the query-string of the
URL returned by get_success_url. This is True
by default.

Base Wizard

All wizard classes should inherit from cms.wizards.wizard_base.Wizard. This
class implements a number of methods that may be overridden as required.

Base Wizard methods

get_description

Simply returns the description property assigned during instantiation or one
derived from the model if description is not provided during instantiation.
Override this method if this needs to be determined programmatically.

get_title

Simply returns the title property assigned during instantiation. Override
this method if this needs to be determined programmatically.

get_success_url

Once the wizard has completed, the user will be redirected to the URL of the new
object that was created. By default, this is done by return the result of
calling the get_absolute_url method on the object. This may then be modified
to force the user into edit mode if the wizard property edit_mode_on_success
is True.

In some cases, the created content will not implement get_absolute_url or
that redirecting the user is undesirable. In these cases, simply override this
method. If get_success_url returns None, the CMS will just redirect to
the current page after the object is created.

This method is called by the CMS with the parameter:

	obj

	The created object

	kwargs

	Arbitrary keyword arguments

get_weight

Simply returns the weight property assigned during instantiation. Override
this method if this needs to be determined programmatically.

user_has_add_permission

This should return a boolean reflecting whether the user has permission to
create the underlying content for the wizard.

This method is called by the CMS with these parameters:

	user

	The current user

	page

	The current CMS page the user is viewing when invoking the wizard

wizard_pool

wizard_pool includes a read-only property discovered which returns the
Boolean True if wizard-discovery has already occurred and False
otherwise.

Wizard pool methods

is_registered

Sometimes, it may be necessary to check to see if a specific wizard has been
registered. To do this, simply call:

value = wizard_pool.is_registered(«wizard»)

register

You may notice from the example above that the last line in the sample code is:

wizard_pool.register(my_app_wizard)

This sort of thing should look very familiar, as a similar approach is used for
cms_apps, template tags and even Django’s admin.

Calling the wizard pool’s register method will register the provided wizard
into the pool, unless there is already a wizard of the same module and class
name. In this case, the register method will raise a
cms.wizards.wizard_pool.AlreadyRegisteredException.

unregister

It may be useful to unregister wizards that have already been registered with
the pool. To do this, simply call:

value = wizard_pool.unregister(«wizard»)

The value returned will be a Boolean: True if a wizard was successfully
unregistered or False otherwise.

get_entry

If you would like to get a reference to a specific wizard in the pool, just call
get_entry() as follows:

wizard = wizard_pool.get_entry(my_app_wizard)

get_entries

get_entries() is useful if it is required to have a list of all registered
wizards. Typically, this is used to iterate over them all. Note that they will
be returned in the order of their weight: smallest numbers for weight are
returned first.:

for wizard in wizard_pool.get_entries():
 # do something with a wizard...

Key topics

This section explains and analyses some key concepts in django CMS. It’s less
concerned with explaining how to do things than with helping you understand
how it works.

	Plugins

	Application hooks (“apphooks”)

	Publishing

	Serving content in multiple languages

	Internationalisation

	Permissions

	Using touch-screen devices with django CMS

	How the menu system works

	Some commonly-used plugins

	Search and django CMS

	Frontend integration

Plugins

See also

	Plugins how-to guide

CMS Plugins are reusable content publishers that can be inserted into django
CMS pages (or indeed into any content that uses django CMS placeholders). They
enable the publishing of information automatically, without further
intervention.

This means that your published web content, whatever it is, is kept
up-to-date at all times.

It’s like magic, but quicker.

Unless you’re lucky enough to discover that your needs can be met by the
built-in plugins, or by the many available third-party plugins, you’ll have to
write your own custom CMS Plugin.

Why would you need to write a plugin?

A plugin is the most convenient way to integrate content from another Django
application into a django CMS page.

For example, suppose you’re developing a site for a record company in django
CMS. You might like to have a “Latest releases” box on your site’s home page.

Of course, you could every so often edit that page and update the information.
However, a sensible record company will manage its catalogue in Django too,
which means Django already knows what this week’s new releases are.

This is an excellent opportunity to make use of that information to make your
life easier - all you need to do is create a django CMS plugin that you can
insert into your home page, and leave it to do the work of publishing information
about the latest releases for you.

Plugins are reusable. Perhaps your record company is producing a series of
reissues of seminal Swiss punk records; on your site’s page about the series,
you could insert the same plugin, configured a little differently, that will
publish information about recent new releases in that series.

Components of a plugin

A django CMS plugin is fundamentally composed of three components, that correspond to Django’s
familiar Model-View-Template scheme:

	What

	Function

	Subclass of

	model (if required)

	plugin instance configuration

	CMSPlugin

	view

	display logic

	CMSPluginBase

	template

	rendering

	–

CMSPluginBase

The plugin model, the sub-class of cms.models.pluginmodel.CMSPlugin,
is optional.

You could have a plugin that doesn’t need to be configured, because it only
ever does one thing.

For example, you could have a plugin that only publishes information
about the top-selling record of the past seven days. Obviously, this wouldn’t
be very flexible - you wouldn’t be able to use the same plugin for the
best-selling release of the last month instead.

Usually, you find that it is useful to be able to configure your plugin, and this
will require a model.

CMSPlugin

cms.plugin_base.CMSPluginBase is actually a sub-class of
django.contrib.admin.ModelAdmin [https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#django.contrib.admin.ModelAdmin].

Because CMSPluginBase sub-classes ModelAdmin several important
ModelAdmin options are also available to CMS plugin developers. These
options are often used:

	exclude

	fields

	fieldsets

	form

	formfield_overrides

	inlines

	radio_fields

	raw_id_fields

	readonly_fields

Please note, however, that not all ModelAdmin options are effective in a CMS
plugin. In particular, any options that are used exclusively by the
ModelAdmin’s changelist will have no effect. These and other notable options
that are ignored by the CMS are:

	actions

	actions_on_top

	actions_on_bottom

	actions_selection_counter

	date_hierarchy

	list_display

	list_display_links

	list_editable

	list_filter

	list_max_show_all

	list_per_page

	ordering

	paginator

	prepopulated_fields

	preserve_fields

	save_as

	save_on_top

	search_fields

	show_full_result_count

	view_on_site

Application hooks (“apphooks”)

An Application Hook, usually simply referred to as an apphook, is a way of attaching
the functionality of some other application to a django CMS page. It’s a convenient way
of integrating other applications into a django CMS site.

For example, suppose you have an application that maintains and publishes information
about Olympic records. You could add this application to your site’s urls.py (before
the django CMS URLs pattern), so that users will find it at /records.

However, although it would thus be integrated into your project, it would not be
fully integrated into django CMS, for example:

	django CMS would not be aware of it, and - for example - would allow your users to create a CMS page with the same
/records slug, that could never be reached.

	The application’s pages won’t automatically appear in your site’s menus.

	The application’s pages won’t be able to take advantage of the CMS’s publishing
workflow, permissions or other functionality.

Apphooks offer a more complete way of integrating other applications, by attaching them
to a CMS page. In this case, the attached application takes over the page and its URL
(and all the URLs below it, such as /records/1984).

The application can be served at a URL defined by the content managers, and easily moved
around in the site structure.

The Advanced settings of a CMS page provides an Application field. Adding an apphook class to the
application will allow it to be selected in this field.

Multiple apphooks per application

It’s possible for an application to be added multiple times, to different pages. See Attaching an application multiple times for more.

Also possible to provide multiple apphook configurations:

Apphook configurations

You may require the same application to behave differently in different locations on your site. For example, the Olympic
Records application may be required to publish athletics results at one location, but cycling results at another, and so on.

An apphook configuration class allows the site editors to create multiple configuration
instances that specify the behaviour. The kind of configuration available is presented in an admin form, and determined by the
application developer.

Important

It’s important to understand that an apphook (and therefore also an apphook configuration)
serves no function until it is attached to a page - and until the page is published, the
application will be unable to fulfil any publishing function.

Also note that the apphook “swallows” all URLs below that of the page, handing them over to the
attached application. If you have any child pages of the apphooked page, django CMS will not be
able to serve them reliably.

Publishing

Each published page in the CMS exists in as two cms.Page instances:
public and draft.

Until it’s published, only the draft version exists.

The staff users generally use the draft version to edit content and change
settings for the pages. None of these changes are visible on the public site
until the page is published.

When a page is published, the page must also have all parent pages published in
order to become available on the web site. If a parent page is not yet
published, the page goes into a “pending” state. It will be automatically
published once the parent page is published.

This enables you to edit an entire subsection of the website, publishing it
only once all the work is complete.

Code and Pages

When handling cms.Page in code, you’ll generally want to deal with draft
instances.

Draft pages are the ones you interact with in the admin, and in draft mode in
the CMS frontend. When a draft page is published, a public version is created
and all titles, placeholders and plugins are copied to the public version.

The cms.Page model has a publisher_is_draft field, that’s True for
draft versions. Use a filter:

``publisher_is_draft=True``

to get hold of these draft Page instances.

Serving content in multiple languages

Basic concepts

django CMS has a sophisticated multilingual capability. It is able to serve
content in multiple languages, with fallbacks into other languages where
translations have not been provided. It also has the facility for the user to set the
preferred language and so on.

How django CMS determines the user’s preferred language

django CMS determines the user’s language the same way Django does it.

	the language code prefix in the URL

	the language set in the session

	the language in the language cookie

	the language that the browser says its user prefers

It uses the django built in capabilities for this.

By default no session and cookie are set. If you want to enable this use the
cms.middleware.language.LanguageCookieMiddleware to set the cookie on every request.

How django CMS determines what language to serve

Once it has identified a user’s language, it will try to accommodate it using the languages set in CMS_LANGUAGES.

If fallbacks is set, and if the user’s preferred
language is not available for that content, it will use the fallbacks
specified for the language in CMS_LANGUAGES.

What django CMS shows in your menus

If hide_untranslated is True (the default) then pages that
aren’t translated into the desired language will not appear in the menu.

Internationalisation

django CMS excels in its multilingual support, and can be configured to handle a vast range of different requirements. Its
behaviour is flexible and can be controlled at a granular level in CMS_LANGUAGES. Other Internationalisation and localisation (I18N and L10N) settings offer further control.

See How to serve multiple languages on how to set up a multilingual django CMS project.

URLs

Multilingual URLs require the use of i18n_patterns() [https://docs.djangoproject.com/en/2.2/topics/i18n/translation/#django.conf.urls.i18n.i18n_patterns]. For more information about this see
the official Django documentation [https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns]
on the subject. Multilingual URLs describes what you need to do in a django CMS project.

How django CMS determines which language to serve

django CMS uses a number of standard Django mechanisms to choose the language for the user, in the following order of
preference:

	language code in the URL - for example, http://example.com/de (when multilingual URLs are enabled)

	language stored in the browsing session

	language stored in a cookie from a previous session

	language requested by the browser in the Accept-Language header

	the default LANGUAGE_CODE in the site’s settings

More in-depth documentation about this is available at
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference

Permissions

The django CMS permissions system is flexible, granular and multi-layered.

Permission modes

Permissions operate in two different modes, depending on the CMS_PERMISSION setting.

	Simple permissions mode (CMS_PERMISSION = False): only the standard Django Users and Groups
permissions will apply. This is the default.

	Page permissions mode (CMS_PERMISSION = True): as well as standard Django permissions, django
CMS provides row-level permissions on pages, allowing you to control the access of users to
different sections of a site, and sites within a multi-site project.

Key user permissions

You can find the permissions you can set for a user or groups in the Django admin, in the
Authentication and Authorization section. These apply equally in Simple permissions mode and
Page permissions mode.

Filtering by cms will show the ones that belong to the CMS application. Permissions that a CMS
editor will need are likely to include:

	cms | cms plugin

	cms | page

	cms | placeholder

	cms | placeholder reference

	cms | static placeholder

	cms | placeholder reference

	cms | title

Most of these offer the usual add/change/delete options, though there are some exceptions, such as
cms | placeholder | Can use Structure mode.

See Use permissions on Groups, not on Users below on applying permissions to groups rather than users.

Permissions in Page permissions mode

In Page permissions mode, you also need to give users permission to the right pages and sub-sites.

Global and per-page permissions

This can be done in two ways, globally or per-page.

Global page permissions apply to all pages (or all pages on a sub-site in a multi-site
project). Global page permissions are managed in the admin at django CMS > Pages global
permissions.

Per-page permissions apply to a specific page and/or its children and/or its descendants.
Per-page permissions are managed via the toolbar (Page > Permissions) when on the page in
question, in edit mode.

Your users (unless they are Django superusers) will need at least one of global page permissions or
per-page permissions granted to them in order to be able to edit any pages at all.

They will also need appropriate user permissions, otherwise they
will have no edit rights to pages.

Page permission options

Both global page permissions and per-page permissions can be assigned to users or groups of users.
They include:

	Can add

	Can edit

	Can delete

	Can publish

	Can change advanced settings

	Can change permissions

	Can move

Even though a user may have Can edit permissions on a page, that doesn’t give them
permissions to add or change plugins within that page. In order to be able to
add/change/delete plugins on any page, you will need to go through the standard Django
permissions to provide users with the actions they can perform, for
example:

	cms | page | Can publish page to publish it

	cms | cms plugins | Can edit cms plugin to edit plugins on the page

Per-page permissions

Per-page permissions are controlled by selecting Permissions from the Page menu in the toolbar
when on the page (this options is only available when CMS_PERMISSION mode is on).

Login required determines whether anonymous visitors will be able to see the page at all.

Menu visibility determines who’ll be able to see the page in navigation menus - everyone, or logged in or anonymous users
only.

View restrictions determine which groups and users will be able to see the page when it is
published. Adding a view restriction will allow you to set this. Note that this doesn’t apply any
restrictions to users who are also editors with appropriate permissions.

Page permissions determine what editors can do to a page (or hierarchy of pages). They are
described above in Page permission options.

New admin models

When CMS_PERMISSION is enabled, as well as Pages global permissions you will find two new models available in the CMS admin:

	User groups (page)

	Users (page)

You will find that the latter two simply reflect the Django Groups and User permissions that
already exist in the system, and can be ignored.

Permission strategies

For a simple site with only a few users you may not need to be concerned about this, but with
thousands of pages belonging to different departments and users with greatly differing levels of
authority and expertise, it is important to understand who is able to do what on your site.

Use permissions on Groups, not on Users

Avoid applying permissions to individual users unless strictly necessary. It’s far better to apply
them to Groups, and add Users to Groups. Otherwise, you risk ending up with large numbers of Users
with unknown or inappropriate permissions.

Use Groups to build up permissions

Different users may require different subsets of permissions. For example, you could define a
Basic content editor group, who can edit and publish pages and content, but who don’t have
permission to create new ones; that permission would be granted to a Lead content editor Group.
Another Group could have permissions to use the weblog.

Then, when managing a user, place the user into the appropriate groups.

Two dimensions of permissions

You can divide your users’ permissions across two dimensions:

	what sort of things this user or group of user should be allowed to do (e.g. publish pages, add
new plugins, create new users, etc)

	which sections of the site the user should be allowed to do them on (the home page, a limited set
of departmental pages, etc)

Groups are very useful for managing this. For example, you can create a Europe group for editors
who are allowed to edit the Europe page hierarchy or sub-site. The group can then be added to a
global or per-page permission.

Using touch-screen devices with django CMS

Important

These notes about touch interface support apply only to the django CMS admin and editing
interfaces. The visitor-facing published site is wholly independent of this, and the
responsibility of the site developer.

General

django CMS has made extensive use of double-click functionality, which lacks an exact equivalent in
touch-screen interfaces. The touch interface will interpret taps and touches in an intelligent way.

Depending on the context, a tap will be interpreted to mean open for editing (that is, the
equivalent of a double-click), or to mean select (the equivalent of a single click), according to
what makes sense in that context.

Similarly, in some contexts similar interactions may drag objects, or may scroll them,
depending on what makes most sense. Sometimes, the two behaviours will be present in the same view,
for example in the page list, where certain areas are draggable (for page re-ordering) while other
parts of the page can be used for scrolling.

In general, the chosen behaviour is reasonable for a particular object, context or portion of the
screen, and in practice is quicker and easier to apprehend simply by using it than it is to explain.

Pop-up help text will refer to clicking or tapping depending on the device being used.

Be aware that some hover-related user hints are simply not available to touch interface users. For
example, the overlay (formerly, the sideframe) can be adjusted for width by dragging its edge,
but this is not indicated in a touch-screen interface.

Device support

Smaller devices such as most phones are too small to be adequately usable. For example, your Apple
Watch is sadly unlikely to provide a very good django CMS editing experience.

Older devices will often lack the performance to support a usefully responsive frontend
editing/administration interface.

The following devices are known to work well, so newer devices and more powerful models should also
be suitable:

	iOS: Apple iPad Air 1, Mini 4

	Android: Sony Xperia Z2 Tablet, Samsung Galaxy Tab 4

	Windows 10: Microsoft Surface

We welcome feedback about specific devices.

Your site’s frontend

django CMS’s toolbar and frontend editing architecture rely on good practices in your own frontend
code. To work well with django CMS’s responsive management framework, your own site should be
friendly towards multiple devices.

Whether you use your own frontend code or a framework such as Bootstrap 3 or Foundation, be aware
that problems in your CSS or markup can affect django CMS editing modes, and this will become
especially apparent to users of mobile/hand-held devices.

Known issues

General issues

	Editing links that lack sufficient padding is currently difficult or impossible using
touch-screens.

	Similarly, other areas of a page where the visible content is composed entirely of links with
minimal padding around them can be difficult or impossible to open for editing by tapping. This
can affect the navigation menu (double-clicking on the navigation menu opens the page list).

	Adding links is known to be problematic on some Android devices, because of the behaviour of the
keyboard.

	On some devices, managing django CMS in the browser’s private (also known as incognito)
mode can have significant performance implications.

This is because local storage is not available in this mode, and user state must be stored in a
Django session, which is much less efficient.

This is an unusual use case, and should not affect many users.

CKEditor issues

	Scrolling on narrow devices, especially when opening the keyboard inside the CKEditor, does not
always work ideally - sometimes the keyboard can appear in the wrong place on-screen.

	Sometimes the CKEditor moves unexpectedly on-screen in use.

	Sometimes in Safari on iOS devices, a rendering bug will apparently truncate or reposition
portions of the toolbar when the CKEditor is opened - even though sections may appear to missing
or moved, they can still be activated by touching the part of the screen where they should have
been found.

Django Admin issues

	In the page tree, the first touch on the page opens the keyboard which may be undesirable. This
happens because Django automatically focuses the search form input.

How the menu system works

Basic concepts

Soft Roots

A soft root is a page that acts as the root for a menu
navigation tree.

Typically, this will be a page that is the root of a significant
new section on your site.

When the soft root feature is enabled, the navigation menu
for any page will start at the nearest soft root, rather than
at the real root of the site’s page hierarchy.

This feature is useful when your site has deep page hierarchies
(and therefore multiple levels in its navigation trees). In such
a case, you usually don’t want to present site visitors with deep
menus of nested items.

For example, you’re on the page “Introduction to Bleeding”, so the menu might look like this:

School of Medicine
 Medical Education
 Departments
 Department of Lorem Ipsum
 Department of Donec Imperdiet
 Department of Cras Eros
 Department of Mediaeval Surgery
 Theory
 Cures
 Bleeding
 * Introduction to Bleeding <current page>
 Bleeding - the scientific evidence
 Cleaning up the mess
 Cupping
 Leaches
 Maggots
 Techniques
 Instruments
 Department of Curabitur a Purus
 Department of Sed Accumsan
 Department of Etiam
 Research
 Administration
 Contact us
 Impressum

which is frankly overwhelming.

By making “Department of Mediaeval Surgery” a soft root, the
menu becomes much more manageable:

Department of Mediaeval Surgery
 Theory
 Cures
 Bleeding
 * Introduction to Bleeding <current page>
 Bleeding - the scientific evidence
 Cleaning up the mess
 Cupping
 Leaches
 Maggots
 Techniques
 Instruments

Registration

The menu system isn’t monolithic. Rather, it is composed of numerous active parts, many of which can operate independently of each other.

What they operate on is a list of menu nodes, that gets passed around the menu system, until it emerges at the other end.

The main active parts of the menu system are menu generators and modifiers.

Some of these parts are supplied with the menus application. Some come from other applications (from the cms application in django CMS, for example, or some other application entirely).

All these active parts need to be registered within the menu system.

Then, when the time comes to build a menu, the system will ask all the registered menu generators and modifiers to get to work on it.

Generators and Modifiers

Menu generators and modifiers are classes.

Generators

To add nodes to a menu a generator is required.

There is one in cms for example, which examines the Pages in the database and adds them as nodes.

These classes are sub-classes of menus.base.Menu. The one in cms is cms.menu.CMSMenu.

In order to use a generator, its get_nodes() method must be called.

Modifiers

A modifier examines the nodes that have been assembled, and modifies them according to its requirements (adding or removing them, or manipulating their attributes, as it sees fit).

An important one in cms (cms.menu.SoftRootCutter) removes the nodes that are no longer required when a soft root is encountered.

These classes are sub-classes of menus.base.Modifier. Examples are cms.menu.NavExtender and cms.menu.SoftRootCutter.

In order to use a modifier, its modify() method must be called.

Note that each Modifier’s modify() method can be called twice, before and after the menu has been trimmed.

For example when using the {% show_menu %} template tag, it’s called:

	first, by menus.menu_pool.MenuPool.get_nodes(), with the argument post_cut = False

	later, by the template tag, with the argument post_cut = True

This corresponds to the state of the nodes list before and after menus.templatetags.menu_tags.cut_levels(), which removes nodes from the menu according to the arguments provided by the template tag.

This is because some modification might be required on all nodes, and some might only be required on the subset of nodes left after cutting.

Nodes

Nodes are assembled in a tree. Each node is an instance of the menus.base.NavigationNode class.

A NavigationNode has attributes such as URL, title, parent and children - as one would expect in a navigation tree.

It also has an attr attribute, a dictionary that’s provided for you to add arbitrary attributes
to, rather than placing them directly on the node itself, where they might clash with something.

Warning

You can’t assume that a menus.base.NavigationNode represents a django CMS Page. Firstly, some nodes may
represent objects from other applications. Secondly, you can’t expect to be able to access Page objects via
NavigationNodes. To check if node represents a CMS Page, check for is_page in menus.base.NavigationNode.attr
and that it is True.

Menu system logic

Let’s look at an example using the {% show_menu %} template tag. It will be different for other
template tags, and your applications might have their own menu classes. But this should help
explain what’s going on and what the menu system is doing.

One thing to understand is that the system passes around a list of nodes, doing various things
to it.

Many of the methods below pass this list of nodes to the ones it calls, and return them to the ones
that they were in turn called by.

The ShowMenu.get_context() method

When the Django template engine encounters the {% show_menu %} template tag, it calls
the get_context() of the ShowMenu class. get_context():

	calls menus.menu_pool.MenuPool.get_nodes() (see The MenuPool.get_nodes() method below)

	cuts any nodes other than its descendants (if a root_id has been provided)

	calls menus.templatetags.menu_tags.cut_levels() to remove unwanted levels

	calls menus.menu_pool.MenuPool.apply_modifiers() with post_cut = True

	return the nodes to the context in the variable children

The MenuPool.get_nodes() method

menus.menu_pool.MenuPool.get_nodes() calls three other methods of MenuPool in turn:

	menus.menu_pool.MenuPool.discover_menus()

	Checks every application’s cms_menus.py, and registers:

	
	Menu classes, placing them in the self.menus dict

	Modifier classes, placing them in the self.modifiers list

	menus.menu_pool.MenuPool._build_nodes()

	checks the cache to see if it should return cached nodes

	loops over the Menus in self.menus (note: by default the only generator is
cms.menu.CMSMenu); for each:

	calls its menus.base.Menu.get_nodes() - the menu generator

	menus.menu_pool._build_nodes_inner_for_one_menu()

	adds all nodes into a big list

	menus.menu_pool.MenuPool.apply_modifiers()

	menus.menu_pool.MenuPool._mark_selected()

	loops over each node, comparing its URL with the request.path_info, and marks the best match
as selected

	loops over the Modifiers (see Menu Modifiers below) in self.modifiers calling each
one’s
modify() with post_cut=False.

Menu Modifiers

Each Modifier manipulates menu nodes and their attributes.

The default Modifiers, in the order they are called, are:

	cms.menu.NavExtender

	cms.menu.SoftRootCutter

If post_cut is True, removes all nodes below the appropriate soft root; otherwise,
returns immediately.

	menus.modifiers.Marker

If post_cut or breadcrumb is True, returns immediately; otherwise, loops over all
nodes; finds selected, marks its ancestors, siblings and children

	menus.modifiers.AuthVisibility

Removes nodes that require authorisation to see

	menus.modifiers.Level

Loops over all nodes; for each one that is a root node (level == 0) passes it to:

	mark_levels() recurses over a node’s descendants marking
their levels

Some commonly-used plugins

Warning

In version 3 of the CMS we removed all the plugins from the main repository
into separate repositories to continue their development there.
you are upgrading from a previous version. Please refer to
Upgrading from previous versions

Please note that dozens if not hundreds of different django CMS plugins have been made available
under open-source licences. Some, like the ones on this page, are likely to be of general interest,
while others are highly specialised.

This page only lists those that fall under the responsibility of the django CMS project. Please see
the Django Packages [https://djangopackages.org/search/?q=django+cms] site for some more, or
just do a web search for the functionality you seek - you’ll be surprised at the range of plugins
that has been created.

django CMS Core Addons

We maintain a set of Core Addons for django CMS.

You don’t need to use them, and for many of them alternatives exist, but they represent a good way
to get started with a reliable project set-up. We recommend them for new users of django CMS in
particular. For example, if you start a project on Divio Cloud [https://divio.com/] or using the
django CMS installer [https://github.com/nephila/djangocms-installer], this is the set of addons
you’ll have installed by default.

The django CMS Core Addons are:

	Django Filer [http://github.com/divio/django-filer] - a file management application for
images and other documents.

	django CMS Admin Style [https://github.com/divio/djangocms-admin-style] - a CSS theme for the
Django admin

	django CMS Text CKEditor [https://github.com/divio/djangocms-text-ckeditor] - our default rich
text WYSIYG editor

	django CMS Link [https://github.com/divio/djangocms-link] - add links to content

	django CMS Picture [https://github.com/divio/djangocms-picture] - add images to your site
(Filer-compatible)

	django CMS File [https://github.com/divio/djangocms-file] - add files or an entire folder to
your pages (Filer-compatible)

	django CMS Style [https://github.com/divio/djangocms-style] - create HTML containers with
classes, styles, ids and other attributes

	django CMS Snippet [https://github.com/divio/djangocms-snippet] - insert arbitrary HTML content

	django CMS Audio [https://github.com/divio/djangocms-audio] - publish audio files
(Filer-compatible)

	django CMS Video [https://github.com/divio/djangocms-video] - embed videos from YouTube, Vimeo
and other services, or use uploaded videos (Filer-compatible)

	django CMS GoogleMap [http://github.com/divio/djangocms-googlemap] - displays a map of an
address on your page. Supports addresses and co-ordinates. Zoom level and route planner options
can also be set.

We welcome feedback, documentation, patches and any other help to maintain and improve these
valuable components.

Other addons of note

These packages are no longer officially guaranteed support by the django CMS project, but they have
good community support.

	django CMS Inherit [https://github.com/divio/djangocms-inherit] - renders the plugins from a
specified page (and language) in its place

	django CMS Column [https://github.com/divio/djangocms-column] - layout page content in columns

	django CMS Teaser [http://github.com/divio/djangocms-teaser] - displays a teaser box for
another page or a URL, complete with picture and a description

Deprecated addons

Some older plugins that you may have encountered are now deprecated and we advise against
incorporating them into new projects.

These are:

	cmsplugin-filer [https://github.com/divio/cmsplugin-filer]

	Aldryn Style [https://github.com/aldryn/aldryn-style]

	Aldryn Locations [https://github.com/aldryn/aldryn-locations]

	Aldryn Snippet [https://github.com/aldryn/aldryn-snippet]

Search and django CMS

For powerful full-text search within the django CMS, we suggest using
Haystack [http://haystacksearch.org/] together with aldryn-search [https://github.com/aldryn/aldryn-search].

Frontend integration

Generally speaking, django CMS is wholly frontend-agnostic. It doesn’t care what your site’s
frontend is built on or uses.

The exception to this is when editing your site, as the django CMS toolbar and editing controls
use their own frontend code, and this can sometimes affect or be affected by your site’s code.

The content reloading introduced in django CMS 3.5 for plugin operations (when
moving/adding/deleting etc) pull markup changes from the server. This may require a JS widget to be
reinitialised, or additional CSS to be loaded, depending on your own frontend set-up.

For example, if using Less.js, you may notice that content loads without expected CSS after plugin saves.

In such a case, you can use the cms-content-refresh event to take care of that, by adding something like:

{% if request.toolbar and request.toolbar.edit_mode_active %}
 <script>
 CMS.$(window).on('cms-content-refresh', function () {
 less.refresh();
 });
 </script>
{% endif %}

after the toolbar JavaScript.

Development & community

django CMS is an open-source project, and relies on its community of users to
keep getting better.

The contributors to django CMS come from across the world, and have
a wide range and levels of skills and expertise. Every contribution,
however small, is valued.

As an open source project, anyone is welcome to contribute in whatever form
they are able, which can include taking part in discussions, filing bug reports,
proposing improvements, contributing code or documentation, and testing the

	django CMS’s development community

	Development policies

	Contributing code

	Contributing documentation

	Contributing translations

	Code and project management

	Running and writing tests

	Code of Conduct

django CMS’s development community

You can join us online:

	in our django CMS Slack channel

	on our django CMS users email list [https://groups.google.com/forum/#!forum/django-cms] for
general discussion of django CMS

	on our django CMS developers email list [https://groups.google.com/forum/#!forum/django-cms-developers] for discussions about the
development of django CMS

	on our StackOverflow [https://stackoverflow.com/questions/tagged/django-cms] for
general questions around django CMS and it’s plugin ecosystem

You can also follow:

	the Travis Continuous Integration build reports [https://travis-ci.org/divio/django-cms]

	the @djangocms [https://twitter.com/djangocms] Twitter account for general announcements

	the django CMS Association LinkedIn [https://www.linkedin.com/company/django-cms-association] account

You don’t need to be an expert developer to make a valuable contribution - all
you need is a little knowledge of the system, and a willingness to follow the
contribution guidelines.

Remember that contributions to the documentation are highly prized, and key to
the success of the django CMS project.

Development is led by a team of core developers, and under the overall
guidance of a technical board.

All activity in the community is governed by our Code of Conduct.

Django CMS Association

django CMS was released under a BSD licence in 2009. It was created at Divio AG [https://www.divio.com/]
of Zürich, Switzerland, by Patrick Lauber [https://github.com/digi604/], who led its development for several
years.

In July 2020 Divio handed over the banner to the newly founded
django CMS Association [https://www.django-cms.org/en/about-us/] (dCA). Its
goal is to drive the success of django CMS, by increasing customer happiness,
market share and open-source-contributions. Divio remains thoroughly committed
to django CMS as the host of the django CMS project website [https://www.django-cms.org/]
and as one of the founding members of the dCA, next to What [https://what.digital/]. and
Eliga Services [https://eliga.services/].

The dCA’s role in steering the project’s development is formalised in the
django CMS technical comittee [https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md],
whose members are drawn from the django CMS community and the dCA.

The dCA maintains overall control of the django CMS repository [https://github.com/divio/django-cms].
As the chief backer of django CMS, and in order to ensure a consistent and
long-term approach to the project, the dCA reserves the right of final say in
any decisions concerning its development.

As a non-profit organization the django CMS Association is dependent on
donations to fulfill its mission, which is based on the following three statements:

	Innovate and lead

	Foster contribution

	Drive adoption

The best way to donate is to become a member of the association and pay
membership fees. The funding is funneled back into core development and
community projects.

	Sign up for more information about becoming a member of the dCA [https://www.django-cms.org/en/sign-up/]

The dCA Tech Committee

Mission

It prepares and updates the technical roadmap for approval by the Executive
Board and/or the General Assembly, manages incoming feature requests and
proposals and takes decisions on awarding credits for work submitted by members.

	Find out more about the mission [https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md#mission]

Team

	Overview of the team [https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md#team]

Tasks

	Tasks & Decisions Log [https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/tasks-and-decisions-log.md]

	Kanban Board [https://github.com/django-cms/django-cms-mgmt/projects/1]

Processes

	Become a core contributor [https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md#become-a-core-contributor]

	Become a member of the Tech Committee [https://github.com/django-cms/django-cms-mgmt/blob/master/tech-committee/about.md#become-am-member-of-the-tech-committee]

Development policies

Reporting security issues

Attention

If you think you have discovered a security issue in our code, please report
it privately, by emailing us at security@divio.com.

Please do not raise it on IRC, GitHub, either of our email lists, StackOverflow
or in any other public forum until we have had a chance to deal with it.

Review

All patches should be made as pull requests against develop to
the GitHub repository [https://github.com/divio/django-cms]. Patches should
never be pushed directly.

Nothing may enter the code-base, including the documentation, without
proper review and formal approval from the core team.

Reviews are welcomed by all members of the community. You don’t need to be a core developer, or even an experienced
programmer, to contribute usefully to code review. Even noting that you don’t understand something in a pull request
is valuable feedback and will be taken seriously.

Formal approval

Formal approval means “OK to merge” comments, following review, from at least
one member of the core team who has expertise in the relevant areas, and excluding
the author of the pull request.

Proposal and discussion of significant changes

New features and backward-incompatible changes should be proposed using the django CMS developers email list [https://groups.google.com/group/django-cms-developers]. Discussion should take place there before any pull requests
are made.

This is in the interests of openness and transparency, and to give the community a chance to participate in and
understand the decisions taken by the project.

Release schedule

Changed in version 3.7: django CMS 3.7 is the new active long term release.

The roadmap [https://www.django-cms.org/en/roadmap/] can be found on our website.

We are planning releases according to key principles and aims. Issues within milestones are
therefore subject to change.

The django CMS developers email list [https://groups.google.com/group/django-cms-developers] serves as gathering
point for developers. We submit ideas and proposals prior to the roadmap goals.

django CMS 3.4, surpassed by 3.7, was the first “LTS” (“Long-Term Support”)
release of the application. Long-term support means that this version will
continue to receive security and other critical updates for 24 months after its
first release.

Any updates it does receive will be backward-compatible and will not alter functional behaviour. This means that users
can deploy this version confident that keeping it up-to-date requires only easily-applied security and other critical
updates, until the next LTS release.

Branches

Changed in version 3.3: Previously, we maintained a master branch (now deleted), and a set of support branches (now pruned, and
renamed release).

Changed in version 3.7: Simplified the description of the release branches and added additional
information for releases and release/4.0.x. In general open PRs
against develop.

We maintain a number of branches on
our GitHub repository [https://github.com/divio/django-cms]:

	develop

	The default target branch for on-going development and new pull requests.

	release/x.y.z are the latest released versions of django CMS. Commits

	are cherry-picked from develop and merged into release/x.y.z
when suitable. We officially support the latest, highest released version
and the latest LTS (currently 3.7).

	release/4.0.x is an experimental branch and should not be considered

	as the highest released version.

	releases hosts the releases.json file to indicate the availability of new

	django CMS versions when using djangocms-admin-style [https://github.com/divio/djangocms-admin-style#configuration].

Please always open PR’s against develop and indicate that they should be
backported to the latest LTS release when necessary. Older branches are not
supported any longer.

Commits

New in version 3.3.

Commit messages

Commit messages and their subject lines should be written in the past tense, not present tense, for example:

Updated contribution policies.

	Updated branch policy to clarify purpose of develop/release branches

	Added commit policy.

	Added changelog policy.

Keep lines short, and within 72 characters as far as possible.

Squashing commits

In order to make our Git history more useful, and to make life easier for the core developers, please rebase and
squash your commit history into a single commit representing a single coherent piece of work.

For example, we don’t really need or want a commit history, for what ought to be a single commit, that looks like
(newest last):

2dceb83 Updated contribution policies.
ffe5f2c Fixed spelling mistake in contribution policies.
29168da Fixed typo.
85d925c Updated commit policy based on feedback.

The bottom three commits are just noise. They don’t represent development of the code base. The four commits
should be squashed into a single, meaningful, commit:

85d925c Updated contribution policies.

How to squash commits

In this example above, you’d use git rebase -i HEAD~4 (the 4 refers to the number of commits being squashed -
adjust it as required).

This will open a git-rebase-todo file (showing commits with the newest last):

pick 2dceb83 Updated contribution policies.
pick ffe5f2c Fixed spelling mistake in contribution policies.
pick 29168da Fixed typo.
pick 85d925c Updated commit policy based on feedback.

“Fixup” the last three commits, using f so that they are squashed into the first, and their commit messages
discarded:

pick 2dceb83 Updated contribution policies.
f ffe5f2c Fixed spelling mistake in contribution policies.
f 29168da Fixed typo.
f 85d925c Updated commit policy based on feedback.

Save - and this will leave you with a single commit containing all of the changes:

85d925c Updated contribution policies.

Ask for help if you run into trouble!

Changelog

New in version 3.3.

Every new feature, bugfix or other change of substance must be represented in the CHANGELOG [https://github.com/divio/django-cms/blob/develop/CHANGELOG.rst]. This includes documentation, but doesn’t extend
to things like reformatting code, tidying-up, correcting typos and so on.

Each line in the changelog should begin with a verb in the past tense, for example:

* Added CMS_WIZARD_CONTENT_PLACEHOLDER setting
* Renamed the CMS_WIZARD_* settings to CMS_PAGE_WIZARD_*
* Deprecated the old-style wizard-related settings
* Improved handling of uninstalled apphooks
* Fixed an issue which could lead to an apphook without a slug
* Updated contribution policies documentation

New lines should be added to the top of the list.

Contributing code

Like every open-source project, django CMS is always looking for motivated
individuals to contribute to its source code.

In a nutshell

Here’s what the contribution process looks like in brief:

	Fork our GitHub [http://www.github.com] repository, https://github.com/divio/django-cms

	Work locally and push your changes to your repository.

	When you feel your code is good enough for inclusion, send us a pull request.

See the How to contribute a patch how-to document for a walk-through of this process.

Basic requirements and standards

If you’re interested in developing a new feature for the CMS, it is recommended
that you first discuss it on the django-cms-developers [https://groups.google.com/group/django-cms-developers] mailing list so as
not to do any work that will not get merged in anyway.

	Code will be reviewed and tested by at least one core developer, preferably
by several. Other community members are welcome to give feedback.

	Code must be tested. Your pull request should include unit-tests (that cover
the piece of code you’re submitting, obviously)

	Documentation should reflect your changes if relevant. There is nothing worse
than invalid documentation.

	Usually, if unit tests are written, pass, and your change is relevant, then
it’ll be merged.

Since we’re hosted on GitHub, django CMS uses git [http://git-scm.com/] as a version control system.

The GitHub help [http://help.github.com] is very well written and will get you started on using git
and GitHub in a jiffy. It is an invaluable resource for newbies and old timers
alike.

Syntax and conventions

Python

We try to conform to PEP8 [http://www.python.org/dev/peps/pep-0008/] as much as possible. A few highlights:

	Indentation should be exactly 4 spaces. Not 2, not 6, not 8. 4. Also, tabs
are evil.

	We try (loosely) to keep the line length at 79 characters. Generally the rule
is “it should look good in a terminal-base editor” (eg vim), but we try not be
too inflexible about it.

HTML, CSS and JavaScript

As of django CMS 3.2, we are using the same guidelines as described in Aldryn
Boilerplate [https://aldryn-boilerplate-bootstrap3.readthedocs.io/en/latest/guidelines/index.html]

Frontend code should be formatted for readability. If in doubt, follow existing
examples, or ask.

JS Linting

JavaScript is linted using ESLint [http://eslint.org]. In order to run the
linter you need to do this:

gulp lint

Or you can also run the watcher by just running gulp.

Process

This is how you fix a bug or add a feature:

	fork [https://github.com/divio/django-cms] us on GitHub.

	Checkout your fork.

	Hack hack hack, test test test, commit commit commit, test again.

	Push to your fork.

	Open a pull request.

And at any point in that process, you can add: discuss discuss discuss,
because it’s always useful for everyone to pass ideas around and look at things
together.

Running and writing tests is really important: a pull request that lowers our testing
coverage will only be accepted with a very good reason; bug-fixing patches
must demonstrate the bug with a test to avoid regressions and to check
that the fix works.

We have an IRC channel, our django-cms-developers [https://groups.google.com/group/django-cms-developers] email list,
and of course the code reviews mechanism on GitHub - do use them.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client [https://kiwiirc.com/client/irc.freenode.net/django-cms], which works pretty well.

Frontend

Important

When we refer to the frontend here, we only mean the frontend of django CMS’s admin/editor interface.

The frontend of a django CMS website, as seen by its visitors (i.e. the published site), is wholly independent of
this. django CMS places almost no restrictions at all on the frontend - if a site can be described in
HTML/CSS/JavaScript, it can be developed in django CMS.

In order to be able to work with the frontend tooling contributing to the
django CMS you need to have the following dependencies installed:

	Node [https://nodejs.org/] version 6.10.1 (will install npm 3.10.10 as well).
We recommend using NVM [https://github.com/creationix/nvm] to get
the correct version of Node.

	gulp - see Gulp’s Getting Started notes [https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md]

	Local dependencies npm install

Styles

We use Sass [http://sass-lang.com/] for our styles. The files
are located within cms/static/cms/sass and can be compiled using the
libsass [http://libsass.org/] implementation of Sass compiler through
gulp [http://gulpjs.com/].

In order to compile the stylesheets you need to run this command from the repo
root:

gulp sass

While developing it is also possible to run a watcher that compiles Sass files
on change:

gulp

By default, source maps are not included in the compiled files. In order to turn
them on while developing just add the --debug option:

gulp --debug

Icons

We are using gulp-iconfont [https://github.com/backflip/gulp-iconfont] to
generate icon web fonts into cms/static/cms/fonts/. This also creates
_iconography.scss within cms/static/cms/sass/components which adds all
the icon classes and ultimately compiles to CSS.

In order to compile the web font you need to run:

gulp icons

This simply takes all SVGs within cms/static/cms/fonts/src and embeds them
into the web font. All classes will be automatically added to
_iconography.scss as previously mentioned.

Additionally we created an SVG template within
cms/static/cms/font/src/_template.svgz that you should use when converting
or creating additional icons. It is named svgz so it doesn’t get compiled
into the font. When using Adobe Illustrator please mind the
following settings.

JS Bundling

JavaScript files are split up for easier development, but in the end they are
bundled together and minified to decrease amount of requests made and improve
performance. In order to do that we use the gulp task runner, where bundle
command is available. We use Webpack [https://github.com/webpack/webpack] for
bundling JavaScript files. Configuration for each bundle are stored inside the
webpack.config.js and their respective entry points. CMS exposes only one
global variable, named CMS. If you want to use JavaScript code provided by
CMS in external applications, you can only use bundles distributed by CMS, not
the source modules.

Contributing documentation

Perhaps considered “boring” by hard-core coders, documentation is sometimes even
more important than code! This is what brings fresh blood to a project, and
serves as a reference for old timers. On top of this, documentation is the one
area where less technical people can help most - you just need to write
simple, unfussy English. Elegance of style is a secondary consideration, and
your prose can be improved later if necessary.

Contributions to the documentation earn the greatest respect from the
core developers and the django CMS community.

Documentation should be:

	written using valid Sphinx [http://sphinx-doc.org//]/restructuredText [http://docutils.sourceforge.net/docs/ref/rst/introduction.html] syntax (see below for
specifics); the file extension should be .rst

	wrapped at 100 characters per line

	written in English, using British English spelling and punctuation

	accessible - you should assume the reader to be moderately familiar with
Python and Django, but not anything else. Link to documentation of libraries
you use, for example, even if they are “obvious” to you

Merging documentation is pretty fast and painless.

Except for the tiniest of change, we recommend that you test them before
submitting.

Building the documentation

Follow the same steps above to fork and clone the project locally. Next, cd into the
django-cms/docs and install the requirements:

make install

Now you can test and run the documentation locally using:

make run

This allows you to review your changes in your local browser using http://localhost:8001/.

Note

What this does

make install is roughly the equivalent of:

virtualenv env
source env/bin/activate
pip install -r requirements.txt
cd docs
make html

make run runs make html, and serves the built documentation on port 8001 (that is, at
http://localhost:8001/.

It then watches the docs directory; when it spots changes, it will automatically rebuild
the documentation, and refresh the page in your browser.

Spelling

We use sphinxcontrib-spelling [https://pypi.python.org/pypi/sphinxcontrib-spelling/], which in
turn uses pyenchant [https://pypi.python.org/pypi/pyenchant/] and enchant [http://www.abisource.com/projects/enchant/] to check the spelling of the documentation.

You need to check your spelling before submitting documentation.

Important

We use British English rather than US English spellings. This means that we use colour
rather than color, emphasise rather than emphasize and so on.

Install the spelling software

sphinxcontrib-spelling and pyenchant are Python packages that will be installed in the
virtualenv docs/env when you run make install (see above).

You will need to have enchant installed too, if it is not already. The easy way to check is to
run make spelling from the docs directory. If it runs successfully, you don’t need to do
anything, but if not you will have to install enchant for your system. For example, on OS X:

brew install enchant

or Debian Linux:

apt-get install enchant

Check spelling

Run:

make spelling

in the docs directory to conduct the checks.

Note

This script expects to find a virtualenv at docs/env, as installed by make install (see
above).

If no spelling errors have been detected, make spelling will report:

build succeeded.

Otherwise:

build finished with problems.
make: *** [spelling] Error 1

It will list any errors in your shell. Misspelt words will be also be listed in
build/spelling/output.txt

Words that are not in the built-in dictionary can be added to docs/spelling_wordlist. If
you are certain that a word is incorrectly flagged as misspelt, add it to the spelling_wordlist
document, in alphabetical order. Please do not add new words unless you are sure they should be
in there.

If you find technical terms are being flagged, please check that you have capitalised them
correctly - javascript and css are incorrect spellings for example. Commands and
special names (of classes, modules, etc) in double backticks - `` - will mean that they are not
caught by the spelling checker.

Important

You may well find that some words that pass the spelling test on one system but not on another.
Dictionaries on different systems contain different words and even behave differently. The
important thing is that the spelling tests pass on Travis [https://travis-ci.org/divio/django-cms] when you submit a pull request.

Making a pull request

Before you commit any changes, you need to check spellings with make spelling and rebuild the
docs using make html. If everything looks good, then it’s time to push your changes to GitHub
and open a pull request in the usual way.

Documentation structure

Our documentation is divided into the following main sections:

	Tutorials (introduction): step-by-step, beginning-to-end tutorials to get
you up and running

	How-to guides (how_to): step-by-step guides covering more advanced development

	Key topics (topics): explanations of key parts of the system

	Reference (reference): technical reference for APIs, key
models
and so on

	Development & community (contributing)

	Release notes & upgrade information (upgrade)

	Using django CMS (user): guides for using rather than setting up or developing for the
CMS

Documentation markup

Sections

We mostly follow the Python documentation conventions for section marking:

##########
Page title
##########

heading

sub-heading
===========

sub-sub-heading

sub-sub-sub-heading
^^^^^^^^^^^^^^^^^^^

sub-sub-sub-sub-heading
"""""""""""""""""""""""

Inline markup

	
	use backticks - `` - for:

	
	literals:

The ``cms.models.pagemodel`` contains several important methods.

	filenames:

Before you start, edit ``settings.py``.

	names of fields and other specific items in the Admin interface:

Edit the ``Redirect`` field.

	
	use emphasis - *Home* - around:

	
	the names of available options in or parts of the Admin:

To hide and show the *Toolbar*, use the...

	the names of important modes or states:

... in order to switch to *Edit mode*.

	values in or of fields:

Enter *Home* in the field.

	
	use strong emphasis - ** - around:

	
	buttons that perform an action:

Hit **View published** or **Save as draft**.

Rules for using technical words

There should be one consistent way of rendering any technical word, depending on its context.
Please follow these rules:

	in general use, simply use the word as if it were any ordinary word, with no capitalisation or
highlighting: “Your placeholder can now be used.”

	at the start of sentences or titles, capitalise in the usual way: “Placeholder management guide”

	when introducing the term for the the first time, or for the first time in a document, you may
highlight it to draw attention to it: “Placeholders are special model fields”.

	when the word refers specifically to an object in the code, highlight it as a literal:
“Placeholder methods can be overwritten as required” - when appropriate, link the term to
further reference documentation as well as simply highlighting it.

References

Create:

.. _testing:

and use:

:ref:`testing`

internal cross-references liberally.

Use absolute links to other documentation pages - :doc:`/how_to/toolbar` -
rather than relative links - :doc:`/../toolbar`. This makes it easier to
run search-and-replaces when items are moved in the structure.

Contributing translations

For translators we have a Transifex account [https://www.transifex.com/divio/django-cms/] where you can translate
the .po files and don’t need to install git or mercurial to be able to
contribute. All changes there will be automatically sent to the project.

Top translations django-cms core:

Code and project management

We use our GitHub project [https://github.com/divio/django-cms] for managing both django CMS code
and development activity.

This document describes how we manage tickets on GitHub. By “tickets”, we mean GitHub issues and
pull requests (in fact as far as GitHub is concerned, pull requests are simply a species of issue).

Issues

Raising an issue

Attention

If you think you have discovered a security issue in our code, please report
it privately, by emailing us at security@divio.com.

Please do not raise it on IRC, GitHub, either of our email lists, StackOverflow
or in any other public forum until we have had a chance to deal with it.

Except in the case of security matters, of course, you’re welcome to raise issues in any way that
suits you - on one of our email lists, or the IRC channel or in person
if you happen to meet another django CMS developer.

It’s very helpful though if you don’t just raise an issue by mentioning it to people, but actually
file it too, and that means creating a new issue on GitHub [https://github.com/divio/django-cms/issues/new].

There’s an art to creating a good issue report.

The Title needs to be both succinct and informative. “show_sub_menu displays incorrect nodes when
used with soft_root” is helpful, whereas “Menus are broken” is not.

In the Description of your report, we’d like to see:

	how to reproduce the problem

	what you expected to happen

	what did happen (a traceback is often helpful, if you get one)

Getting your issue accepted

Other django CMS developers will see your issue, and will be able to comment. A core developer may
add further comments, or a label.

The important thing at this stage is to have your issue accepted. This means that we’ve agreed
it’s a genuine issue, and represents something we can or are willing to do in the CMS.

You may be asked for more information before it’s accepted, and there may be some discussion before
it is. It could also be rejected as a non-issue (it’s not actually a problem) or
won’t fix (addressing your issue is beyond the scope of the project, or is incompatible
with our other aims).

Feel free to explain why you think a decision to reject your issue is incorrect - very few
decisions are final, and we’re always happy to correct our mistakes.

How we process tickets

Tickets should be:

	given a status

	marked with needs

	marked with a kind

	marked with the components they apply to

	marked with miscellaneous other labels

	commented

A ticket’s status and needs are the most important of these. They tell us two key things:

	status: what stage the ticket is at

	needs: what next actions are required to move it forward

Needless to say, these labels need to be applied carefully, according to the rules of this system.

GitHub’s interface means that we have no alternative but to use colours to help identify our
tickets. We’re sorry about this. We’ve tried to use colours that will cause the fewest issues for
colour-blind people, so we don’t use green (since we use red) or yellow (since we use blue) labels,
but we are aware it’s not ideal.

django CMS ticket processing system rules

	one and only one status must be applied to each ticket

	a healthy ticket (blue) cannot have any critical needs (red)

	when closed, tickets must have either a healthy (blue) or dead (black) status

	a ticket with critical needs must not have non-critical
needs or miscellaneous other labels

	has patch and on hold labels imply a related pull request, which must be
linked-to when these labels are applied

	component, non-critical need and miscellaneous other labels should be applied as seems appropriate

Status

The first thing we do is decide whether we accept the ticket, whether it’s a pull request or an
issue. An accepted status means the ticket is healthy, and will have a blue label.

Basically, it’s good for open tickets to be healthy (blue), because that means they are going
somewhere.

Important

Accepting a ticket means marking it as healthy, with one of the blue labels.

	issues

	The bar for status: accepted is high. The status can be revoked at any
time, and should be when appropriate. If the issue needs a design decision,
expert opinion or more info, it can’t be accepted.

	pull requests

	When a pull request is accepted, it should become work in progress or (more rarely)
ready for review or even ready to be merged, in those rare cases where a
perfectly-formed and unimprovable pull request lands in our laps. As for issues, if it
needs a design decision, expert opinion or more info, it can’t be
accepted.

No issue or pull request can have both a blue (accepted) and a red, grey or black label
at the same time.

Preferably, the ticket should either be accepted (blue), rejected (black) or marked as having
critical needs (red) as soon as possible. It’s important that open tickets should have a clear
status, not least for the sake of the person who submitted it so that they know it’s being assessed.

Tickets should not be allowed to linger indefinitely with critical (red) needs. If the opinions or
information required to accept the ticket are not forthcoming, the ticket should be declared
unhealthy (grey) with marked for rejection and rejected (black) at the next release.

Needs

Critical needs (red) affect status.

Non-critical needs labels (pink) can be added as appropriate (and of course, removed
as work progresses) to pull requests.

It’s important that open tickets should have a clear needs labels, so that it’s apparent what needs
to be done to make progress with it.

Kinds and components

Of necessity, these are somewhat porous categories. For example, it’s not always absolutely clear
whether a pull request represents an enhancement or a bug-fix, and tickets can apply to multiple
parts of the CMS - so do the best you can with them.

Other labels

backport, blocker, has patch or easy pickings labels should be applied as appropriate, to healthy (blue) tickets only.

Comments

At any time, people can comment on the ticket, of course. Although only core maintainers can change
labels, anyone can suggest changing a label.

Label reference

Components and kinds should be self-explanatory, but statuses,
needs and miscellaneous other labels are clarified below.

Statuses

A ticket’s status is its position in the pipeline - its point in our workflow.

Every issue should have a status, and be given one as soon as possible. An issue should have only
one status applied to it.

Many of these statuses apply equally well to both issues and pull requests, but some make sense
only for one or the other:

	accepted

	(issues only) The issue has been accepted as a genuine issue that needs to be addressed.
Note that it doesn’t necessarily mean we will do what the issue suggests, if it makes a
suggestion - simply that we agree that there is an issue to be resolved.

	non-issue

	The issue or pull request are in some way mistaken - the ‘problem’ is in fact correct and
expected behaviour, or the problems were caused by (for example) misconfiguration.

When this label is applied, an explanation must be provided in a comment.

	won’t fix

	The issue or pull request imply changes to django CMS’s design or behaviour that the core
team consider incompatible with our chosen approach.

When this label is applied, an explanation must be provided in a comment.

	marked for rejection

	We’ve been unable to reproduce the issue, and it has lain dormant for a long time. Or, it’s
a pull request of low significance that requires more work, and looks like it might have
been abandoned. These tickets will be closed when we make the next release.

When this label is applied, an explanation must be provided in a comment.

	work in progress

	(pull requests only) Work is on-going.

The author of the pull request should include “(work in progress)” in its title, and remove
this when they feel it’s ready for final review.

	ready for review

	(pull requests only) The pull request needs to be reviewed. (Anyone can review and make
comments recommending that it be merged (or indeed, any further action) but only a core
maintainer can change the label.)

	ready to be merged

	(pull requests only) The pull request has successfully passed review. Core maintainers
should not mark their own code, except in the simplest of cases, as ready to be merged,
nor should they mark any code as ready to be merged and then merge it themselves - there
should be another person involved in the process.

When the pull request is merged, the label should be removed.

Needs

If an issue or pull request lacks something that needs to be provided for it to progress further,
this should be marked with a “needs” label. A “needs” label indicates an action that should
be taken in order to advance the item’s status.

Critical needs

Critical needs (red) mean that a ticket is ‘unhealthy’ and won’t be accepted
(issues) or work in progress, ready for review or ready to be merged until
those needs are addressed. In other words, no ticket can have both a blue and a red label.)

	more info

	Not enough information has been provided to allow us to proceed, for example to reproduce a
bug or to explain the purpose of a pull request.

	expert opinion

	The issue or pull request presents a technical problem that needs to be looked at by a
member of the core maintenance team who has a special insight into that particular aspect
of the system.

	design decision

	The issue or pull request has deeper implications for the CMS, that need to be considered
carefully before we can proceed further.

Non-critical needs

A healthy (blue) ticket can have non-critical needs:

	patch

	(issues only) The issue has been given a status: accepted, but now someone needs to write
the patch to address it.

	tests	docs

	(pull requests only) Code without docs or tests?! In django CMS? No way!

 Running and writing tests

Running and writing tests

Good code needs tests.

A project like django CMS simply can’t afford to incorporate new code that
doesn’t come with its own tests.

Tests provide some necessary minimum confidence: they can show the code will
behave as it expected, and help identify what’s going wrong if something breaks
it.

Not insisting on good tests when code is committed is like letting a gang of
teenagers without a driving license borrow your car on a Friday night, even if
you think they are very nice teenagers and they really promise to be careful.

We certainly do want your contributions and fixes, but we need your tests with
them too. Otherwise, we’d be compromising our codebase.

So, you are going to have to include tests if you want to contribute. However,
writing tests is not particularly difficult, and there are plenty of examples to
crib from in the code to help you.

Running tests

There’s more than one way to do this, but here’s one to help you get started:

create a virtual environment
virtualenv test-django-cms

activate it
cd test-django-cms/
source bin/activate

get django CMS from GitHub
git clone git@github.com:divio/django-cms.git

install the dependencies for testing
note that requirements files for other Django versions are also provided
pip install -r django-cms/test_requirements/django-X.Y.txt

run the test suite
note that you must be in the django-cms directory when you do this,
otherwise you'll get "Template not found" errors
cd django-cms
python manage.py test

It can take a few minutes to run.

When you run tests against your own new code, don’t forget that it’s useful to
repeat them for different versions of Python and Django.

Problems running the tests

We are working to improve the performance and reliability of our test suite. We’re aware of certain
problems, but need feedback from people using a wide range of systems and configurations in order
to benefit from their experience.

Please report any issues on our GitHub repository [https://github.com/divio/django-cms/issues].

If you can help improve the test suite, your input will be especially valuable.

OS X users

In some versions of OS X, gettext needs to be installed so that it is
available to Django. If you run the tests and find that various tests in
cms.tests.frontend raise errors, it’s likely that you have this problem.

A solution is:

brew install gettext && brew link --force gettext

(This requires the installation of Homebrew [http://brew.sh])

ERROR: test_copy_to_from_clipboard (cms.tests.frontend.PlaceholderBasicTests)

You may find that a single frontend test raises an error. This sometimes happens, for some users,
when the entire suite is run. To work around this you can invoke the test class on its own:

manage.py test cms.PlaceholderBasicTests

and it should then run without errors.

ERROR: zlib is required unless explicitly disabled using --disable-zlib, aborting

If you run into that issue, make sure to install zlib using Homebrew:

brew install libjpeg zlib && brew link --force zlib

Advanced testing options

Run manage.py test --help for the full list of advanced options.

Use --parallel to distribute the test cases across your CPU cores.

Use --failed to only run the tests that failed during the last run.

Use --retest to run the tests using the same configuration as the last run.

Use --vanilla to bypass the advanced testing system and use the built-in
Django test command.

To use a different database, set the DATABASE_URL environment variable to a
dj-database-url compatible value.

Running Frontend Tests

We have two types of frontend tests: unit tests and integration tests.
For unit tests we are using Karma [http://karma-runner.github.io/] as a
test runner and Jasmine [http://jasmine.github.io/] as a test framework.

Integration tests run on PhantomJS [http://phantomjs.org/] and are
built using CasperJS [http://casperjs.org/].

In order to be able to run them you need to install necessary dependencies as
outlined in frontend tooling installation instructions.

Linting runs against the test files as well with gulp tests:lint. In order
to run linting continuously, do:

gulp watch

Unit tests

Unit tests can be run like this:

gulp tests:unit

If your code is failing and you want to run only specific files, you can provide
the --tests parameter with comma separated file names, like this:

gulp tests:unit --tests=cms.base,cms.modal

If you want to run tests continuously you can use the watch command:

gulp tests:unit:watch

This will rerun the suite whenever source or test file is changed.
By default the tests are running on PhantomJS [http://phantomjs.org/], but
when running Karma in watch mode you can also visit the server it spawns with an
actual browser.

INFO [karma]: Karma v0.13.15 server started at http://localhost:9876/

On Travis CI we are using SauceLabs integration to run tests in a set of
different real browsers, but you can opt out of running them on saucelabs using
[skip saucelabs] marker in the commit message, similar to how you would skip
the build entirely using [skip ci].

We’re using Jasmine as a test framework and Istanbul as a code coverage tool.

Integration tests

In order to run integration tests you’ll have to install at least the version
of django CMS from the current directory and django-app-helper into into your virtualenv.
All commands should be run from the root of the repository. If you do not have
virtualenv yet, create and activate it first:

virtualenv env
. env/bin/activate

Then install minimum required dependencies:

pip install -r test_requirements/django-1.8.txt
pip install -e .

Now you’ll be able to run a tests with this command:

gulp tests:integration

The command will start a server, wait for a minute for the migrations to run
and will run integration tests against it. It will use testdb.sqlite as the
database. If you want to start with a clean state you could use --clean
argument.

Some tests require different server configuration, so it is possible that the
server will stop, and another variation will start with different arguments.
Take a look inside testserver.py if you need to customise the test server
settings.

While debugging you can use the --tests parameter as well in order to run test
suites separately.:

gulp tests:integration --tests=pagetree
gulp tests:integration --tests=loginAdmin,toolbar

If specified tests require different servers they will be grouped to speed
things up, so the order might not be the same as you specify in the argument.

When running locally, it sometimes helps to visualise the tests output. For that
you can install casperjs visual debugging utility [https://github.com/vxsx/casperjs-visual-debugging],
and run the tests with additional --visual argument. It will try to
communicate with the server and display the progress of the test, which you then
can also rewind.

It might sometimes be useful not to restart the server when creating the tests,
for that you can run python testserver.py with necessary arguments in one
shell and gulp tests:integration --no-server in another. However you would
need to clean the state yourself if the test you’ve been writing fails.

Writing tests

Contributing tests is widely regarded as a very prestigious contribution (you’re
making everybody’s future work much easier by doing so). We’ll always accept contributions of
a test without code, but not code without a test - which should give you an idea of how important
tests are.

What we need

We have a wide and comprehensive library of unit-tests and integration tests
with good coverage.

Generally tests should be:

	Unitary (as much as possible). i.e. should test as much as possible only one
function/method/class. That’s the very definition of unit tests. Integration
tests are interesting too obviously, but require more time to maintain since
they have a higher probability of breaking.

	Short running. No hard numbers here, but if your one test doubles the time it
takes for everybody to run them, it’s probably an indication that you’re doing
it wrong.

	Easy to understand. If your test code isn’t obvious, please add comments on
what it’s doing.

 Code of Conduct

Code of Conduct

Participation in the django CMS project is governed by a code of conduct.

The django CMS community is a pleasant one to be involved in for everyone, and
we wish to keep it that way. Participants are expected to behave and
communicate with others courteously and respectfully, whether online or in
person, and to be welcoming, friendly and polite.

We will not tolerate abusive behaviour or language or any form of harassment.

Individuals whose behaviour is a cause for concern will be give a warning, and
if necessary will be excluded from participation in official django CMS
channels (email lists, IRC channels, etc) and events. The Django Software
Foundation [http://djangoproject.com/foundation/] will also be informed of
the issue.

Raising a concern

If you have a concern about the behaviour of any member of the django CMS
community, please contact one of the members of the core development team.

Your concerns will be taken seriously, treated as confidential and
investigated. You will be informed, in writing and as promptly as possible, of
the outcome.

 Release notes & upgrade information

Release notes & upgrade information

Some versions of django CMS present more complex upgrade paths than others, and some require you
to take action. It is strongly recommended to read the release notes carefully when upgrading.

It goes without saying that you should backup your database before embarking on any process that
makes changes to your database.

	3.8.0 release notes

	3.7.4 release notes

	3.7.3 release notes

	3.7.2 release notes

	3.7.1 release notes

	3.7.0 release notes

	3.6.1 release notes

	3.6.0 release notes

	3.5.4 release notes

	3.5.3 release notes

	3.5.2 release notes

	3.5.1 release notes

	3.5.0 release notes

	3.4.7 release notes

	3.4.6 release notes

	3.4.5 release notes

	3.4.4 release notes

	3.4.3 release notes

	3.4.2 release notes

	3.4.1 release notes

	3.4 release notes

	3.3 release notes

	3.2.5 release notes

	3.2.4 release notes

	3.2.3 release notes

	3.2.2 release notes

	3.2.1 release notes

	3.2 release notes

	3.1.5 release notes

	3.1.4 release notes

	3.1.3 release notes

	3.1.2 release notes

	3.1.1 release notes

	3.1 release notes

	3.0.16 release notes

	3.0.15 release notes

	3.0.14 release notes

	3.0.13 release notes

	3.0.12 release notes

	3.0.11 release notes

	3.0.10 release notes

	3.0.9 release notes

	3.0.8 release notes

	3.0.7 release notes

	3.0.6 release notes

	3.0.3 release notes

	3.0 release notes

	2.4 release notes

	2.3.4 release notes

	2.3.3 release notes

	2.3.2 release notes

	2.3 release notes

	2.2 release notes

	Upgrading from 2.1.x and Django 1.2.x

 3.8.0 release notes

3.8.0 release notes

This release of django CMS concentrates on introducing support for Django 3.1
and dropps support for Python 2.7 and 3.4. It also removes support for Django
versions below 2.2.

What’s new in 3.8.0

Improvements and new features

	Introduced Django 3.1 support.

	Dropped support for Python 2.7 and Python 3.4

	Dropped support for Django < 2.2

Bug Fixes

	Removed djangocms-column from the manual installation instructions

	Removed duplicate attr declaration from the documentation

	Fixed a reference to a wrong variable in log messages in utils/conf.py

	Fixed an issue in wizards/create.html where the error message did not use the plural form

How to upgrade to 3.8

We assume you are upgrading from django CMS 3.7.

Please make sure that your current database is consistent and in a healthy
state, and make a copy of the database before proceeding further.

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or
APIs (see above). Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.

Run:

python manage.py migrate

to apply the new migrations.

 3.7.4 release notes

3.7.4 release notes

What’s new in 3.7.4

Bug Fixes

	Fixed a security vulnerability in the plugin_type url parameter to insert JavaScript code.

 3.7.3 release notes

3.7.3 release notes

What’s new in 3.7.3

Bug Fixes

	Fixed apphooks config select in Firefox

	Fixed compatibility errors on python 2

	Fixed long page titles in Page tree/list view to prevent horizontal scrolling

 3.7.2 release notes

3.7.2 release notes

What’s new in 3.7.2

Bug Fixes

	migrated from django.utils.six to the six package

	migrated from django.utils.lru_cache to functools.lru_cache

	migrated from render_to_response to render in cms.views

	added cms.utils.compat.dj.available_attrs

	added --force-color and --skip-checks in base commands when using Django 3

	replaced staticfiles and admin_static with static

	replaced djangocms-helper with django-app-helper

Improvements and new features

	Added support for Django 3.0

	Added support for Python 3.8

How to upgrade to 3.7.2

Django 3.0 changed the default behaviour of the XFrameOptionsMiddleware from
SAMEORIGIN to DENY. In order for django CMS to function, X_FRAME_OPTIONS
needs to be set to SAMEORIGIN in the settings.py:

X_FRAME_OPTIONS = 'SAMEORIGIN'

 3.7.1 release notes

3.7.1 release notes

What’s new in 3.7.1

Bug Fixes

	Fixed a bug where creating a page via the cms.api.create_page ignores
left/right positions.

	Fixed documentation example for urls.py when using multiple languages.

	Fixed a bug where request.current_page would always be the public page,
regardless of the toolbar status (draft / live). This only affected custom
urls from an apphook.

	Fixed a bug where the menu would render draft pages even if the page on
the request was a public page. This happens when a user without change
permissions requests edit mode.

	Fixed the ‘urls.W001’ warning with custom apphook urls

	Fixed missing {% trans %} to toolbar shortcuts.

	Fixed a simple typo in the docstring for cms.utils.helpers.normalize_name.

Improvements and new features

	Added code of conduct reference file to the root directory

	Moved contributing file to the root directory

	Added better templates for new issue requests

	Mark public static placeholder dirty when published.

	Prevent non-staff users to login with the django CMS toolbar

	Improved and simplified permissions documentation.

	Improved apphooks documentation.

	Improved CMSPluginBase documentation.

	Improved documentation related to nested plugins.

	Updated installation tutorial.

	Updated branch and release policy.

 3.7.0 release notes

3.7.0 release notes

This release of django CMS concentrates on introducing support for Django 2.2 LTS
and Python 3.7.

What’s new in 3.7.0

Improvements and new features

	Introduced Django 2.2 support.

	Introduced Python 3.7 support.

	Fixed test suite.

	Fixed override urlconf_module so that Django system checks don’t crash.

How to upgrade to 3.7

We assume you are upgrading from django CMS 3.6.

Please make sure that your current database is consistent and in a healthy
state, and make a copy of the database before proceeding further.

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or
APIs (see above). Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.

Run:

python manage.py migrate

to apply the new migrations.

Create a new django CMS 3.7 project

On the Divio Cloud

The Divio Cloud offers an easy way to set up django CMS projects. In the Divio Cloud Control Panel [https://control.divio.com], create a new django CMS project and Deploy it.

Using the django CMS Installer

Note

The django CMS Installer is not yet available for django CMS 3.6 or Django 2 or later.

This section will be updated or removed before the final release of django CMS 3.6.

Contributors to this release

	Daniele Procida

	Vadim Sikora

	Paulo Alvarado

	Bartosz Płóciennik

	Katie McLaughlin

	Krzysztof Socha

	Mateusz Kamycki

	Sergey Fedoseev

	Aliaksei Urbanski

	heppstux

	Chematronix

	Frank

	Jacob Rief

	Julz

	Angelo Dini

 3.6.1 release notes

3.6.1 release notes

What’s new in 3.6.1

Bug Fixes

	Fixed a security vulnerability in the plugin_type url parameter to insert JavaScript code.

 3.6.0 release notes

3.6.0 release notes

This release of django CMS concentrates on introducing support for Django 2.0
and Django 2.1, and dropping support for Django versions lower than 1.11.

What’s new in 3.6.0

Improvements and new features

	introduced support for Django 2.0

	introduced support for Django 2.1

	removed support for Django versions older than 1.11

	added page_title parameter for cms.api.create_page() and cms.api.create_title()

	length restriction for Title.meta_description was moved from model to form; field length was
increased to 320 characters.

Removal of deprecated functionality

Previously deprecated functionality has been removed:

	Signal handlers for Page, Title, Placeholder and CMSPlugin models was removed.

	Removed the cms moderator command.

	Removed the translatable content get/set methods from CMSPlugin model.

How to upgrade to 3.6

We assume you are upgrading from django CMS 3.5.

Please make sure that your current database is consistent and in a healthy
state, and make a copy of the database before proceeding further.

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or
APIs (see above). Some third-party components may need to be updated.

Install the new version of django CMS from GitHub or via pip.

Run:

python manage.py migrate

to apply the new migrations.

Create a new django CMS 3.6 project

On the Divio Cloud

The Divio Cloud offers an easy way to set up django CMS projects. In the Divio Cloud Control Panel [https://control.divio.com], create a new django CMS project and Deploy it.

Using the django CMS Installer

Note

The django CMS Installer is not yet available for django CMS 3.6 or Django 2 or later.

This section will be updated or removed before the final release of django CMS 3.6.

Contributors to this release

	Daniele Procida

	Vadim Sikora

	Paulo Alvarado

	Bartosz Płóciennik

	Katie McLaughlin

	Krzysztof Socha

	Mateusz Kamycki

	Sergey Fedoseev

	Aliaksei Urbanski

	heppstux

	Chematronix

	Frank

	Jacob Rief

	Julz

 3.5.4 release notes

3.5.4 release notes

What’s new in 3.5.4

Bug Fixes

	Fixed a security vulnerability in the plugin_type url parameter to insert JavaScript code.

 3.5.3 release notes

3.5.3 release notes

What’s new in 3.5.3

Bug Fixes

	Fixed TreeNode.DoesNotExist exception raised when exporting
and loading database contents via dumpdata and loaddata.

	Fixed a bug where request.current_page would always be the public page,
regardless of the toolbar status (draft / live). This only affected custom
urls from an apphook.

	Removed extra quotation mark from the sideframe button template

	Fixed a bug where structureboard tried to preload markup when using legacy
renderer

	Fixed a bug where updates on other tab are not correctly propagated if the
operation was to move a plugin in the top level of same placeholder

	Fixed a bug where xframe options were processed by clickjacking middleware
when page was served from cache, rather then get this value from cache

	Fixed a bug where cached page permissions overrides global permissions

	Fixed a bug where plugins that are not rendered in content wouldn’t be
editable in structure board

	Fixed a bug with expanding static placeholder by clicking on “Expand All” button

	Fixed a bug where descendant pages with a custom url would lose the overwritten
url on save.

	Fixed a bug where setting the on_delete option on PlaceholderField
and PageField fields would be ignored.

	Fixed a bug when deleting a modal from changelist inside a modal

 3.5.2 release notes

3.5.2 release notes

What’s new in 3.5.2

Bug Fixes

	Fixed a bug where short-cuts menu entry would stop working after toolbar reload

	Fixed a race condition in frontend code that could lead to sideframe being
opened with blank page

	Fixed a bug where the direct children of the homepage would get a leading /
character when the homepage was moved or published.

	Fixed a bug where non-staff user would be able to open empty structure board

	Fixed a bug where a static file from Django admin was referenced that no
longer existed in Django 1.9 and up.

	Fixed a bug where the migration 0018 would fail under certain databases.

 3.5.1 release notes

3.5.1 release notes

What’s new in 3.5.1

Bug Fixes

	Fixed a bug where editing pages with primary keys greater than 999 would throw an
exception.

	Fixed a MultipleObjectsReturned exception raised on the page types migration
with multiple page types per site.

	Fixed a bug which prevented toolbar js from working correctly when rendered
before toolbar.

	Fixed a bug where CMS would incorrectly highlight plugin content when plugin
contains invisible elements

	Fixed a regression where templates which inherit from a template using an {% extends %}
tag with a default would raise an exception.

 3.5.0 release notes

3.5.0 release notes

This release of django CMS concentrates on usability and user-experience, by improving
its responsiveness while performing editing operations, particularly those that
involve updates to plugin trees.

It also continues our move to decouple logical layers in the system. Most significant in this
release is the new separation of the structure board from page rendering, which allows the
structure board to be updated without requiring the page to be re-rendered. This vastly
speeds up page editing, especially when dealing with complex plugin structures.

Another significant example is that the Page model has been decoupled from the site navigation
hierarchy. The navigation tree now exists independently, offering further speed advantages, as well
as future benefits for development and extensibility.

Our work to improve separation of concerns can also be seen in the renaming of publishing controls,
so that they no longer refer to specifically to pages. Ultimately, publishing actions could apply
to any kind of content, and this is a step in that direction.

What’s new in 3.5.0

Improvements and new features

	structure board now decoupled from page rendering

	Page model decoupled from the site navigation

	Page copy between sites

	better behaviour of the language chooser for published/unpublished languages

	improved handling, refactored code for language fallbacks

	improved repr for Page, Title, Placeholder and CMSPlugin models

	generic publishing controls no longer refer to “page”

	improved documentation

Bug Fixes

This release fixes:

	a Page template settings permission issue (failed to check for “Change advanced settings
permission”)

	a bug allowing Pages to be pasted without the correct translations for the target site

	a bug that prevented users from seeing the welcome screen when debug is off

	a bug allowing aliased plugins to render even if their host page was unpublished

	a bug where focusing inputs in modal would require two clicks in some browsers

	minor issues with initialisation of interface widgets.

	minor clipboard bugs

Removal of deprecated functionality

Previously deprecated functionality has been removed:

	Menu modules can no longer be named menus.py (use cms_menus.py).

	The cms.utils.django_load.py module has been removed (in favour of standard Django helpers)

	Support for Django Reversion has been removed.

	The urls and menus attributes are no longer supported on CMSApp (apphook) classes.
All apphook subclasses now need a get_urls() method. In addition, if your apphook has a
menus attribute, that will need to be replaced by a get_menus() method.

	Page.revision_id has been removed

	Deprecated content creation wizard settings have been removed.

Backward-incompatible changes

	The home page is no longer automatically the root page in the tree (since there is no longer a
page tree). Instead, the home page is set manually in the page list admin.

	Previously, ordered pages could be obtained via Page.object.order_by('path'); the equivalent
is now Page.object.order_by('node__path').

	Pages are no longer ordered by path. For ordering, use order_by('node__path').

	Pages no longer have a site field. Whereas previously you could use filter(site=id),
now use filter(node__site==id).

	Pages no longer have a parent field. Instead a parent property now returns the new
parent_page attribute, which relies on the node tree.

	Never-published pages can no longer have a ‘pending’ publishing state. A data migration,
cms/migrations/0018_pagenode.py, removes this.

	Using self.request.path or self.request.path_info in a CMSToolbar subclass method is
no longer reliable and is discouraged. Instead, use self.toolbar.request_path.

How to upgrade to 3.5

We assume you are upgrading from django CMS 3.4.

Please make sure that your current database is consistent and in a healthy
state, and make a copy of the database before proceeding further.

Then run:

python manage.py migrate # to ensure that your database is up-to-date with migrations
python manage.py cms fix-tree

Check custom code and third-party applications for use of deprecated or removed functionality or
APIs (see above). Some third-party components may need to be updated.

Install the new version of django CMS from GitHub.

Run:

python manage.py migrate

to apply the new migrations.

Create a new django CMS 3.5 project

On the Divio Cloud

The Divio Cloud offers an easy way to set up django CMS projects. In the Divio Cloud Control Panel [https://control.divio.com], create a new django CMS project and Deploy it.

Using the django CMS Installer

See our installation guide in the tutorial. However, make
sure that you:

	have installed the latest version of django CMS Installer (at least version 0.9.8)

	specify the version to install as develop: djangocms --cms-version=develop mysite

The user name and password will both be admin.

Contributors to this release

	Alexander Paramonov

	Andras Gyömrey

	Daniele Procida

	Gianluca Guarini

	Iacopo Spalletti

	Jacob Rief

	Jens Diemer

	Júlio R. Lucchese

	Leon Smith

	Ludwig Hähne

	Mark Walker

	Nicolas PASCAL

	Nina Zakharenko

	Paulo Alvarado

	Robert Stein

	Salmanul Farzy

	Sergey Fedoseev

	Shaun Brady

	Stefan Foulis

	Tim Graham

	Vadim Sikora

	alskgj

 3.4.7 release notes

3.4.7 release notes

What’s new in 3.4.7

Bug Fixes

	Removed extra quotation mark from the sideframe button template

	Fixed a bug where xframe options were processed by clickjacking middleware
when page was served from cache, rather then get this value from cache

	Fixed a bug where cached page permissions overrides global permissions

	Fixed a bug where editing pages with primary keys greater than 9999 would throw an
exception.

	Fixed broken wizard page creation when no language is set within the template context (see #5828).

	Fixed a security vulnerability in the plugin_type url parameter to insert JavaScript code.

 3.4.6 release notes

3.4.6 release notes

What’s new in 3.4.6

Bug Fixes

	Changed the way drag and drop works in the page tree. The page has to be
selected first before moving.

	Fixed a bug where the cms alias plugin leaks context into the rendered aliased plugins.

	Fixed a bug where users without the “Change advanced settings” permission could still
change a page’s template.

	Added on_delete to ForeignKey and OneToOneField to silence Django
deprecation warnings.

	Fixed a bug where the sitemap would ignore the public setting of the site languages
and thus display hidden languages.

	Fixed an AttributeError raised when adding or removing apphooks in Django 1.11.

	Fixed an InconsistentMigrationHistory error raised when the contenttypes app
has a pending migration after the user has applied the 0010_migrate_use_structure migration.

 3.4.5 release notes

3.4.5 release notes

This version of django CMS is the first to introduce compatibility with Django 1.11, itself also a Long-Term Support release.

What’s new in 3.4.5

Bug Fixes

	Fixed a bug where slug wouldn’t be generated in the creation wizard

	Fixed a bug where the add page endpoint rendered Change page as the html title.

	Fixed an issue where non-staff users could request the wizard create endpoint.

	Fixed an issue where the Edit page toolbar button wouldn’t show on non-cms pages
with placeholders.

	Fixed a bug where placeholder inheritance wouldn’t work if the inherited placeholder
is cached in an ancestor page.

	Fixed a regression where the code following a {% placeholder x or %} declaration,
was rendered before attempting to inherit content from parent pages.

	Changed page/placeholder cache keys to use sha1 hash instead of md5 to be FIPS compliant.

	Fixed a bug where the change of a slug would not propagate to all descendant pages

	Fixed a ValueError raised when using ManifestStaticFilesStorage or similar for static files.
This only affects Django >= 1.10

Improvements and new features

	Introduced Django 1.11 compatibility

 3.4.4 release notes

3.4.4 release notes

What’s new in 3.4.4

Bug Fixes

Improvements and new features

Deprecations

Backward incompatible changes

Page methods

The following methods have been removed from the Page model:

	reset_to_live
This internal method was removed and replaced with revert_to_live.

Placeholder utilities

Because of a performance issue with placeholder inheritance,
we’ve altered the return value for the following internal placeholder utility functions:

	cms.utils.placeholder._scan_placeholders
This will now return a list of Placeholder tag instances instead of a list of placeholder slot names.
You can get the slot name by calling the get_name() method on the Placeholder tag instance.

	cms.utils.placeholder.get_placeholders
This will now return a list of DeclaredPlaceholder instances instead of a list of placeholder slot names.
You can get the slot name by accessing the slot attribute on the DeclaredPlaceholder instance.

 3.4.3 release notes

3.4.3 release notes

What’s new in 3.4.3

Security Fixes

	Fixed a security vulnerability in the page redirect field which allowed users
to insert JavaScript code.

	Fixed a security vulnerability where the next parameter for the toolbar login
was not sanitised and could point to another domain.

Thanks

Thanks to Mark Walker and Anthony Steinhauser for reporting the security issues.

 3.4.2 release notes

3.4.2 release notes

django CMS 3.4.2 introduces two key new features: Revert to live for pages, and support for Django 1.10

Revert to live is in fact being reintroduced in a new form following a complete rewrite of our revision handling
system, that was removed in django CMS 3.4 to make possible a greatly-improved new
implementation from scratch.

Revert to live is the first step in fully re-implementing revision management on a new basis.

The full set of changes is listed below.

What’s new in 3.4.2

Bug Fixes

	Escaped strings in close_frame JS template.

	Fixed a bug with text-transform styles on inputs affecting CMS login

	Fixed a typo in the confirmation message for copying plugins from a different
language

	Fixed a bug which prevented certain migrations from running in a multi-db setup.

	Fixed a regression which prevented the Page model from rendering correctly
when used in a raw_id_field.

	Fixed a regression which caused the CMS to cache the toolbar when CMS_PAGE_CACHE
was set to True and an anonymous user had cms_edit set to True on their session.

	Fixed a regression which prevented users from overriding content in an inherited
placeholder.

	Fixed a bug affecting Firefox for Macintosh users, in which use of the Command key later followed by Return would
trigger a plugin save.

	Fixed a bug where template inheritance setting creates spurious migration (see #3479)

	Fixed a bug which prevented the page from being marked as dirty (pending changes)
when changing the value of the overwrite url field.

	Fixed a bug where the page tree would not update correctly when a sibling page was moved
from left to right or right to left.

Improvements and new features

	Added official support for Django 1.10.

	Rewrote manual installation how-to documentation

	Re-introduced the “Revert to live” menu option.

	Added support for django-reversion >= 2 (see #5830)

	Improved the fix-tree command so that it also fixes non-root nodes (pages).

	Introduced placeholder operation signals.

Deprecations

	Removed the deprecated add_url(), edit_url(), move_url(), delete_url(), copy_url() properties of
CMSPlugin model.

	Added a deprecation warning to method render_plugin() in class CMSPlugin.

	Deprecated frontend_edit_template attribute of CMSPluginBase.

	The post_ methods in `PlaceholderAdminMixin have been deprecated in favour of
placeholder operation signals.

Other changes

	Adjusted Ajax calls triggered when performing a placeholder operation (add plugin, etc..) to include
a GET query called cms_path. This query points to the path where the operation originates from.

	Changed CMSPlugin.get_parent_classes() from method to classmethod.

 3.4.1 release notes

3.4.1 release notes

What’s new in 3.4.1

Bug Fixes

	Fixed a regression when static placeholder was uneditable if it was present
on the page multiple times

	Removed globally unique constraint for Apphook configs.

	Fixed a bug when keyboard short-cuts were triggered when form fields were
focused

	Fixed a bug when shift + space shortcut wouldn’t correctly highlight a
plugin in the structure board

	Fixed a bug when plugins that have top-level svg element would break
structure board

	Fixed a bug where output from the show_admin_menu_for_pages template tag
was escaped in Django 1.9

	Fixed a bug where plugins would be rendered as editable if toolbar was shown
but user was not in edit mode.

	Fixed CSS reset issue with short-cuts modal

 3.4 release notes

3.4 release notes

The most significant change in this release is the removal of revision support
(i.e. undo/redo/recover functionality on pages) from the core django CMS. This
functionality will be reinstated as an optional addon in due course, but in the
meantime, that functionality is not available.

What’s new in 3.4

	Changed the way CMS plugins are rendered. The HTML div with
cms-plugin class is no longer rendered around every CMS plugin. Instead a
combination of template tags and JavaScript is used to add event handlers
and plugin data directly to the plugin markup. This fixes most of the
rendering issues caused by the extra markup.

	Changed asset cache-busting implementation, which is now handled by a path change,
rather than the GET parameter.

	Added the option to copy pages in the page tree using the drag and drop
interface.

	Made it possible to use multi-table inheritance for Page/Title extensions.

	Refactored plugin rendering functionality to speed up loading time in both
structure and content modes.

	Added a new Shift + Space shortcut to switch between structure and
content mode while highlighting the current plugin, revealing its position.

	Improved keyboard navigation

	Added help modal about available short-cuts

	Added fuzzy matching to the plugin picker.

	Changed the downcast_plugins utility to return a generator instead of a
list.

	Fixed a bug that caused an aliased placeholder to show in structure mode.

	Fixed a bug that prevented aliased content from showing correctly without
publishing the page first.

	Added help text to an Alias plugin change form when attached to a page
to show the content editor where the content is aliased from.

	Removed revision support from django CMS core.
As a result both CMS_MAX_PAGE_HISTORY_REVERSIONS and CMS_MAX_PAGE_PUBLISH_REVERSIONS
settings are no longer supported, as well as the with_revision parameter
in cms.api.create_page and cms.api.create_title.

	In cms.plugin_base.CMSPluginBase methods get_child_classes and get_parent_classes now
are implemented as a @classmethod.

Upgrading to 3.4

A database migration is required because the default value of CMSPlugin.position was set to 0 instead of null.

Please make sure that your current database is consistent and in a healthy
state, and make a copy of the database before proceeding further.

Then run:

python manage.py migrate
python manage.py cms fix-tree

Backward incompatible changes

Apphooks & Toolbars

As per our deprecation policy we’ve now removed the backwards compatible shim
for cms_app.py and cms_toolbar.py.
If you have not done so already, please rename these to cms_apps.py and cms_toolbars.py.

Permissions

The permissions system was heavily refactored. As a result, several internal
functions and methods have been removed or changed.

Functions removed:

	user_has_page_add_perm

	has_page_add_permission

	has_page_add_permission_from_request

	has_any_page_change_permissions

	has_auth_page_permission

	has_page_change_permission

	has_global_page_permission

	has_global_change_permissions_permission

	has_generic_permission

	load_view_restrictions

	get_any_page_view_permissions

The following methods were changed to require a user parameter instead of a request:

	Page.has_view_permission

	Page.has_add_permission

	Page.has_change_permission

	Page.has_delete_permission

	Page.has_delete_translation_permission

	Page.has_publish_permission

	Page.has_advanced_settings_permission

	Page.has_change_permissions_permission

	Page.has_move_page_permission

These are also deprecated in favour of their counterparts in cms.utils.page_permissions.

To keep consistency with both django CMS permissions and Django permissions,
we’ve modified the vanilla permissions system (CMS_PERMISSIONS = False)
to require users to have certain Django permissions to perform an action.

Here’s an overview:

	Action

	Permission required

	Add Page

	Can Add Page & Can Change Page

	Change Page

	Can Change Page

	Delete Page

	Can Change Page & Can Delete Page

	Move Page

	Can Change Page

	Publish Page

	Can Change Page & Can Publish Page

This change will only affect non-superuser staff members.

Warning

If you have a custom Page extension with a configured toolbar,
please see the updated example.
It uses the new permission internals.

Manual plugin rendering

We’ve rewritten the way plugins and placeholders are rendered.
As a result, if you’re manually rendering plugins and placeholders
you’ll have to adapt your code to match the new rendering mechanism.

To render a plugin programmatically, you will need a context and request object.

Warning

Manual plugin rendering is not a public API, and as such it’s subject to change without notice.

from django.template import RequestContext
from cms.plugin_rendering import ContentRenderer

def render_plugin(request, plugin):
 renderer = ContentRenderer(request)
 context = RequestContext(request)
 # Avoid errors if plugin require a request object
 # when rendering.
 context['request'] = request
 return renderer.render_plugin(plugin, context)

Like a plugin, to render a placeholder programmatically, you will need a context and request object.

Warning

Manual placeholder rendering is not a public API, and as such it’s subject to change without notice.

from django.template import RequestContext
from cms.plugin_rendering import ContentRenderer

def render_placeholder(request, placeholder):
 renderer = ContentRenderer(request)
 context = RequestContext(request)
 # Avoid errors if plugin require a request object
 # when rendering.
 context['request'] = request
 content = renderer.render_placeholder(
 placeholder,
 context=context,
)
 return content

 3.3 release notes

3.3 release notes

django CMS 3.3 has been planned largely as a consolidation release, to build on the progress made
in 3.2 and pave the way for the future ones.

The largest major change is dropped support for Django 1.6 and 1.7, and Python 2.6 followed
by major code cleanup to remove compatibility shims.

What’s new in 3.3

	Removed support for Django 1.6, 1.7 and python 2.6

	Changed the default value of CMSPlugin.position to 0 instead of null

	Refactored the language menu to allow for better integration with many languages

	Refactored management commands completely for better consistency

	Fixed “failed to load resource” for favicon on welcome screen

	Changed behaviour of toolbar CSS classes: cms-toolbar-expanded class is only added now when toolbar is fully
expanded and not at the beginning of the animation. cms-toolbar-expanding and cms-toolbar-collapsing classes
are added at the beginning of their respective animations.

	Added unit tests for CMS JavaScript files

	Added frontend integration tests (written with Casper JS)

	Removed frontend integration tests (written with Selenium)

	Added the ability to declare cache expiration periods on a per-plugin basis

	Improved UI of page tree

	Improved UI in various minor ways

	Added a new setting CMS_INTERNAL_IPS for defining a set of IP addresses for which
the toolbar will appear for authorized users. If left unset, retains the
existing behaviour of allowing toolbar for authorized users at any IP address.

	Changed behaviour of sideframe; is no longer resizable, opens to 90% of the screen or 100% on
small screens.

	Removed some unnecessary reloads after closing sideframe.

	Added the ability to make pagetree actions work on currently picked language

	Removed deprecated CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE setting

	Introduced the method get_cache_expiration on CMSPluginBase to be used
by plugins for declaring their rendered content’s period of validity.

	Introduced the method get_vary_cache_on on CMSPluginBase to be used
by plugins for declaring VARY headers.

	Improved performance of plugin moving; no longer saves all plugins inside the placeholder.

	Fixed breadcrumbs of recently moved plugin reflecting previous position in
the tree

	Refactored plugin adding logic to no longer create the plugin before the user submits the form.

	Improved the behaviour of the placeholder cache

	Improved fix-tree command to sort by position and path when rebuilding positions.

	Fixed several regressions and tree corruptions on page move.

	Added new class method on CMSPlugin requires_parent_plugin

	Fixed behaviour of get_child_classes; now correctly calculates child classes when not
configured in the placeholder.

	Removed internal ExtraMenuItems tag.

	Removed internal PluginChildClasses tag.

	Modified RenderPlugin tag; no longer renders the content.html template
and instead just returns the results.

	Added a get_cached_template method to the Toolbar() main class to reuse loaded templates per request. It
works like Django’s cached template loader, but on a request basis.

	Added a new method get_urls() on the appbase class to get CMSApp.urls, to allow passing a page object to it.

	Changed JavaScript linting from JSHint and JSCS to ESLint

	Fixed a bug when it was possible to drag plugin into clipboard

	Fixed a bug where clearing clipboard was closing any open modal

	Added CMS_WIZARD_CONTENT_PLACEHOLDER setting

	Renamed the CMS_WIZARD_* settings to CMS_PAGE_WIZARD_*

	Deprecated the old-style wizard-related settings

	Improved documentation further

	Improved handling of uninstalled apphooks

	Fixed toolbar placement when foundation is installed

	Fixed an issue which could lead to an apphook without a slug

	Fixed numerous frontend issues

	Added contribution policies documentation

	Corrected an issue where someone could see and use the internal placeholder plugin in the structure board

	Fixed a regression where the first page created was not automatically published

	Corrected the instructions for using the delete-orphaned-plugins command

	Re-pinned django-treebeard to >=4.0.1

Upgrading to 3.3

A database migration is required because the default value of CMSPlugin.position was set to 0 instead of null.

Please make sure that your current database is consistent and in a healthy state,
and make a copy of the database before proceeding further.

Then run:

python manage.py migrate
python manage.py cms fix-tree

Deprecation of Old-Style Page Wizard Settings

In this release, we introduce a new naming scheme for the Page Wizard settings
that better reflects that they effect the CMS’s Page Wizards, rather than all
wizards. This will also allow future settings for different wizards with a
smaller chance of confusion or naming-collision.

This release simultaneously deprecates the old naming scheme for these settings.
Support for the old naming scheme will be dropped in version 3.5.0.

Action Required

Developers using any of the following settings in their projects should rename
them as follows at their earliest convenience.

CMS_WIZARD_DEFAULT_TEMPLATE => CMS_PAGE_WIZARD_DEFAULT_TEMPLATE
CMS_WIZARD_CONTENT_PLUGIN => CMS_PAGE_WIZARD_CONTENT_PLUGIN
CMS_WIZARD_CONTENT_PLUGIN_BODY => CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY
CMS_WIZARD_CONTENT_PLACEHOLDER => CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER

The CMS will accept both-schemes until 3.5.0 when support for the old scheme
will be dropped. During this transition period, the CMS prefers the new-style
naming if both schemes are used in a project’s settings.

Backward incompatible changes

Management commands

Management commands uses now argparse instead of optparse, following the Django deprecation
of the latter API.

The commands behaviour has remained untouched.

Detailed changes:

	commands now use argparse subcommand API which leads to slightly different help output
and other internal differences. If you use the commands by using Django’s call_command
function you will have to adapt the command invocation to reflect this.

	some commands have been rename replacing underscores with hyphens for consistency

	all arguments are now non-positional. If you use the commands by using Django’s
call_command function you will have to adapt the command invocation to reflect this.

Signature changes

The signatures of the toolbar methods get_or_create_menu have a new kwarg
disabled inserted (not appended). This was done to maintain consistency with
other, existing toolbar methods. The signatures are now:

	cms.toolbar.items.Menu.get_or_create_menu(key, verbose_name, disabled=False, side=LEFT, position=None)

	cms.toolbar.toolbar.CMSToolbar.get_or_create_menu(key, verbose_name=None, disabled=False, side=LEFT, position=None)

It should only affect developers who use kwargs as positional args.

 3.2.5 release notes

3.2.5 release notes

What’s new in 3.2.5

Note

This release is identical to 3.2.4, but had to be released also as 3.2.4 due
to a Python wheel packaging issue.

Bug Fixes

	Fix cache settings

	Fix user lookup for view restrictions/page permissions when using raw id field

	Fixed regression when page couldn’t be copied if CMS_PERMISSION was False

	Fixes an issue relating to uninstalling a namespaced application

	Adds “Can change page” permission

	Fixes a number of page-tree issues the could lead data corruption under
certain conditions

	Addresses security vulnerabilities in the render_model template tag that
could lead to escalation of privileges or other security issues.

	Addresses a security vulnerability in the cms’ usage of the messages framework

	Fixes security vulnerabilities in custom FormFields that could lead to
escalation of privileges or other security issues.

Important

This version of django CMS introduces a new setting:
CMS_UNESCAPED_RENDER_MODEL_TAGS with a default value of True. This default
value allows upgrades to occur without forcing django CMS users to do
anything, but, please be aware that this setting continues to allow known
security vulnerabilities to be present. Due to this, the new setting is
immediately deprecated and will be removed in a near-future release.

To immediately improve the security of your project and to prepare for
future releases of django CMS and related addons, the project
administrator should carefully review each use of the render_model
template tags provided by django CMS. He or she is encouraged to ensure
that all content which is rendered to a page using this template tag is
cleansed of any potentially harmful HTML markup, CSS styles or JavaScript.
Once the administrator or developer is satisfied that the content is
clean, he or she can add the “safe” filter parameter to the render_model
template tag if the content should be rendered without escaping. If there
is no need to render the content un-escaped, no further action
is required.

Once all template tags have been reviewed and adjusted where necessary,
the administrator should set CMS_UNESCAPED_RENDER_MODEL_TAGS = False
in the project settings. At that point, the project is more secure and
will be ready for any future upgrades.

DjangoCMS Text CKEditor

Action required

CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1.
If you’re using djangocms-text-ckeditor, please upgrade to 2.8.1 or later.

 3.2.4 release notes

3.2.4 release notes

What’s new in 3.2.4

Bug Fixes

	Fix cache settings

	Fix user lookup for view restrictions/page permissions when using raw id field

	Fixed regression when page couldn’t be copied if CMS_PERMISSION was False

	Fixes an issue relating to uninstalling a namespaced application

	Adds “Can change page” permission

	Fixes a number of page-tree issues the could lead data corruption under
certain conditions

	Addresses security vulnerabilities in the render_model template tag that
could lead to escalation of privileges or other security issues.

	Addresses a security vulnerability in the cms’ usage of the messages framework

	Fixes security vulnerabilities in custom FormFields that could lead to
escalation of privileges or other security issues.

Important

This version of django CMS introduces a new setting:
CMS_UNESCAPED_RENDER_MODEL_TAGS with a default value of True. This default
value allows upgrades to occur without forcing django CMS users to do
anything, but, please be aware that this setting continues to allow known
security vulnerabilities to be present. Due to this, the new setting is
immediately deprecated and will be removed in a near-future release.

To immediately improve the security of your project and to prepare for
future releases of django CMS and related addons, the project
administrator should carefully review each use of the render_model
template tags provided by django CMS. He or she is encouraged to ensure
that all content which is rendered to a page using this template tag is
cleansed of any potentially harmful HTML markup, CSS styles or JavaScript.
Once the administrator or developer is satisfied that the content is
clean, he or she can add the “safe” filter parameter to the render_model
template tag if the content should be rendered without escaping. If there
is no need to render the content unescaped, no further action
is required.

Once all template tags have been reviewed and adjusted where necessary,
the administrator should set CMS_UNESCAPED_RENDER_MODEL_TAGS = False
in the project settings. At that point, the project is more secure and
will be ready for any future upgrades.

DjangoCMS Text CKEditor

Action required

CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1.
If you’re using djangocms-text-ckeditor, please upgrade to 2.8.1 or later.

 3.2.3 release notes

3.2.3 release notes

What’s new in 3.2.3

Bug Fixes

	Fix the display of hyphenated language codes in the page tree

	Fix a family of issues relating to unescaped translations in the page tree

 3.2.2 release notes

3.2.2 release notes

What’s new in 3.2.2

Improvements

	Substantial “under-the-hood” improvements to the page tree resulting in
significant reduction of page-tree reloads and generally cleaner code

	Update jsTree version to 3.2.1 with slight adaptations to the page tree

	Improve the display and usability of the language menu, especially in cases
where there are many languages

	Documentation improvements

Bug Fixes

	Fix an issue relating to search fields in plugins

	Fix an issue where the app-resolver would trigger locales into migrations

	Fix cache settings

	Fix ToolbarMiddleware.is_cms_request logic

	Fix numerous Django 1.9 deprecations

	Numerous other improvements to overall stability and code quality

Model Relationship Back-References and Django 1.9

Django 1.9 is lot stricter about collisions in the related_names of
relationship fields than previous versions of Django. This has brought to light
issues in django CMS relating to the private field CMSPlugin.cmsplugin_ptr.
The issue becomes apparent when multiple packages are installed that provide
plugins with the same model class name. A good example would be if you have the
package djangocms-file installed, which has a poorly named CMSPlugin model
subclass called File, then any other package that has a plugin with a
field named “file” would most likely cause an issue. Considering that
djangocms-file is a very common plugin to use and a field name of “file” is
not uncommon in other plugins, this is less than ideal.

Fortunately, developers can correct these issues in their own projects while
they await improvements in django CMS. There is an internal field that is
created when instantiating plugins: CMSPlugin.cmsplugin_ptr. This private
field is declared in the CMSPlugin base class and is populated on instantiation
using the lower-cased model name of the CMSPlugin subclass that is
being registered.

A subclass to CMSPlugin can declare their own cmsplugin_ptr field to
immediately fix this issue. The easiest solution is to declare this field with a
related_name of “+”. In typical Django fashion, this will suppress the
back-reference and prevent any collisions. However, if the back-reference is
required for some reason (very rare), then we recommend using the pattern
%(app_label)s_%(class_name)s. In fact, in version 3.3 of django CMS, this is
precisely the string-template that the reference setup will use to create the
name. Here’s an example:

class MyPlugin(CMSPlugin):
 class Meta:
 app_label = 'my_package'

 cmsplugin_ptr = models.OneToOneField(
 CMSPlugin,
 related_name='my_package_my_plugin',
 parent_link=True
)

 # other fields, etc.
 # ...

Please note that CMSPlugin.cmsplugin_ptr will remain a private field.

Notice of Upcoming Change in 3.3

As outlined in the section immediately above, the pattern currently used to
derive a related_name for the private field CMSPlugin.cmsplugin_ptr may
result in frequent collisions. In django CMS 3.3, this string-template will be
changed to utilise both the app_label and the model class name. In the
majority of cases, this will not affect developers or users, but if your
project uses these back-references for some reason, please be aware of this
change and plan accordingly.

Treebeard corruption

Prior to 3.2.1 moving or pasting nested plugins could lead to some non-fatal
tree corruptions, raising an error when adding plugins under the newly
pasted plugins.

To fix these problems, upgrade to 3.2.1 or later and then run
manage.py cms fix-tree command to repair the tree.

DjangoCMS Text CKEditor

Action required

CMS 3.2.2 is not compatible with djangocms-text-ckeditor < 2.8.1.
If you’re using djangocms-text-ckeditor, please upgrade to 2.8.1 or up.

 3.2.1 release notes

3.2.1 release notes

What’s new in 3.2.1

Improvements

	Add support for Django 1.9 (with some deprecation warnings).

	Add support for django-reversion 1.10+ (required by Django 1.9+).

	Add placeholder name to the edit tooltip.

	Add attr['is_page']=True to CMS Page navigation nodes.

	Add Django and Python versions to debug bar info tooltip

Bug Fixes

	Fix an issue with refreshing the UI when switching CMS language.

	Fix an issue with sideframe urls not being remembered after reload.

	Fix breadcrumb in page revision list.

	Fix clash with Foundation that caused “Add plugin” button to be unusable.

	Fix a tree corruption when pasting a nested plugin under another plugin.

	Fix message with CMS version not showing up on hover in debug mode.

	Fix messages not being positioned correctly in debug mode.

	Fix an issue where plugin parent restrictions where not respected when pasting a plugin.

	Fix an issue where “Copy all” menu item could have been clicked on empty placeholder.

	Fix a bug where page tree styles didn’t load from STATIC_URL that pointed to a different host.

	Fix an issue where the side-frame wouldn’t refresh under some circumstances.

	Honour CMS_RAW_ID_USERS in GlobalPagePermissionAdmin.

Treebeard corruption

Prior to 3.2.1 moving or pasting nested plugins would lead to some non-fatal
tree corruptions, raising an error when adding plugins under the newly
pasted plugins.

To fix these problems, upgrade to 3.2.1 and then run manage.py cms fix-tree
command to repair the tree.

DjangoCMS Text CKEditor

Action required

CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1.
If you’re using djangocms-text-ckeditor, please upgrade to 2.8.1 or up.

 3.2 release notes

3.2 release notes

django CMS 3.2 introduces touch-screen support, significant improvements to the structure-board,
and numerous other updates and fixes for the frontend. Behind the scenes, auto-reloading following
apphook configuration changes will make life simpler for all users.

Warning

Upgrading from previous versions

3.2 introduces some changes that require action if you are upgrading
from a previous version. Please read Upgrading django CMS 3.1 to 3.2 for a step-by-step guide to the
process of upgrading from 3.1 to 3.2.

What’s new in 3.2

	new welcome page to help new users

	touch-screen support for most editing interfaces, for sizes from small tablets to table-top
devices

	enhanced and polished user interface

	much-needed improvements to the structure-board

	enhancements to components such as the pop-up plugin editor, sideframe (now called the overlay)
and the toolbar

	significant speed improvements on loading, HTTP requests and file sizes

	restarts are no longer required when changing apphook configurations

	a new content wizard system, adaptable to arbitrary content types

Changes that require attention

Touch interface support

For general information about touch interface support, see the touch screen device notes in the documentation.

Important

These notes about touch interface support apply only to the django CMS admin and editing
interfaces. The visitor-facing published site is wholly independent of this, and the
responsibility of the site developer. A good site should already work well for its visitors,
whatever interface they use!

Numerous aspects of the CMS and its interface have been updated to work well with touch-screen
devices. There are some restrictions and warnings that need to be borne in mind.

Device support

Smaller devices such as most phones are too small to be adequately usable. For example, your Apple
Watch is sadly unlikely to provide a very good django CMS editing experience.

Older devices will often lack the performance to support a usefully responsive frontend
editing/administration interface.

There are some device-specific issues still to be resolved. Some of these relate to the CKEditor
(the default django CMS text editor). We will continue to work on these and they will be addressed
in a future release.

See Device support for information about devices that have been tested and confirmed to
work well, and about known issues affecting touch-screen device support.

Feedback required

We’ve tested the CMS interface extensively, but will be very keen to have feedback from other users
- device reports, bug reports and general suggestions and opinions are very welcome.

Bug-fixes

	An issue in which {% placeholder %} template tags ignored the lang parameter has been
fixed.

However this may affect the behaviour of your templates, as now a previously-ignored
parameter will be recognised. If you used the lang parameter in these template tags you may
be affected: check the behaviour of your templates after upgrading.

Content wizards

Content creation wizards can help simplify production of content, and can be created to handle
non-CMS content too.

For a quick introduction to using a wizard as a content editor, see the user tutorial.

Renaming cms_app, cms_toolbar, menu modules

cms_app.py, cms_toolbar.py and menu.py have been renamed to
cms_apps.py, cms_toolbars.py and cms_menus.py for consistency.

Old names are still supported but deprecated; support will be removed in 3.4.

Action required

In your own applications that use these modules, rename cms_app.py to cms_apps.py,
cms_toolbar.py to cms_toolbars.py and menu.py to cms_menus.py.

New ApphookReloadMiddleware

Until now, changes to apphooks have required a restart of the server in order to take effect. A new
optional middleware class, cms.middleware.utils.ApphookReloadMiddleware, makes this automatic.

For developers

Various improvements have been implemented to make developing with and for django CMS easier. These
include:

	improvements to frontend code, to comply better with aldryn-boilerplate-bootstrap3 [https://github.com/aldryn/aldryn-boilerplate-bootstrap3]

	changes to directory structure for frontend related components such as JavaScript and SASS.

	We no longer use develop.py; we now use manage.py for all development tasks. See
How to contribute a patch for examples.

	We’ve moved our widgets.py JavaScript to static/cms/js/widgets.

Code formatting

We’ve switched from tabs (in some places) to four spaces everywhere. See Contributing code
for more on formatting.

gulp.js

We now use gulp.js for linting, compressing and bundling of frontend files.

Sass-related changes

We now use LibSass [https://github.com/sass/libsass] rather than Compass for building static
files (this only affects frontend developers of django CMS - contributors to it, not other users
or developers). We’ve also adopted CSSComb [http://csscomb.com].

.editorconfig file

We’ve added a .editorconfig (at the root of the project) to provide cues to text editors.

Automated spelling checks for documentation

Documentation is now checked for spelling. A make spelling command is available now when
working on documentation, and our Travis Continuous Integration server [https://travis-ci.org/divio/django-cms] also runs these checks.

See the Spelling section in the documentation.

New structure board

The structure board is cleaner and easier to understand. It now displays its elements in a tree,
rather than in a series of nested boxes.

You can optionally enable the old appearance and behaviour with the
CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE setting (this option will be removed in 3.3).

Replaced the sideframe with an overlay

The sideframe that could be expanded and collapsed to reveal a view of the admin and other controls
has been replaced by a simpler and more elegant overlay mechanism.

The API documentation still refers to the sideframe, because it is invoked in the same way, and
what has changed is merely the behaviour in the user’s browser.

In other words, sideframe and the overlay refer to different versions of the same thing.

New startup page

A new startup mode makes it easier for users (especially new users) to dive straight into editing
when launching a new site. See the Tutorial for more.

Known issues

The sub-pages of a page with an apphook will be unreachable [https://github.com/divio/django-cms/issues/4758] (404 page not found), due to internal URL
resolution mechanisms in the CMS. Though it’s unlikely that most users will need sub-pages of this
kind (typically, an apphooked page will create its own sub-pages) this issue will be addressed in a
forthcoming release.

Backward-incompatible changes

See the Frontend code documentation.

There are no other known backward-incompatible changes.

Upgrading django CMS 3.1 to 3.2

Please note any changes that require action above, and take action accordingly.

A database migration is required (a new model, UrlconfRevision has been added as part of the
apphook reload mechanism):

Note also that any third-party applications you update may have their own migrations, so as always,
before upgrading, please make sure that your current database is consistent and in a healthy state,
and make a copy of the database before proceeding further.

Then run:

python manage.py migrate

to migrate.

Otherwise django CMS 3.2 represents a fairly easy upgrade path.

Pending deprecations

In django CMS 3.3:

Django 1.6, 1.7 and Python 2.6 will no longer be supported. If you still using these versions,
you are strongly encouraged to begin exploring the upgrade process to a newer version.

The CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE setting will be removed.

 3.1.5 release notes

3.1.5 release notes

What’s new in 3.1.5

Bug Fixes

	Fixed a tree corruption when pasting a nested plugin under another plugin.

	Improve CMSPluginBase.render documentation

	Fix CMSEditableObject context generation which generates to errors with django-classy-tags 0.7.1

	Fix error in toolbar when LocaleMiddleware is not used

	Move templates validation in app.ready

	Fix ExtensionToolbar when language is removed but titles still exists

	Fix pages menu missing on fresh install 3.1

	Fix incorrect language on placeholder text for redirect field

	Fix PageSelectWidget JS syntax

	Fix redirect when disabling toolbar

	Fix CMS_TOOLBAR_HIDE causes ‘WSGIRequest’ object has no attribute ‘toolbar’

Treebeard corruption

Prior to 3.1.5 moving or pasting nested plugins would lead to some non-fatal tree corruptions,
raising an error when adding plugins under the newly pasted plugins.

To fix these problems, upgrade to 3.1.5 and then run manage.py cms fix-tree command to
repair the tree.

DjangoCMS Text CKEditor

Action required

CMS 3.1.5 is not compatible with djangocms-text-ckeditor < 2.7.1.
If you’re using djangocms-text-ckeditor, please upgrade to 2.7.1 or up.
Keep in mind that djangocms-text-ckeditor >= 2.8 is compatible only with

 3.1.4 release notes

3.1.4 release notes

What’s new in 3.1.4

Bug Fixes

	Fixed a problem in 0010_migrate_use_structure.py that broke some migration paths to Django 1.8

	Fixed fix_tree command

	Removed some warnings for Django 1.9

	Fixed issue causing plugins to move when using scroll bar of plugin menu in Firefox & IE

	Fixed JavaScript error when using PageSelectWidget

	Fixed whitespace markup issues in draft mode

	Added plugin migrations layout detection in tests

	Fixed some treebeard corruption issues

Treebeard corruption

Prior to 3.1.4 deleting pages could lead to some non-fatal tree corruptions, raising an error when
publishing, deleting, or moving pages.

To fix these problems, upgrade to 3.1.4 and then run manage.py cms fix-tree command to
repair the tree.

 3.1.3 release notes

3.1.3 release notes

What’s new in 3.1.3

Bug Fixes

	Add missing migration

	Exclude PageUser manager from migrations

	Fix check for template instance in Django 1.8.x

	Fix error in PageField for Django 1.8

	Fix some Page tree bugs

	Declare Django 1.6.9 dependency in setup.py

	Make sure cache version returned is an int

	Fix issue preventing migrations to run on a new database (django 1.8)

	Fix get User model in 0010 migration

	Fix support for unpublished language pages

	Add documentation for plugins data migration

	Fix getting request in _show_placeholder_for_page on Django 1.8

	Fix template inheritance order

	Fix xframe options inheritance order

	Fix placeholder inheritance order

	Fix language chooser template

	Relax html5lib versions

	Fix redirect when deleting a page

	Correct South migration error

	Correct validation on numeric fields in modal pop-up dialogs

	Exclude scssc from manifest

	Remove unpublished pages from menu

	Remove page from menu items for performance reason

	Fix access to pages with expired ancestors

	Don’t try to modify an immutable QueryDict

	Only attempt to delete cache keys if there are some to be deleted

	Update documentation section

	Fix language chooser template

	Cast to int cache version

	Fix extensions copy when using duplicate page/create page type

Thanks

Many thanks community members who have submitted issue reports and especially to
these GitHub users who have also submitted pull requests: basilelegal, gigaroby, ikudryavtsev,
jokerejoker, josjevv, tomwardill.

 3.1.2 release notes

3.1.2 release notes

What’s new in 3.1.2

Bug Fixes

	Fix placeholder cache invalidation under some circumstances

	Update translations

 3.1.1 release notes

3.1.1 release notes

What’s new in 3.1.1

	Add Django 1.8 support

	Tutorial updates and improvements

	Add copy_site command

	Add setting to disable toolbar for anonymous users

	Add setting to hide toolbar when a URL is not handled by django CMS

	Add editor configuration

Bug Fixes

	Fixed an issue where privileged users could be tricked into performing actions without their knowledge via a CSRF vulnerability.

	Fix issue with causes menu classes to be duplicated in advanced settings

	Fix issue with breadcrumbs not showing

	Fix issues with show_menu template tags

	Fix an error in placeholder cache

	Fix get_language_from_request if POST and GET exists

	Minor documentation fixes

	Revert whitespace clean-up on flash player to fix it

	Correctly restore previous status of drag bars

	Fix an issue related to “Empty all” Placeholder feature

	Fix plugin sorting in Python 3

	Fix language-related issues when retrieving page URL

	Fix search results number and items alignment in page changelist

	Preserve information regarding the current view when applying the CMS decorator

	Fix errors with toolbar population

	Fix error with watch_models type

	Fix error with plugin breadcrumbs order

	Change the label “Save and close” to “Save as draft”

	Fix X-Frame-Options on top-level pages

	Fix order of which application URLs are injected into urlpatterns

	Fix delete non existing page language

	Fix language fallback for nested plugins

	Fix render_model template tag doesn’t show correct change list

	Fix Scanning for placeholders fails on include tags with a variable as an argument

	Fix handling of plugin position attribute

	Fix for some structureboard issues

	Pin South version to 1.0.2

	Pin html5lib version to 0.999 until a current bug is fixed

	Make shift tab work correctly in sub-menu

	Fix language chooser template

Potentially backward incompatible changes

The order in which the applications are injected is now based on the page depth, if you
use nested apphooks, you might want to check that this does not change the behaviour
of your applications depending on applications urlconf greediness.

Thanks

Many thanks community members who have submitted issue reports and especially to
these GitHub users who have also submitted pull requests: astagi, dirtycoder, doctormo,
douwevandermeij, driesdesmet, furiousdave, ldgarcia, maqnouch, nikolas, northben,
olarcheveque, pa0lin082, peterfarrell, sam-m888, sephii, stefanw, timgraham, vstoykov.

A special thank you to vad and nostalgiaz for their support on Django 1.8 support

A special thank to Matt Wilkes and Sylvain Fankhauser for reporting the security issue.

 3.1 release notes

3.1 release notes

django CMS 3.1 has been planned largely as a consolidation release, to build on the progress made
in 3.0 and establish a safe, solid base for more ambitious work in the future.

In this release we have tried to maintain maximum backwards-compatibility, particularly for
third-party applications, and endeavoured to identify and tidy loose ends in the system wherever
possible.

Warning

Upgrading from previous versions

3.1 introduces some changes that require action if you are upgrading
from a previous version. Please read Upgrading django CMS 3.0 to 3.1 for a step-by-step guide to the
process of upgrading from 3.0 to 3.1.

What’s new in 3.1

Switch from MPTT to MP

Since django CMS 2.0 we have relied on MPTT (Modified Pre-order Tree Traversal) for efficiently
handling tree structures in the database.

In 3.1, Django MPTT [https://github.com/django-mptt/django-mptt] has been replaced by
django-treebeard [https://github.com/django-treebeard/django-treebeard], to improve performance and
reliability.

Over the years MPTT has proved not to be fast enough for big tree operations (>1000 pages); tree
corruption, because of transactional errors, has also been a problem.

django-treebeard uses MP (Materialised Path). MP is more efficient and has more error resistance
then MPTT. It should make working with and using django CMS better - faster and reliable.

Other than this, end users should not notice any changes.

Note

User feedback required

We require as much feedback as possible about the performance of django-treebeard in this
release. Please let us know your experiences with it, especially if you encounter any problems.

Note

Backward incompatible change

While most of the low-level interface is very similar between django-mptt and
django-treebeard they are not exactly the same. If any custom code needs to make use of the
low-level interfaces of the page or plugins tree, please see the django-treebeard
documentation [http://django-treebeard.readthedocs.io/en/latest/] for information
on how to use equivalent calls in django-treebeard.

Note

Handling plugin data migrations

Please check Plugin data migrations for information on how to create
migrations compatible with django CMS 3.0 and 3.1

Action required

Run manage.py cms fix-mptt before you upgrade.

Developers who use django CMS will need to run the schema and data migrations that are part of this
release. Developers of third-party applications that relied on the Django MPTT that shipped with
django CMS are advised to update their own applications so that they install it independently.

Dropped support for Django 1.4 and 1.5

Starting from version 3.1, django CMS runs on Django 1.6 (specifically, 1.6.9 and later) and 1.7.

Warning

Django security support

Django 1.6 support is provided as an interim measure only. In accordance with the Django
Project’s security policies [https://docs.djangoproject.com/en/dev/internals/security/], 1.6
no longer receives security updates from the Django Project team. Projects running on Django
1.6 have known vulnerabilities, so you are advised to upgrade your installation to 1.7 or 1.8
as soon as possible.

Action required

If you’re still on an earlier version, you will need to install a newer one, and make sure that
your third-party applications are also up-to-date with it before attempting to upgrade django CMS.

South is now an optional dependency

As Django South is now required for Django 1.6 only, it’s marked as an optional dependency.

Action required

To install South along with django CMS use pip install django-cms[south].

Changes to PlaceholderAdmin.add_plugin

Historically, when a plugin was added to django CMS, a POST request was made to
the PlaceholderAdmin.add_plugin endpoint (and going back into very ancient
history before PlaceholderAdmin existed, it was PageAdmin.add_plugin).
This would create an instance of CMSPlugin, but not an instance of the
actual plugin model itself. It would then let the user agent edit the created
plugin, which when saved would put the database back in to a consistent state,
with a plugin instance connected to the otherwise empty and meaningless
CMSPlugin.

In some cases, “ghost plugins” would be created, if the process of creating the
plugin instance failed or were interrupted, for example by the browser window’s
being closed.

This would leave orphaned CMSPlugin instances in the database without any
data. This could result pages not working at all, due to the resulting database
inconsistencies.

This issue has now been solved. Calling CMSPluginBase.add_plugin with a
GET request now serves the form for creating a new instance of a plugin. Then on
submitting that form via POST, the plugin is created in its entirety, ensuring
a consistent database and an end to ghost plugins.

However, to solve it some backwards incompatible changes to non-documented
APIs that developers might have used have had to be made.

CMSPluginBase permission hooks

Until now, CMSPluginBase.has_delete_permission,
CMSPluginBase.has_change_permission and
CMSPluginBase.has_add_permission were handled by a single method, which
used an undocumented and unreliable property on CMSPluginBase instances
(or subclasses thereof) to handle permission management.

In 3.1, CMSPluginBase.has_add_permission is its own method that implements
proper permission checking for adding plugins.

If you want to work with those APIs, see the Django documentation [https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#django.contrib.admin.ModelAdmin.has_add_permission] for more
on the permission methods.

CMSPluginBase.get_form

Prior to 3.1, this method would only ever be called with an actual instance
available.

As of 3.1, this method will be called without an instance (the obj argument
to the method will be None) if the form is used to add a plugin, rather
than editing it. Again, this is in line with how Django’s ModelAdmin works.

If you need access to the Placeholder object to which the plugin will be
added, the request object is guaranteed to have a placeholder_id key
in request.GET, which is the primary key of the Placeholder object to
which the plugin will be added. Similarly, plugin_language in
request.GET holds the language code of the plugin to be added.

CMSPlugin.add_view

This method used to never be called, but as of 3.1 it will be. Should you need
to hook into this method, you may want to use the
CMSPluginBase.add_view_check_request method to verify that a request made to
this view is valid. This method will perform integrity and permission checks
for the GET parameters of the request.

Migrations moved

Migrations directories have been renamed to conform to the new standard layout:

	Django 1.7 migrations: in the default cms/migrations and menus/migrations directories

	South migrations: in the cms/south_migrations and menus/south_migrations directories

Action required

South 1.0.2 or newer is required to handle the new layout correctly, so make sure you have that
installed.

If you are upgrading from django CMS 3.0.x running on Django 1.7 you need to remove the old
migration path from MIGRATION_MODULES [https://docs.djangoproject.com/en/1.7/ref/settings/#migration-modules] settings.

Plugins migrations moving process

Core plugins are being changed to follow the new convention for the migration modules, starting
with djangocms_text_ckeditor 2.5 released together with django CMS 3.1.

Action required

Check the readme file of each plugin when upgrading to know the actions required.

Structure mode permission

A new Can use Structure mode* permission has been added.

Without this permission, a non-superuser will no longer have access to structure mode. This makes
possible a more strict workflow, in which certain users are able to edit content but not structure.

This change includes a data migration that adds the new permission to any staff user or group with
cms.change_page permission.

Action required

You may need to adjust these permissions once you have completed migrating your database.

Note that if you have existing users in your database, but are installing django CMS and running
its migrations for the first time, you will need to grant them these permissions - they will not
acquire them automatically.

Simplified loading of view restrictions in the menu

The system that loads page view restrictions into the menu has been improved, simplifying the
queries that are generated, in order to make it faster.

Note

User feedback required

We require as much feedback as possible about the performance of this feature in this
release. Please let us know your experiences with it, especially if you encounter any problems.

Toolbar API extension

The toolbar API has been extended to permit more powerful use of it in future development,
including the use of “clipboard-like” items.

Per-namespace apphook configuration

django CMS provides a new API to define namespaced Apphook configurations.

Aldryn Apphooks Config [https://github.com/aldryn/aldryn-apphooks-config] has
been created and released as a standard implementation to take advantage
of this, but other implementations can be developed.

Improvements to the toolbar user interface

Some minor changes have been implemented to improve the toolbar user interface.
The old Draft/Live switch has been replaced to achieve a more clear
distinction between page states, and Edit and Save as draft buttons are now
available in the toolbar to control the page editing workflow.

Placeholder language fallback default to True

language_fallback in CMS_PLACEHOLDER_CONF is True by default.

New template tags

render_model_add_block

The family of render_model template tags that allow Django
developers to make any Django model editable in the frontend has been extended with
render_model_add_block, which can offer arbitrary markup as the Edit icon (rather than
just an image as previously).

render_plugin_block

Some user interfaces have some plugins hidden from display in edit/preview mode.
render_plugin_block provides a way to expose them for editing, and also more generally
provides an alternative means of triggering a plugin’s change form.

Plugin table naming

Old-style plugin table names (for example, cmsplugin_<plugin name> are no longer
supported. Relevant code has been removed.

Action required

Any plugin table name must be migrated to the standard (<application name>_<table name> layout.

cms.context_processors.media replaced by cms.context_processors.cms_settings

Action required

Replace the cms.context_processors.media with cms.context_processors.cms_settings in
settings.py.

Upgrading django CMS 3.0 to 3.1

Preliminary steps

Before upgrading, please make sure that your current database is consistent and in a healthy state.

To ensure this, run two commands:

	python manage.py cms delete_orphaned_plugins

	python manage.py cms fix-mptt

Make a copy of the database before proceeding further.

Settings update

	Change cms.context_processors.media to cms.context_processors.cms_settings in
TEMPLATE_CONTEXT_PROCESSORS.

	Add treebeard to INSTALLED_APPS, and remove mptt if not required by other
applications.

	If using Django 1.7 remove cms and menus from MIGRATION_MODULES to support
the new migration layout.

	If migrating from Django 1.6 and below to Django 1.7, remove south from installed_apps.

	Eventually set language_fallback to False in CMS_PLACEHOLDER_CONF if you do
not want language fallback behaviour for placeholders.

Update the database

	Rename plugin table names, to conform to the new naming scheme (see above). Be warned that not
all third-party plugin applications may provide these migrations - in this case you will need to
rename the table manually. Following the upgrade, django CMS will look for the tables for these
plugins under their new name, and will report that they don’t exist if it can’t find them.

	The migration for MPTT to django-treebeard is handled by the django CMS migrations,
thus apply migrations to update your database:

python manage.py migrate

 3.0.16 release notes

3.0.16 release notes

Bug-fixes

	Fixed JavaScript error when using PageSelectWidget

	Fixed whitespace markup issues in draft mode

	Added plugin migrations layout detection in tests

 3.0.15 release notes

3.0.15 release notes

What’s new in 3.0.15

Bug Fixes

	Relax html5lib versions

	Fix redirect when deleting a page

	Correct South migration error

	Correct validation on numeric fields in modal pop-up dialogs

	Exclude scssc from manifest

	Remove unpublished pages from menu

	Remove page from menu items for performance reason

	Fix access to pages with expired ancestors

	Don’t try to modify an immutable QueryDict

	Only attempt to delete cache keys if there are some to be deleted

	Update documentation section

	Fix language chooser template

	Cast to int cache version

	Fix extensions copy when using duplicate page/create page type

Thanks

Many thanks community members who have submitted issue reports and especially to
these GitHub users who have also submitted pull requests: basilelegal.

 3.0.14 release notes

3.0.14 release notes

What’s new in 3.0.14

Bug Fixes

	Fixed an issue where privileged users could be tricked into performing actions without their knowledge via a CSRF vulnerability.

	Fix issue with causes menu classes to be duplicated in advanced settings

	Fix issue with breadcrumbs not showing

	Fix issues with show_menu template tags

	Minor documentation fixes

	Fix an issue related to “Empty all” Placeholder feature

	Fix plugin sorting in Python 3

	Fix search results number and items alignment in page changelist

	Preserve information regarding the current view when applying the CMS decorator

	Fix X-Frame-Options on top-level pages

	Fix order of which application URLs are injected into urlpatterns

	Fix delete non existing page language

	Fix language fallback for nested plugins

	Fix render_model template tag doesn’t show correct change list

	Fix Scanning for placeholders fails on include tags with a variable as an argument

	Pin South version to 1.0.2

	Pin html5lib version to 0.999 until a current bug is fixed

	Fix language chooser template

Potentially backward incompatible changes

The order in which the applications are injected is now based on the page depth, if you
use nested apphooks, you might want to check that this does not change the behaviour
of your applications depending on applications urlconf greediness.

Thanks

Many thanks community members who have submitted issue reports and especially to
these GitHub users who have also submitted pull requests: douwevandermeij, furiousdave,
nikolas, olarcheveque, sephii, vstoykov.

A special thank to Matt Wilkes and Sylvain Fankhauser for reporting the security issue.

 3.0.13 release notes

3.0.13 release notes

What’s new in 3.0.13

Bug Fixes

	Numerous documentation including installation and tutorial updates

	Numerous improvements to translations

	Improves reliability of apphooks

	Improves reliability of Advanced Settings on page when using apphooks

	Allow page deletion after template removal

	Improves upstream caching accuracy

	Improves CMSAttachMenu registration

	Improves handling of mis-typed URLs

	Improves redirection as a result of changes to page slugs, etc.

	Improves performance of “watched models”

	Improves frontend performance relating to re-sizing the sideframe

	Corrects an issue where items might not be visible in structure mode menus

	Limits version of django-mptt used in CMS for 3.0.x

	Prevent accidental upgrades to Django 1.8, which is not yet supported

Many thanks community members who have submitted issue reports and especially to
these GitHub users who have also submitted pull requests: elpaso, jedie, jrief,
jsma, treavis.

 3.0.12 release notes

3.0.12 release notes

What’s new in 3.0.12

Bug Fixes

	Fixes a regression caused by extra whitespace in JavaScript

 3.0.11 release notes

3.0.11 release notes

What’s new in 3.0.11

	Core support for multiple instances of the same apphooked application

	The template tag render_model_add can now accept a model class as well as a
model instance

Bug Fixes

	Fixes an issue with reverting to Live mode when moving plugins

	Fixes a missing migration issue

	Fixes an issue when using the PageField widget

	Fixes an issue where duplicate page slugs is not prevented in some cases

	Fixes an issue where copying a page didn’t copy its extensions

	Fixes an issue where translations where broken when operating on a page

	Fixes an edge-case SQLite issue under Django 1.7

	Fixes an issue where a confirmation dialog shows only some of the plugins to
be deleted when using the “Empty All” context-menu item

	Fixes an issue where deprecated mimetype was used instead of contenttype

	Fixes an issue where cms check erroneous displays warnings when a plugin
uses class inheritance

	Documentation updates

Other

	Updated test CI coverage

 3.0.10 release notes

3.0.10 release notes

What’s new in 3.0.10

	Improved Python 3 compatibility

	Improved the behaviour when changing the operator’s language

	Numerous documentation updates

Bug Fixes

	Revert a change that caused an issue with saving plugins in some browsers

	Fix an issue where URLs were not refreshed when a page slug changes

	Fix an issue with FR translations

	Fixed an issue preventing the correct rendering of custom contextual menu items for plugins

	Fixed an issue relating to recovering deleted pages

	Fixed an issue that caused the uncached placeholder tag to display cached content

	Fixed an issue where extra slashed would appear in apphooked URLs when APPEND_SLASH=False

	Fixed issues relating to the logout function

 3.0.9 release notes

3.0.9 release notes

What’s new in 3.0.9

Bug Fixes

	Revert a change that caused a regression in toolbar login

	Fix an error in a translated phrase

	Fix error when moving items in the page tree

 3.0.8 release notes

3.0.8 release notes

What’s new in 3.0.8

	Add require_parent option to CMS_PLACEHOLDER_CONF

Bug Fixes

	Fix django-mptt version dependency to be PEP440 compatible

	Fix some Django 1.4 compatibility issues

	Add toolbar sanity check

	Fix behaviour with CMSPluginBase.get_render_template()

	Fix issue on django >= 1.6 with page form fields.

	Resolve jQuery namespace issues in admin page tree and change form

	Fix issues for PageField in Firefox/Safari

	Fix some Python 3.4 compatibility issue when using proxy modules

	Fix corner case in plugin copy

	Documentation fixes

	Minor code clean-ups

Warning

Fix for plugin copy patches a reference leak in
cms.models.pluginmodel.CMSPlugin.copy_plugins, which caused the
original plugin object to be modified in memory. The fixed code
leaves the original unaltered and returns a modified copy.

Custom plugins that called cms.utils.plugins.copy_plugins_to or
cms.models.pluginmodel.CMSPlugin.copy_plugins may have relied on the
incorrect behaviour. Check your code for calls to these methods. Correctly
implemented calls should expect the original plugin instance to remain
unaltered.

 3.0.7 release notes

3.0.7 release notes

What’s new in 3.0.7

	Numerous updates to the documentation

	Numerous updates to the tutorial

	Updates to better support South 1.0

	Adds some new, user-facing documentation

Bug Fixes

	Fixes an issue with placeholderadmin permissions

	Numerous fixes for minor issues with the frontend UI

	Fixes issue where the CMS would not reload pages properly if the URL contained a # symbol

	Fixes an issue relating to limit_choices_to in forms.MultiValueFields

	Fixes PageField to work in Django 1.7 environments

Project & Community Governance

	Updates to community and project governance documentation

	Added list of retired core developers

	Added branch policy documentation

 3.0.6 release notes

3.0.6 release notes

What’s new in 3.0.6

Django 1.7 support

As of version 3.0.6 django CMS supports Django 1.7.

Currently our migrations for Django 1.7 are in cms/migrations_django to
allow better backward compatibility; in future releases the Django migrations
will be moved to the standard migrations directory, with the South
migrations in south_migrations.

To support the current arrangement you need to add the following to your
settings:

MIGRATION_MODULES = {
 'cms': 'cms.migrations_django',
 'menus': 'menus.migrations_django',
}

Warning

Applications migrations

Any application that defines a django CMS plugin or a model that uses a
PlaceholderField or depends in any way on django CMS models must also
provide Django 1.7 migrations.

Extended Custom User Support

If you are using custom user models and use CMS_PERMISSION = True then be
sure to check that PageUserAdmin and PageUserGroup is still in working
order.

The PageUserAdmin class now extends dynamically from the admin class that
handles the user model. This allows us to use the same search_fields and
filters in PageUserAdmin as in the custom user model admin.

CMSPlugin.get_render_template

A new method on plugins, that returns the template during the render phase,
allowing you to change the template based on any plugin attribute or context
status. See How to create Plugins for more.

Simplified toolbar API for page extensions

A simpler, more compact way to extend the toolbar for page extensions: Simplified Toolbar API.

 3.0.3 release notes

3.0.3 release notes

What’s new in 3.0.3

New Alias Plugin

A new Alias plugin has been added. You will find in your plugins and placeholders context menu in
structure mode a new entry called “Create alias”. This will create a new Alias plugin in the clipboard
with a reference to the original. It will render this original plugin/placeholder instead. This
is useful for content that is present in more then one place.

New Context Menu API

Plugins can now change the context menus of placeholders and plugins.
For more details have a look at the docs:

Extending context menus of placeholders or plugins

Apphook Permissions

Apphooks have now by default the same permissions as the page they are attached to.
This means if a page has for example a login required enabled all views in the apphook
will have the same behaviour.

Docs on how to disable or customise this behaviour have a look here:

Managing permissions on apphooks

 3.0 release notes

3.0 release notes

What’s new in 3.0

Warning

Upgrading from previous versions

3.0 introduces some changes that require action if you are upgrading
from a previous version.

Note

See the quick upgrade guide

New Frontend Editing

django CMS 3.0 introduces a new frontend editing system as well as a
customisable Django admin skin (djangocms_admin_style [https://github.com/divio/djangocms-admin-style]).

In the new system, Placeholders and their plugins are no longer managed in
the admin site, but only from the frontend.

In addition, the system now offer two editing views:

	content view, for editing the configuration and content of plugins.

	structure view, in which plugins can be added and rearranged.

Page titles can also be modified directly from the frontend.

New Toolbar

The toolbar’s code has been simplified and its appearance refreshed. The
toolbar is now a more consistent management tool for adding and changing
objects. See How to extend the Toolbar.

Warning

Upgrading from previous versions

3.0 now requires the django.contrib.messages application for the
toolbar to work.

New Page Types

You can now save pages as page types. If you then create a new page you may
select a page type and all plugins and contents will be pre-filled.

Experimental Python 3.3 support

We’ve added experimental support for Python 3.3. Support for Python 2.5 has
been dropped.

Better multilingual editing

Improvements in the django CMS environment for managing a multi-lingual site
include:

	a built-in language chooser for languages that are not yet public.

	configurable behaviour of the admin site’s language when switching between
languages of edited content.

CMS_SEO_FIELDS

The setting has been removed, along with the SEO fieldset in admin.

	meta_description field’s max_length is now 155 for optimal Google
integration.

	page_title is default on top.

	meta_keywords field has been removed, as it no longer serves any purpose.

CMS_MENU_TITLE_OVERWRITE

New default for this setting is True.

Plugin fallback languages

It’s now possible to specify fallback languages for a placeholder if the placeholder
is empty for the current language. This must be activated in
CMS_PLACEHOLDER_CONF per placeholder. It defaults to False to
maintain pre-3.0 behaviour.

language_chooser

The language_chooser template tag now only displays languages that are
public. Use the toolbar language chooser to change the language to non-public
languages.

Undo and Redo

If you have django-reversion installed you now have undo and redo
options available directly in the toolbar. These can now revert plugin
content as well as page content.

Plugins removed

We have removed plugins from the core. This is not because you are not
expected to use them, but because django CMS should not impose unnecessary
choices about what to install upon its adopters.

The most significant of these removals is cms.plugins.text.

We provide djangocms-text-ckeditor, a CKEditor-based Text Plugin. It’s
available from https://github.com/divio/djangocms-text-ckeditor. You may of
course use your preferred editor; others are available.

Furthermore, we removed the following plugins from the core and moved them into
separate repositories.

Note

In order to update from the old cms.plugins.X to the new
djangocms_X plugins, simply install the new plugin, remove the old
cms.plugins.X from settings.INSTALLED_APPS and add the new one
to it. Then run the migrations (python manage.py migrate djangocms_X).

File Plugin

We removed the file plugin (cms.plugins.file). Its new location is at:

	https://github.com/divio/djangocms-file

As an alternative, you could also use the following (yet you will not be able
to keep your existing files from the old cms.plugins.file!)

	https://github.com/divio/django-filer

Flash Plugin

We removed the flash plugin (cms.plugins.flash). Its new location is at:

	https://github.com/divio/djangocms-flash

Googlemap Plugin

We removed the Googlemap plugin (cms.plugins.googlemap).
Its new location is at:

	https://github.com/divio/djangocms-googlemap

Inherit Plugin

We removed the inherit plugin (cms.plugins.inherit).
Its new location is at:

	https://github.com/divio/djangocms-inherit

Picture Plugin

We removed the picture plugin (cms.plugins.picture).
Its new location is at:

	https://github.com/divio/djangocms-picture

Teaser Plugin

We removed the teaser plugin (cms.plugins.teaser).
Its new location is at:

	https://github.com/divio/djangocms-teaser

Video Plugin

We removed the video plugin (cms.plugins.video). Its new location is at:

	https://github.com/divio/djangocms-video

Link Plugin

We removed the link plugin (cms.plugins.link). Its new location is at:

	https://github.com/divio/djangocms-link

Snippet Plugin

We removed the snippet plugin (cms.plugins.snippet).
Its new location is at:

	https://github.com/divio/djangocms-snippet

As an alternative, you could also use the following (yet you will not be able
to keep your existing files from the old cms.plugins.snippet!)

	https://github.com/pbs/django-cms-smartsnippets

Twitter Plugin

Twitter disabled V1 of their API, thus we’ve removed the twitter plugin
(cms.plugins.twitter) completely.

For alternatives have a look at these plugins:

	https://github.com/nephila/djangocms_twitter

	https://github.com/changer/cmsplugin-twitter

Plugin Context Processors take a new argument

Plugin Context have had an argument added so that the rest
of the context is available to them. If you have existing plugin context
processors you will need to change their function signature to add the extra
argument.

Apphooks

Apphooks have moved from the title to the page model. This means you can no
longer have separate apphooks for each language. A new application instance name
field has been added.

Note

The reverse id is not used for the namespace any more. If you used
namespaced apphooks before, be sure to update your pages and fill out the
namespace fields.

If you use apphook apps with app_name for app namespaces, be sure to fill
out the instance namespace field application instance name as it’s now
required to have a namespace defined if you use app namespaces.

For further reading about application namespaces, please refer to the Django
documentation on the subject at https://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces

request.current_app has been removed. If you relied on this, use the
following code instead in your views:

def my_view(request):
 current_app = resolve(request.path_info).namespace
 context = RequestContext(request, current_app=current_app)
 return render_to_response("my_templace.html", context_instance=context)

Details can be found in Attaching an application multiple times.

PlaceholderAdmin

PlaceholderAdmin now is deprecated. Instead of deriving from
admin.ModelAdmin, a new mixin class PlaceholderAdminMixin has been
introduced which shall be used together with admin.ModelAdmin. Therefore
when defining a model admin class containing a placeholder, now add
PlaceholderAdminMixin to the list of parent classes, together with
admin.ModelAdmin.

PlaceholderAdmin doesn’t have language tabs any more and the plugin editor
is gone. The plugin API has changed and is now more consistent. PageAdmin
uses the same API as PlaceholderAdminMixin now. If your app talked with
the Plugin API directly be sure to read the code and the changed parameters.
If you use PlaceholderFields you should add the mixin
PlaceholderAdminMixin as it delivers the API for editing the plugins and
the placeholders.

The workflow in the future should look like this:

	Create new model instances via a toolbar entry or via the admin.

	Go to the view that represents the model instance and add content via
frontend editing.

Placeholder object permissions

In addition to model level permissions, Placeholder now checks if a user
has permissions on a specific object of that model. Details can be found here
in Permissions.

Placeholders are pre-fillable with default plugins

In CMS_PLACEHOLDER_CONF, for each placeholder configuration, you can specify
via ‘default_plugins’ a list of plugins to automatically add to the
placeholder if empty. See default_plugins in CMS_PLACEHOLDER_CONF.

Custom modules and plugin labels in the toolbar UI

It’s now possible to configure module and plugins labels to show in the toolbar
UI. See CMS_PLACEHOLDER_CONF for details.

New copy-lang subcommand

Added a management command to copy content (titles and plugins) from one
language to another.

The command can be run with:

manage.py cms copy_lang from_lang to_lang

Please read cms copy lang before using.

Frontend editor for Django models

Frontend editor is available for any Django model; see
documentation for details.

New Page related_name to Site

The Page object used to have the default related_name (page) to the
Site model which may cause clashing with other Django apps; the
related_name is now djangocms_pages.

Warning

Potential backward incompatibility

This change may cause you code to break, if you relied on Site.page_set
to access cms pages from a Site model instance: update it to use
Site.djangocms_pages

Moved all template tags to cms_tags

All template tags are now in the cms_tags namespace so to use any cms
template tags you can just do:

{% load cms_tags %}

getter and setter for translatable plugin content

A plugin’s translatable content can now be read and set through get_translatable_content()
and set_translatable_content(). See Custom Plugins for more info.

No more DB table-name magic for plugins

Since django CMS 2.0 plugins had their table names start with cmsplugin_. We removed this behaviour
in 3.0 and will display a deprecation warning with the old and new table name. If your plugin uses
south for migrations create a new empty schema migration and rename the table by hand.

Warning

When working in the django shell or coding at low level, you must
trigger the backward compatible behaviour (a.k.a. magical rename
checking), otherwise non migrated plugins will fail.
To do this execute the following code:

>>> from cms.plugin_pool import plugin_pool
>>> plugin_pool.set_plugin_meta()

This code can be executed both in the shell or in your python
modules.

Added support for custom user models

Since Django 1.5 it has been possible to swap out the default User model for a custom user model.
This is now fully supported by DjangoCMS, and in addition a new option has been added to the test
runner to allow specifying the user model to use for tests (e.g. --user=customuserapp.User)

Page caching

Pages are now cached by default.
You can disable this behaviour with CMS_PAGE_CACHE

Placeholder caching

Plugins have a new default property: cache=True. If all plugins in a placeholder have set this to
True the whole placeholder will be cached if the toolbar is not in edit mode.

Warning

If your plugin is dynamic and processes current user or request data be sure to set cache=False

Plugin caching

Plugins have a new attribute: cache=True. Its default value can be configured with CMS_PLUGIN_CACHE.

Per-page Clickjacking protection

An advanced option has been added which controls, on a per-page basis, the
X-Frame-Options header. The default setting is to inherit from the parent
page. If no ancestor specifies a value, no header will be set, allowing Django’s
own middleware to handle it (if enabled).

CMS_TEMPLATE context variable

A new CMS_TEMPLATE variable is now available in the context: it contains the path to the
current page template.
See CMS_TEMPLATE reference for details.

Upgrading from 2.4

Note

There are reports that upgrading the CMS from 2.4 to 3.0 may fail if
Django Debug Toolbar is installed. Please remove/disable Django Debug
Toolbar and other non-essential apps before attempting to upgrade, then
once complete, re-enable them following the “Explicit setup” [https://django-debug-toolbar.readthedocs.io/en/1.0/installation.html#explicit-setup]
instructions.

If you want to upgrade from version 2.4 to 3.0, there’s a few things you need to do.
Start of by updating the cms’ package:

pip install django-cms==3.0

Next, you need to make the following changes in your settings.py

	settings.INSTALLED_APPS

	Remove cms.plugin.twitter. This package has been deprecated, see Twitter Plugin.

	Rename all the other cms.plugins.X to djangocms_X, see Plugins removed.

	settings.CONTEXT_PROCESSORS

	Replace cms.context_processors.media with cms.context_processors.cms_settings

Afterwards, install all your previously renamed ex-core plugins (djangocms-whatever). Here’s a
full list, but you probably don’t need all of them:

pip install djangocms-file
pip install djangocms-flash
pip install djangocms-googlemap
pip install djangocms-inherit
pip install djangocms-picture
pip install djangocms-teaser
pip install djangocms-video
pip install djangocms-link
pip install djangocms-snippet

Also, please check your templates to make sure that you haven’t put the {% cms_toolbar %} tag into a {% block %}
tag. This is not allowed in 3.0 any more.

To finish up, please update your database:

python manage.py syncdb
python manage.py migrate (answer yes if your prompted to delete stale content types)

Finally, your existing pages will be unpublished, so publish them with the publisher command:

python manage.py publisher_publish

That’s it!

Pending deprecations

placeholder_tags

placeholder_tags is now deprecated, the render_placeholder template
tag can now be loaded from the cms_tags template tag library.

Using placeholder_tags will cause a DeprecationWarning to occur.

placeholder_tags will be removed in version 3.1.

cms.context_processors.media

cms.context_processors.media is now deprecated, please use
cms.context_processors.cms_settings by updating TEMPLATE_CONTEXT_PROCESSORS
in the settings

Using cms.context_processors.media will cause a DeprecationWarning to occur.

cms.context_processors.media will be removed in version 3.1.

 2.4 release notes

2.4 release notes

What’s new in 2.4

Warning

Upgrading from previous versions

2.4 introduces some changes that require action if you are upgrading
from a previous version.

You will need to read the sections Migrations overhaul and
Added a check command below.

Introducing Django 1.5 support, dropped support for Django 1.3 and Python 2.5

Django CMS 2.4 introduces Django 1.5 support.

In django CMS 2.4 we dropped support for Django 1.3 and Python 2.5.
Django 1.4 and Python 2.6 are now the minimum required versions.

Migrations overhaul

In version 2.4, migrations have been completely rewritten to address issues
with newer South releases.

To ease the upgrading process, all the migrations for the cms application
have been consolidated into a single migration file, 0001_initial.py.

	migration 0001 is a real migration, that gets you to the same point migrations 0001-0036 used to

	the migrations 0002 to 0036 inclusive still exist, but are now all dummy
migrations

	migrations 0037 and later are new migrations

How this affects you

If you’re starting with a new installation, you don’t need to worry about
this. Don’t even bother reading this section; it’s for upgraders.

If you’re using version 2.3.2 or newer, you don’t need to worry about this
either.

If you’re using version 2.3.1 or older, you will need to run a two-step
process.

First, you’ll need to upgrade to 2.3.3, to bring your migration history
up-to-date with the new scheme. Then you’ll need to perform the migrations for
2.4.

For the two-step upgrade process do the following in your project main directory:

pip install django-cms==2.3.3
python manage.py syncdb
python manage.py migrate
pip install django-cms==2.4
python manage.py migrate

Added delete orphaned plugins command

Added a management command for deleting orphaned plugins from the database.

The command can be run with:

manage.py cms delete_orphaned_plugins

Please read cms delete-orphaned-plugins before using.

Added a check command

Added a management command to check your configuration and environment.

To use this command, simply run:

manage.py cms check

This replaces the old at-runtime checks.

CMS_MODERATOR

Has been removed since it is no longer in use. From 2.4 onward, all pages
exist in a public and draft version. Users with the publish_page permission
can publish changes to the public site.

Management command required

To bring a previous version of your site’s database up-to-date, you’ll
need to run manage.py cms moderator on. Never run this command
without first checking for orphaned plugins, using the cms list
plugins command. If it reports problems, run manage.py cms
delete_orphaned_plugins. Running cms moderator with orphaned plugins
will fail and leave bad data in your database. See cms list
and cms delete-orphaned-plugins.

Also, check that all your plugins define a
copy_relations() method if required. You can do
this by running manage.py cms check and read the Presence of
“copy_relations” section. See Handling Relations for guidance on
this topic.

Added Fix MPTT Management command

Added a management command for fixing MPTT tree data.

The command can be run with:

manage.py cms fix-mptt

Removed the MultilingualMiddleware

We removed the MultilingualMiddleware. This removed rather some unattractive
monkey-patching of the reverse() function as well. As a benefit we now
support localisation of URLs and apphook URLs with standard Django helpers.

For django 1.4 more information can be found here:

https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns

If you are still running django 1.3 you are able to achieve the same functionality with django-i18nurl. It is a backport
of the new functionality in django 1.4 and can be found here:

https://github.com/brocaar/django-i18nurls

What you need to do:

	Remove cms.middleware.multilingual.MultilingualURLMiddleware from your
settings.

	Be sure django.middleware.locale.LocaleMiddleware is in your settings,
and that it comes after the SessionMiddleware.

	Be sure that the cms.urls is included in a i18n_patterns:

from django.conf.urls.i18n import i18n_patterns
from django.contrib import admin
from django.conf import settings
from django.urls import *

admin.autodiscover()

urlpatterns = i18n_patterns('',
 re_path(r'^admin/', include(admin.site.urls)),
 re_path(r'^', include('cms.urls')),
)

if settings.DEBUG:
 urlpatterns = patterns('',
 re_path(r'^media/(?P<path>.*)$', 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
 re_path(r'', include('django.contrib.staticfiles.urls')),
) + urlpatterns

	Change your url and reverse calls to language namespaces. We now support the django way of
calling other language urls either via {% language %} template tag or via activate("de") function call in views.

Before:

{% url "de:myview" %}

After:

{% load i18n %}{% language "de" %}
{% url "myview_name" %}
{% endlanguage %}

	reverse urls now return the language prefix as well. So maybe there is some code that adds language prefixes. Remove
this code.

Added LanguageCookieMiddleware

To fix the behaviour of django to determine the language every time from new, when you visit / on a page, this
middleware saves the current language in a cookie with every response.

To enable this middleware add the following to your MIDDLEWARE_CLASSES setting:

cms.middleware.language.LanguageCookieMiddleware

CMS_LANGUAGES

CMS_LANGUAGES has be overhauled. It is no longer a list of tuples like the LANGUAGES settings.

An example explains more than thousand words:

CMS_LANGUAGES = {
 1: [
 {
 'code': 'en',
 'name': gettext('English'),
 'fallbacks': ['de', 'fr'],
 'public': True,
 'hide_untranslated': True,
 'redirect_on_fallback':False,
 },
 {
 'code': 'de',
 'name': gettext('Deutsch'),
 'fallbacks': ['en', 'fr'],
 'public': True,
 },
 {
 'code': 'fr',
 'name': gettext('French'),
 'public': False,
 },
],
 2: [
 {
 'code': 'nl',
 'name': gettext('Dutch'),
 'public': True,
 'fallbacks': ['en'],
 },
],
 'default': {
 'fallbacks': ['en', 'de', 'fr'],
 'redirect_on_fallback':True,
 'public': False,
 'hide_untranslated': False,
 }
 }

For more details on what all the parameters mean please refer to the CMS_LANGUAGES docs.

The following settings are not needed any more and have been removed:

	CMS_HIDE_UNTRANSLATED

	CMS_LANGUAGE_FALLBACK

	CMS_LANGUAGE_CONF

	CMS_SITE_LANGUAGES

	CMS_FRONTEND_LANGUAGES

Please remove them from your settings.py.

CMS_FLAT_URLS

Was marked deprecated in 2.3 and has now been removed.

Plugins in Plugins

We added the ability to have plugins in plugins. Until now only the TextPlugin supported this.
For demonstration purposes we created a MultiColumn Plugin. The possibilities for this are endless.
Imagine: StylePlugin, TablePlugin, GalleryPlugin etc.

The column plugin can be found here:

https://github.com/divio/djangocms-column

At the moment the limitation is that plugins in plugins is only editable in the frontend.

Here is the MultiColumn Plugin as an example:

class MultiColumnPlugin(CMSPluginBase):
 model = MultiColumns
 name = _("Multi Columns")
 render_template = "cms/plugins/multi_column.html"
 allow_children = True
 child_classes = ["ColumnPlugin"]

There are 2 new properties for plugins:

allow_children

Boolean
If set to True it allows adding Plugins.

child_classes

List
A List of Plugin Classes that can be added to this plugin.
If not provided you can add all plugins that are available in this placeholder.

How to render your child plugins in the template

We introduce a new template tag in the cms_tags called {% render_plugin %}
Here is an example of how the MultiColumn plugin uses it:

{% load cms_tags %}
<div class="multicolumn">
{% for plugin in instance.child_plugins %}
 {% render_plugin plugin %}
{% endfor %}
</div>

As you can see the children are accessible via the plugins children attribute.

New way to handle django CMS settings

If you have code that needs to access django CMS settings (settings prefixed
with CMS_ or PLACEHOLDER_) you would have used for example
from django.conf import settings; settings.CMS_TEMPLATES. This will no
longer guarantee to return sane values, instead you should use
cms.utils.conf.get_cms_setting which takes the name of the setting
without the CMS_ prefix as argument and returns the setting.

Example of old, now deprecated style:

from django.conf import settings

settings.CMS_TEMPLATES
settings.PLACEHOLDER_FRONTEND_EDITING

Should be replaced with the new API:

from cms.utils.conf import get_cms_setting

get_cms_setting('TEMPLATES')
get_cms_setting('PLACEHOLDER_FRONTEND_EDITING')

Added cms.constants module

This release adds the cms.constants module which will hold generic django
CMS constant values. Currently it only contains TEMPLATE_INHERITANCE_MAGIC
which used to live in cms.conf.global_settings but was moved to the new
cms.constants module in the settings overhaul mentioned above.

django-reversion integration changes

django-reversion [https://github.com/etianen/django-reversion] integration has changed. Because of huge databases after some time we introduce some changes
to the way revisions are handled for pages.

	Only publish revisions are saved. All other revisions are deleted when you publish a page.

	By default only the latest 25 publish revisions are kept. You can change this behaviour with the new
CMS_MAX_PAGE_PUBLISH_REVERSIONS setting.

Changes to the show_sub_menu template tag

The show_sub_menu has received two new parameters.
The first stays the same and is still: how many levels of menu should be displayed.

The second: root_level (default=None), specifies at what level, if any, the menu should root at.
For example, if root_level is 0 the menu will start at that level regardless of what level the current page is on.

The third argument: nephews (default=100), specifies how many levels of nephews (children of siblings) are shown.

PlaceholderAdmin support i18n

If you use placeholders in other apps or models we now support more than one language out of the box.
If you just use PlaceholderAdmin it will display language tabs like the cms. If you
use django-hvad [https://github.com/kristianoellegaard/django-hvad] it uses the hvad language tabs.

If you want to disable this behaviour you can set render_placeholder_language_tabs = False on your Admin
class that extends PlaceholderAdmin. If you use a custom change_form_template be sure to have a look at
cms/templates/admin/placeholders/placeholder/change_form.html for how to incorporate language tabs.

Added CMS_RAW_ID_USERS

If you have a lot of users (500+) you can set this setting to a number after which admin User fields are displayed in
a raw Id field. This improves performance a lot in the admin as it has not to load all the users into the html.

Backwards incompatible changes

New minimum requirements for dependencies

	Django 1.3 and Python 2.5 are no longer supported.

Pending deprecations

	simple_language_changer will be removed in version 3.0. A bug-fix makes
this redundant as every non-managed URL will behave like this.

 2.3.4 release notes

2.3.4 release notes

What’s new in 2.3.4

WymEditor fixed

2.3.4 fixes a critical issue with WymEditor that prevented it from load it’s
JavaScript assets correctly.

Moved Norwegian translations

The Norwegian translations are now available as nb, which is the new
(since 2003) official language code for Norwegian, replacing the older and
deprecated no code.

If your site runs in Norwegian, you need to change your LANGUAGES settings!

Added support for time zones

On Django 1.4, and with USE_TZ=True the django CMS now uses time zone aware
date and time objects.

Fixed slug clashing

In earlier versions, publishing a page that has the same slug (URL) as another
(published) page could lead to errors. Now, when a page which would have the
same URL as another (published) page is published, the user is shown an error
and they’re prompted to change the slug for the page.

Prevent unnamed related names for PlaceholderField

cms.models.fields.PlaceholderField no longer allows the related name
to be suppressed. Trying to do so will lead to a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. This change
was done to allow the django CMS to properly check permissions on Placeholder
Fields.

Two fixes to page change form

The change form for pages would throw errors if the user editing the page does
not have the permission to publish this page. This issue was resolved.

Further the page change form would not correctly pre-populate the slug field if
DEBUG was set to False. Again, this issue is now resolved.

 2.3.3 release notes

2.3.3 release notes

What’s new in 2.3.3

Restored Python 2.5 support

2.3.3 restores Python 2.5 support for the django CMS.

Pending deprecations

Python 2.5 support will be dropped in django CMS 2.4.

 2.3.2 release notes

2.3.2 release notes

What’s new in 2.3.2

Google map plugin

Google map plugin now supports width and height fields so that plugin size
can be modified in the page admin or frontend editor.

Zoom level is now set via a select field which ensure only legal values are used.

Warning

Due to the above change, level field is now marked as NOT NULL,
and a data migration has been introduced to modify existing Googlemap plugin
instance to set the default value if level if is NULL.

 2.3 release notes

2.3 release notes

What’s new in 2.3

Introducing Django 1.4 support, dropped support for Django 1.2

In django CMS 2.3 we dropped support for Django 1.2. Django 1.3.1 is now the
minimum required Django version. Django CMS 2.3 also introduces Django 1.4
support.

Lazy page tree loading in admin

Thanks to the work by Andrew Schoen the page tree in the admin now loads lazily,
significantly improving the performance of that view for large sites.

Toolbar isolation

The toolbar JavaScript dependencies should now be properly isolated and no
longer pollute the global JavaScript namespace.

Plugin cancel button fixed

The cancel button in plugin change forms no longer saves the changes, but
actually cancels.

Tests refactor

Tests can now be run using setup.py test or runtests.py (the latter
should be done in a virtualenv with the proper dependencies installed).

Check runtests.py -h for options.

Moving text plugins to different placeholders no longer loses inline plugins

A serious bug where a text plugin with inline plugins would lose all
the inline plugins when moved to a different placeholder has been fixed.

Minor improvements

	The or clause in the placeholder tag now works correctly on non-cms
pages.

	The icon source URL for inline plugins for text plugins no longer gets double
escaped.

	PageSelectWidget correctly orders pages again.

	Fixed the file plugin which was sometimes causing invalid HTML (unclosed span tag).

	Migration ordering for plugins improved.

	Internationalised strings in JavaScript now get escaped.

Backwards incompatible changes

New minimum requirements for dependencies

	django-reversion must now be at version 1.6

	django-sekizai must be at least at version 0.6.1

	django-mptt version 0.5.1 or 0.5.2 is required

Registering a list of plugins in the plugin pool

This feature was deprecated in version 2.2 and removed in 2.3. Code like this
will not work any more:

plugin_pool.register_plugin([FooPlugin, BarPlugin])

Instead, use multiple calls to register_plugin:

plugin_pool.register_plugin(FooPlugin)
plugin_pool.register_plugin(BarPlugin)

Pending deprecations

The CMS_FLAT_URLS setting is deprecated and will be removed in version 2.4.
The moderation feature (CMS_MODERATOR = True) will be deprecated in 2.4 and
replaced with a simpler way of handling unpublished changes.

 2.2 release notes

2.2 release notes

What’s new in 2.2

django-mptt now a proper dependency

django-mptt [https://github.com/django-mptt/django-mptt/] is now used as a
proper dependency and is no longer shipped with the django CMS. This solves the
version conflict issues many people were experiencing when trying to use the django CMS
together with other Django apps that require django-mptt. django CMS 2.2
requires django-mptt 0.5.1.

Warning

Please remove the old mptt package from your Python site-packages
directory before upgrading. The setup.py file will install the
django-mptt [https://github.com/django-mptt/django-mptt/] package as an external dependency!

Django 1.3 support

The django CMS 2.2 supports both Django 1.2.5 and Django 1.3.

View permissions

You can now give view permissions for django CMS pages to groups and users.

Backwards incompatible changes

django-sekizai instead of PluginMedia

Due to the sorry state of the old plugin media framework, it has been dropped in
favour of the more stable and more flexible django-sekizai, which is a new
dependency for the django CMS 2.2.

The following methods and properties of cms.plugin_base.CMSPluginBase
are affected:

	cms.plugins_base.CMSPluginBase.PluginMedia

	cms.plugins_base.CMSPluginBase.pluginmedia

	cms.plugins_base.CMSPluginBase.get_plugin_media

Accessing those attributes or methods will raise a
cms.exceptions.Deprecated error.

The cms.middleware.media.PlaceholderMediaMiddleware middleware was also
removed in this process and is therefore no longer required. However you are now
required to have the sekizai.context_processors.sekizai context processor
in your TEMPLATE_CONTEXT_PROCESSORS setting.

All templates in CMS_TEMPLATES must at least contain the js and
css sekizai namespaces.

Please refer to the documentation on Handling media in
custom CMS plugins and the
django-sekizai documentation [https://django-sekizai.readthedocs.io/] for
more information.

Toolbar must be enabled explicitly in templates

The toolbar no longer hacks itself into responses in the middleware, but rather
has to be enabled explicitly using the {% cms_toolbar %} template tag from
the cms_tags template tag library in your templates. The template tag
should be placed somewhere within the body of the HTML (within <body>...</body>).

This solves issues people were having with the toolbar showing up in places it
shouldn’t have.

Static files moved to /static/

The static files (CSS/JavaScript/images) were moved from /media/ to
/static/ to work with the new django.contrib.staticfiles app in Django
1.3. This means you will have to make sure you serve static files as well as
media files on your server.

Warning

If you use Django 1.2.x you will not have a django.contrib.staticfiles
app. Instead you need the django-staticfiles [https://pypi.python.org/pypi/django-staticfiles/] backport.

Features deprecated in 2.2

django-dbgettext support

The django-dbgettext support has been fully dropped in 2.2 in favour of the
built-in multi-lingual support mechanisms.

 Upgrading from 2.1.x and Django 1.2.x

Upgrading from 2.1.x and Django 1.2.x

Upgrading dependencies

Upgrade both your version of django CMS and Django by running
the following commands.

pip install --upgrade django-cms==2.2 django==1.3.1

If you are using django-reversion make sure to have at least
version 1.4 installed

pip install --upgrade django-reversion==1.4

Also, make sure that django-mptt stays at a version compatible
with django CMS

pip install --upgrade django-mptt==0.5.1

Updates to settings.py

The following changes will need to be made in your settings.py file:

ADMIN_MEDIA_PREFIX = '/static/admin'
STATIC_ROOT = os.path.join(PROJECT_PATH, 'static')
STATIC_URL = "/static/"

Note

These are not django CMS settings. Refer to the Django documentation on staticfiles [http://readthedocs.org/docs/django/en/latest/ref/contrib/staticfiles.html] for more information.

Note

Please make sure the static sub-folder exists in your
project and is writeable.

Note

PROJECT_PATH is the absolute path to your project.

Remove the following from TEMPLATE_CONTEXT_PROCESSORS:

django.core.context_processors.auth

Add the following to TEMPLATE_CONTEXT_PROCESSORS:

django.contrib.auth.context_processors.auth
django.core.context_processors.static
sekizai.context_processors.sekizai

Remove the following from MIDDLEWARE_CLASSES:

cms.middleware.media.PlaceholderMediaMiddleware

Remove the following from INSTALLED_APPS [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-INSTALLED_APPS]:

publisher

Add the following to INSTALLED_APPS [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-INSTALLED_APPS]:

sekizai
django.contrib.staticfiles

Template Updates

Make sure to add sekizai tags and cms_toolbar to your CMS templates.

Note

cms_toolbar is only needed if you wish to use the front-end editing. See Backwards incompatible changes for more information

Here is a simple example for a base template called base.html:

{% load cms_tags sekizai_tags %}
<html>
 <head>
 {% render_block "css" %}
 </head>
 <body>
 {% cms_toolbar %}
 {% placeholder base_content %}
 {% block base_content%}{% endblock %}
 {% render_block "js" %}
 </body>
</html>

Database Updates

Run the following commands to upgrade your database

python manage.py syncdb
python manage.py migrate

Static Media

Add the following to urls.py to serve static media when developing:

if settings.DEBUG:
 urlpatterns = patterns('',
 re_path(r'^media/(?P<path>.*)$', 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
 re_path(r'', include('django.contrib.staticfiles.urls')),
) + urlpatterns

Also run this command to collect static files into your STATIC_ROOT [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT]:

python manage.py collectstatic

 Using django CMS

Using django CMS

Note

This is a new section in the django CMS documentation, and a priority
for the project. If you’d like to contribute to it, we’d love to hear
from you - join us on the #django-cms IRC channel on freenode [http://freenode.net/] or
the django-cms-developers [https://groups.google.com/group/django-cms-developers] email list.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client [https://kiwiirc.com/client/irc.freenode.net/django-cms], which works pretty well.

The Using django CMS documentation is divided into two parts.

First, there’s a tutorial that takes you step-by-step
through key processes. Once you’ve completed this you will be familiar with the
basics of content editing using the system.

The tutorial contains numerous links to items in the reference section.

The documentation in these two sections focuses on the basics of content
creation and editing using django CMS’s powerful front-end editing mode. It’s
suitable for non-technical and technical audiences alike.

However, it can only cover the basics that are common to most sites built using
django CMS. Your own site will likely have many custom changes and special
purpose plugins which we cannot cover here. Nevertheless, by the end of this
guide you should be comfortable with the content editing process using django
CMS. Many of the skills you’ll learn will be transferable to any custom plugins
your site may have.

	Tutorial
	Log in

	Create a page

	Changing page settings

	Structure and content modes

	Reference for content editors
	Page admin

	Working with admin in the frontend

 Tutorial

Tutorial

Note

This is a new section in the django CMS documentation, and a priority
for the project. If you’d like to contribute to it, we’d love to hear
from you - join us on the #django-cms IRC channel on freenode [http://freenode.net/] or
the django-cms-developers [https://groups.google.com/group/django-cms-developers] email list.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client [https://kiwiirc.com/client/irc.freenode.net/django-cms], which works pretty well.

It’s strongly recommended that you follow this tutorial step-by-step. It has
been designed to introduce you to the system in a methodical way, and each
step builds on the previous one.

	Log in

	Create a page
	Create your first page

	Publish a page

	Create a second page

	Changing page settings

	Structure and content modes
	Add a second plugin

Note

Touch-screen users

django CMS supports touch-screen interfaces, though there are currently some limitations in
support. You will be able to complete the tutorial using a touch-screen device, but please
consult Using touch-screen devices with django CMS, and see the notes on Device support.

 Log in

Log in

When you visit a brand new site for the first time, you will be invited to log in.

[image: Log in]
The developers of your site are responsible for creating and providing the login credentials so
consult them if you are unsure.

 Create a page

Create a page

Create your first page

django CMS’s Create Page wizard will open a new dialog box.

[image: The 'Create Page wizard']
Select Next, and provide a Title and some basic text content for the new page (you’ll be
able to add formatting to this text in a moment), then hit Create.

[image: Add Title and Content]
Here’s your newly-created page, together with the django CMS toolbar, your primary tool for
managing django CMS content.

Publish a page

Your newly-created page is just a draft, and won’t actually be published until you decide. As an
editor, you can see drafts, but other visitors to your site will only see published pages. Hit
[image: 'Publish page now'] to publish it.

[image: Newly-created page]
To edit the page further, switch back into editing mode, using the [image: 'Edit'] button that appears, and
return to the published version of the page using the [image: 'View published'] button.

In editing mode, double-click on the paragraph of text to change it. This will open the Text plugin
containing it. Make changes, add some formatting, and Save it again.

You can continue making and previewing changes privately until you are ready to publish them.

Create a second page

Hit [image: 'Create'] to create a second page. This opens the Create page dialog:

[image: the 'Create page' dialog]
In django CMS, pages can be arranged hierarchically. This is important for larger sites. Choose
whether the new page should be a sub-page - a child - of the existing page, or be on the same level
in the hierarchy - a sibling.

Once again, give the page a Title and some basic text content. Continue making changes to content
and formatting, and then Publish it as you did previously.

 Changing page settings

Changing page settings

The django CMS toolbar offers other useful editing tools.

Switch to Edit mode on one of your pages, and from the toolbar select Page > Page settings….
The Change page dialog that opens allows you to manage key settings for your page.

[image: the 'Change page' dialog]
Some key settings:

	Slug: The page’s slug is used to form its URL. For example, a page Lenses that is a
sub-page of Photography might have a URL that ends photography/lenses. You can change the
automatically-generated slug of a page if you wish to. Keep slugs short and meaningful, as they
are useful to human beings and search engines alike.

	Menu Title: If you have a page called Photography: theory and practice, you might not want
the whole title to appear in menus - shortening it to Photography would make more sense.

	Page Title: By default, a page’s <title> element is taken from the Title, but you can
override this here. The <title> element isn’t displayed on the page, but is used by search
engines and web browsers - as far as they are concerned, it’s the page’s real title.

	Description meta tag: A short piece of text that will be used by search engines (and displayed
in lists of search results) and other indexing systems.

There are also some Advanced Settings, but you don’t need to be concerned about these now.

 Structure and content modes

Structure and content modes

The Structure/Content mode control in the toolbar lets you switch between two different editing
modes.

You’ve already used Content mode, in which you can double-click on content to edit it.

In Structure mode, you can manage the placement of content within the page structure.

Switch to Structure mode. This reveals the structure board containing the placeholders
available on the page, and the plugins in them:

[image: the structure board]
Here there is just one placeholder, called Content, containing one plugin - a text plugin that
begins Lorem ipsum dolor….

[image: the 'Add plugin' icon]

Add a second plugin

Let’s add another plugin.

Select the Add plugin icon (+) and choose Text from the list of available plugin types.

[image: the list of plugin types]
This will open a familiar text editor; add some text and Save. Now in the structure board
you’ll see the new Text plugin - which you can move around within the structure, to re-order the
plugins.

Note

You don’t need to save these changes manually - they are saved automatically as soon as you make
them. However, they still need to be published in order for other users to see them.

Each plugin in the structure board is available for editing by double-clicking or selecting the
edit icon.

[image: the structure board with two plugins]
You can switch back to content mode to see the effect of your changes, and Publish the page to
make them public.

 Reference for content editors

Reference for content editors

Note

This is a new section in the django CMS documentation, and a priority
for the project. If you’d like to contribute to it, we’d love to hear
from you - join us on the #django-cms IRC channel on freenode [http://freenode.net/] or
the django-cms-developers [https://groups.google.com/group/django-cms-developers] email list.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client [https://kiwiirc.com/client/irc.freenode.net/django-cms], which works pretty well.

	Page admin
	The interface

	Admin views & forms

	Working with admin in the frontend
	Redirection

 Page admin

Page admin

The interface

The django CMS toolbar

The toolbar is central to your content editing and management work in django
CMS.

[image: ../../_images/toolbar-site-menu.png]

django CMS

Takes you back to home page of your site.

Site menu

example.com is the Site menu (and may have a different name for your site).
Several options in this menu open up administration controls in the side-frame:

	Pages … takes you directly to the pages editing interface

	Users … takes you directly to the users management panel

	Administration … takes you to the site-wide administration panel

	User settings … allows you to switch the language of the admin interface
and toolbar

	Disable toolbar allows you to completely disable the toolbar and front-end
editing, regardless of login and staff status. To reactivate them, you need
to enter edit mode either manually or through the backend administration.

You can also Logout from this menu.

Page menu

The Page menu contains options for managing the current page, and are either
self-explanatory or will be described in a forthcoming documentation section.

History menu

Allows you to manage publishing and view publishing history of the current page.

Language menu

Language allows you to switch to a different language version of the page
you’re on, and manage the various translations.

Here you can:

	Add a missing translation

	Delete an existing translation

	Copy all plugins and their contents from an existing translation to the
current one.

The Structure/Content button

[image: ../../_images/structure-content.png]

Allows you to switch between different editing modes (when you’re looking at a
draft only).

Publishing controller

The Publishing controller manages the publishing state of your page - options
are:

	Publish page now [image: publish-page-now] to publish an unpublished

	Publish changes [image: publish-changes] to publish changes made to an
existing page

	Edit [image: edit] to open the page for editing

	Save as draft [image: save-as-draft] to update the page and exit editing mode

	View published does the same as “Save as draft”

The disclosure triangle

A toggle to hide and reveal the toolbar.

The side-frame

[image: ../../_images/side-frame-controls.png]

The x closes the side-frame. To reopen the side-frame, choose one of the
links from the Site menu (named example.com by default).

The triangle icon expands and collapses the side-frame, and the next expands
and collapses the main frame.

You can also adjust the side-frame’s width by dragging it.

Admin views & forms

Page list

The page list gives you an overview of your pages and their status. By
default you get the basics:

[image: ../../_images/page-list-basic.png]

The page you’re currently on is highlighted in grey (in this case,
Journalism, the last in the list).

From left to right, items in the list have:

	an expand/collapse control, if the item has children (Home and Cheese
above)

	tab that can be used to drag and drop the item to a new place in the list

	the page’s Title

	a soft-root indicator (Cheese has soft-root applied; Home is the menu
root anyway)

	language version indicators and controls:

	blank: the translation does not exist; pressing the indicator will open
its Basic settings (in all other cases, hovering will reveal
Publish/Unpublish options)

	grey: the translation exists but is unpublished

	green: the translation is published

	blue (pulsing): the translation has an amended draft

If you expand the width of the side-frame, you’ll see more:

[image: ../../_images/page-list-expanded.png]

	Menu indicates whether the page will appear in navigation menus

	under Actions, options are:

	edit Basic settings

	copy page

	add child (which can be placed before, after or below the page)

	cut page

	delete page

	info displays additional information about the page

Basic page settings

[image: ../../_images/page-basic-settings.png]

To see a page’s basic settings, select Page settings… from the Page menu.
If your side-frame is wide enough, you can also use the page edit icon that
appears in the Actions column in the page list view.

Required fields

The page Title will typically be used by your site’s templates, and displayed
at the top of the page and in the browser’s title bar and bookmarks. In this
case search engines will use it too.

A Slug is part of the page’s URL, and you’ll usually want it to reflect the
Title. In fact it will be generated automatically from the title, in an
appropriate format - but it’s always worth checking that your slugs are as
short and sweet as possible.

Optional fields

Menu title is used to override what is displayed in navigation menus -
usually when the full Title is too long to be used there. For example, if the
Title is “ACME Incorporated: Our story”, it’s going to be far too long to
work well in the navigation menu, especially for your mobile users. “Our story”
would be a more appropriate Menu title.

Page title is expected to be used by django CMS templates for the <title>
element of the page (which will otherwise simply use the Title field). If
provided, it will be the Page title that appears in the browser’s title bar
and bookmarks, and in search engine results.

Description meta tag is expected to be used to populate a <meta> tag in the document <head>.
This is not displayed on the page, but is used for example by search engines for indexing and to
show a summary of page content. It can also be used by other Django applications for similar
purposes. Description is restricted to 320 characters, the number of characters search engines
typically use to show content.

Advanced settings

A page’s advanced settings are available by selecting Advanced settings…
from the Page menu, or from the Advanced settings button at the bottom of
the basic settings.

Most of the time it’s not necessary to touch these settings.

[image: ../../_images/page-advanced-settings.png]

	Overwrite URL allows you to change the URL from the default. By default,
the URL for the page is the slug of the current page prefixed with slugs from
parent pages. For example, the default URL for a page might be
/about/acme-incorporated/our-vision/. The Overwrite URL field allows you
to shorten this to /our-vision/ while still keeping the page and its
children organised under the About page in the navigation.

	Redirect allows you to redirect users to a different page. This is useful if
you have moved content to another page but don’t want to break URLs your users
may have bookmarked or affect the rank of the page in search engine results.

	Template lets you set the template used by the current page. Your site will
likely have a custom list of available templates. Templates are configured by
developers to allow certain types of content to be entered into the page while
still retaining a consistent layout.

	Id is an advanced field that should only be used in consultation with your
site’s developers. Changing this without consulting developers may result in
a broken site.

	Soft root allows you to shorten the navigation hierarchy to something
manageable on sites that have deeply nested pages. When selected, this page
will act as the top-level page in the navigation.

	Attached menu allows you to add a custom menu to the page. This is
typically used by developers to add custom menu logic to the current page.
Changing this requires a server restart so it should only be changed in
consultation with developers.

	Application allows you to add custom applications (e.g. a weblog app) to the
current page. This also is typically used by developers and requires a server
restart to take effect.

	X Frame Options allows you to control whether the current page can be
embedded in an iframe on another web page.

 Working with admin in the frontend

Working with admin in the frontend

The Administration… item in the Site menu, opens the side-frame
containing the site’s Django admin. This allows the usual interaction with the “traditional” Django
admin.

Redirection

When an object is created or edited while the user is on the website frontend, a redirection occurs
to redirect the user to the current address of the created/edited instance.

This redirection follows the rules below:

	an anonymous user (for example, after logging out) is always redirected to the home page

	when a model instance has changed (see Detecting URL changes to an object) the frontend is redirected to the
instance URL, and:

	in case of django CMS pages, the publishing state is taken into account, and then

	if the toolbar is in Draft mode the user is redirected to the draft page URL

	if in Live mode:

	the user is redirected to the page if is published

	otherwise it’s switched in Draft mode and redirected to the draft page URL

	if the edited object or its URL can’t be retrieved, no redirection occurs

Yes, it’s complex - but there is a logic to it, and it’s actually easier to understand when you’re
using it than by reading about it, so don’t worry too much. The point is that django CMS always
tries to redirect you to the most sensible place when it has to.

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cms	

 	
 	
 cms.api	

 	
 	
 cms.app_base	

 	
 	
 cms.cms_toolbars	

 	
 	
 cms.constants	

 	
 	
 cms.management	

 	
 	
 cms.models	

 	
 	
 cms.templatetags.cms_tags	

 	
 	
 cms.toolbar.items	

 	
 	
 cms.toolbar.toolbar	

 	
 	
 cms.toolbar_base.CMSToolbar	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init___() (cms.plugin_base.PluginMenuItem method)

 	_build_nodes() (menus.menu_pool.MenuPool method)

 	
 	_mark_selected() (menus.menu_pool.MenuPool method)

 	_menus (cms.app_base.CMSApp attribute)

 	_urls (cms.app_base.CMSApp attribute)

A

 	
 	accepted

 	ACCESS_CHILDREN (in module cms.models)

 	ACCESS_DESCENDANTS (in module cms.models)

 	ACCESS_PAGE (in module cms.models)

 	ACCESS_PAGE_AND_DESCENDANTS (in module cms.models)

 	
 active

 	command line option

 	add_ajax_item() (cms.toolbar.items.SubMenu method)

 	(cms.toolbar.items.ToolbarAPIMixin method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	add_break() (cms.toolbar.items.SubMenu method)

 	add_button() (cms.toolbar.items.ButtonList method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	add_button_list() (cms.toolbar.toolbar.CMSToolbar method)

 	add_item() (cms.toolbar.items.SubMenu method)

 	(cms.toolbar.items.ToolbarAPIMixin method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	add_link_item() (cms.toolbar.items.SubMenu method)

 	(cms.toolbar.items.ToolbarAPIMixin method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	
 	add_modal_button() (cms.toolbar.items.ButtonList method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	add_modal_item() (cms.toolbar.items.SubMenu method)

 	(cms.toolbar.items.ToolbarAPIMixin method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	add_plugin() (in module cms.api)

 	add_sideframe_button() (cms.toolbar.items.ButtonList method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	add_sideframe_item() (cms.toolbar.items.SubMenu method)

 	(cms.toolbar.items.ToolbarAPIMixin method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	ADMIN_MENU_IDENTIFIER (in module cms.cms_toolbars)

 	admin_preview (cms.plugin_base.CMSPluginBase attribute)

 	AjaxItem (class in cms.toolbar.items)

 	allow_children (cms.plugin_base.CMSPluginBase attribute)

 	apply_modifiers() (menus.menu_pool.MenuPool method)

 	assign_user_to_page() (in module cms.api)

 	attr (menus.base.NavigationNode attribute)

 	
 AUTH_USER_MODEL

 	setting

B

 	
 	backport

 	BaseItem (class in cms.toolbar.items)

 	blocker

 	
 	Break (class in cms.toolbar.items)

 	Button (class in cms.toolbar.items)

 	ButtonList (class in cms.toolbar.items)

C

 	
 	cache (cms.plugin_base.CMSPluginBase attribute)

 	change_form_template (cms.plugin_base.CMSPluginBase attribute)

 	child_classes (cms.plugin_base.CMSPluginBase attribute)

 	cms.admin.placeholderadmin.PlaceholderAdminMixin (built-in class)

 	cms.api (module)

 	cms.app_base (module)

 	cms.cms_toolbars (module)

 	cms.constants (module)

 	cms.forms.fields.PageSelectFormField (built-in class)

 	cms.forms.fields.PageSmartLinkField (built-in class)

 	cms.management (module)

 	cms.menu.CMSMenu (built-in class)

 	cms.menu.NavExtender (built-in class)

 	cms.menu.SoftRootCutter (built-in class)

 	cms.menu_bases.CMSAttachMenu (built-in class)

 	cms.models (module)

 	cms.models.fields.PageField (built-in class)

 	cms.models.fields.PlaceholderField (built-in class)

 	cms.models.Page (built-in class)

 	cms.models.placeholdermodel.Placeholder (built-in class)

 	cms.models.pluginmodel.CMSPlugin (built-in class)

 	cms.models.Title (built-in class)

 	cms.plugin_base.CMSPluginBase (built-in class)

 	cms.plugin_base.PluginMenuItem (built-in class)

 	cms.plugin_pool.PluginPool (built-in class)

 	cms.sitemaps.CMSSitemap (built-in class)

 	cms.templatetags.cms_tags (module)

 	cms.toolbar.items (module)

 	cms.toolbar.toolbar (module)

 	cms.toolbar_base.CMSToolbar (module)

 	
 CMS_APPHOOKS

 	setting

 	
 CMS_CACHE_DURATIONS

 	setting

 	
 CMS_CACHE_PREFIX

 	setting

 	
 CMS_INTERNAL_IPS

 	setting

 	
 CMS_LANGUAGES

 	setting

 	
 CMS_MAX_PAGE_PUBLISH_REVERSIONS

 	setting

 	
 CMS_MEDIA_PATH

 	setting

 	
 CMS_MEDIA_ROOT

 	setting

 	
 CMS_MEDIA_URL

 	setting

 	
 CMS_PAGE_CACHE

 	setting

 	
 CMS_PAGE_MEDIA_PATH

 	setting

 	
 CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER

 	setting

 	
 CMS_PAGE_WIZARD_CONTENT_PLUGIN

 	setting

 	
 	
 CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY

 	setting

 	
 CMS_PAGE_WIZARD_DEFAULT_TEMPLATE

 	setting

 	
 CMS_PERMISSION

 	setting

 	
 CMS_PLACEHOLDER_CACHE

 	setting

 	
 CMS_PLACEHOLDER_CONF

 	setting

 	
 CMS_PLUGIN_CACHE

 	setting

 	
 CMS_PLUGIN_CONTEXT_PROCESSORS

 	setting

 	
 CMS_PLUGIN_PROCESSORS

 	setting

 	
 CMS_PUBLIC_FOR

 	setting

 	
 CMS_RAW_ID_USERS

 	setting

 	
 CMS_REQUEST_IP_RESOLVER

 	setting

 	
 CMS_TEMPLATE_INHERITANCE

 	setting

 	
 CMS_TEMPLATES

 	setting

 	
 CMS_TEMPLATES_DIR

 	setting

 	
 cms_toolbar

 	template tag

 	
 CMS_TOOLBARS

 	setting

 	
 CMS_UNIHANDECODE_DECODERS

 	setting

 	
 CMS_UNIHANDECODE_DEFAULT_DECODER

 	setting

 	
 CMS_UNIHANDECODE_HOST

 	setting

 	
 CMS_UNIHANDECODE_VERSION

 	setting

 	CMSApp (class in cms.app_base)

 	CMSToolbar (class in cms.toolbar.toolbar)

 	(class in cms.toolbar_base.CMSToolbar)

 	
 code

 	setting

 	
 command line option

 	active

 	disabled

 	key

 	on_close:

 	position

 	verbose_name

 	copy_relations() (cms.models.pluginmodel.CMSPlugin method)

 	create_page() (in module cms.api)

 	create_page_user() (in module cms.api)

 	create_title() (in module cms.api)

D

 	
 	design decision

 	disable_child_plugins (cms.plugin_base.CMSPluginBase attribute)

 	
 disabled

 	command line option

 	
 	discover_menus() (menus.menu_pool.MenuPool method)

 	docs

E

 	
 	easy pickings

 	edit_mode_active() (cms.toolbar.toolbar.CMSToolbar method)

 	
 	expert opinion

 	EXPIRE_NOW (in module cms.constants)

F

 	
 	
 fallbacks

 	setting

 	find_first() (cms.toolbar.items.ToolbarAPIMixin method)

 	
 	find_items() (cms.toolbar.items.ToolbarAPIMixin method)

 	form (cms.plugin_base.CMSPluginBase attribute)

 	frontend_edit_template (cms.plugin_base.CMSPluginBase attribute)

G

 	
 	get_absolute_url() (menus.base.NavigationNode method)

 	get_add_url() (cms.models.pluginmodel.CMSPlugin method)

 	get_ancestors() (menus.base.NavigationNode method)

 	get_buttons() (cms.toolbar.items.ButtonList method)

 	get_cache_expiration() (cms.plugin_base.CMSPluginBase method)

 	get_config() (cms.app_base.CMSApp method)

 	get_config_add_url() (cms.app_base.CMSApp method)

 	get_configs() (cms.app_base.CMSApp method)

 	get_context() (cms.toolbar.items.BaseItem method)

 	(menus.templatetags.menu_tags.ShowMenu method)

 	get_copy_url() (cms.models.pluginmodel.CMSPlugin method)

 	get_delete_url() (cms.models.pluginmodel.CMSPlugin method)

 	get_descendants() (menus.base.NavigationNode method)

 	get_edit_url() (cms.models.pluginmodel.CMSPlugin method)

 	get_extra_global_plugin_menu_items() (cms.plugin_base.CMSPluginBase method)

 	
 	get_extra_local_plugin_menu_items() (cms.plugin_base.CMSPluginBase method)

 	get_extra_placeholder_menu_items() (cms.plugin_base.CMSPluginBase method)

 	get_item_count() (cms.toolbar.items.SubMenu method)

 	get_menu() (cms.toolbar.toolbar.CMSToolbar method)

 	get_menu_title() (menus.base.NavigationNode method)

 	get_menus() (cms.app_base.CMSApp method)

 	get_move_url() (cms.models.pluginmodel.CMSPlugin method)

 	get_nodes() (menus.base.Menu method)

 	(menus.menu_pool.MenuPool method)

 	get_or_create_menu() (cms.toolbar.items.Menu method)

 	(cms.toolbar.toolbar.CMSToolbar method)

 	get_plugin_urls() (cms.plugin_base.CMSPluginBase method)

 	get_render_template() (cms.plugin_base.CMSPluginBase method)

 	get_translatable_content() (cms.models.pluginmodel.CMSPlugin method)

 	get_urls() (cms.app_base.CMSApp method)

 	get_vary_cache_on() (cms.plugin_base.CMSPluginBase method)

H

 	
 	has patch

 	
 	
 hide_untranslated

 	setting

I

 	
 	icon_alt() (cms.plugin_base.CMSPluginBase method)

 	icon_src() (cms.plugin_base.CMSPluginBase method)

 	
 	index (cms.toolbar.items.ItemSearchResult attribute)

 	item (cms.toolbar.items.ItemSearchResult attribute)

 	ItemSearchResult (class in cms.toolbar.items)

K

 	
 	
 key

 	command line option

L

 	
 	
 language_chooser

 	template tag

 	
 	LEFT (in module cms.constants)

 	LinkItem (class in cms.toolbar.items)

M

 	
 	mark_levels() (menus.modifiers.Level method)

 	marked for rejection

 	MAX_EXPIRATION_TTL (in module cms.constants)

 	Menu (class in cms.toolbar.items)

 	menus.base.Menu (built-in class)

 	menus.base.Modifier (built-in class)

 	menus.base.NavigationNode (built-in class)

 	menus.menu_pool._build_nodes_inner_for_one_menu() (built-in function)

 	menus.menu_pool.MenuPool (built-in class)

 	menus.modifiers.AuthVisibility (built-in class)

 	
 	menus.modifiers.Level (built-in class)

 	menus.modifiers.Marker (built-in class)

 	menus.templatetags.menu_tags.cut_levels() (built-in function)

 	menus.templatetags.menu_tags.ShowMenu (built-in class)

 	ModalButton (class in cms.toolbar.items)

 	ModalItem (class in cms.toolbar.items)

 	model (cms.plugin_base.CMSPluginBase attribute)

 	modify() (menus.base.Modifier method)

 	module (cms.plugin_base.CMSPluginBase attribute)

 	more info

N

 	
 	name (cms.plugin_base.CMSPluginBase attribute)

 	
 	non-issue

O

 	
 	on hold

 	
 	
 on_close:

 	command line option

P

 	
 	
 page_attribute

 	template tag

 	
 page_language_url

 	template tag

 	
 page_lookup

 	template tag

 	page_only (cms.plugin_base.CMSPluginBase attribute)

 	
 page_url

 	template tag

 	PagePermission (class in cms.models)

 	
 	parent_classes (cms.plugin_base.CMSPluginBase attribute)

 	patch

 	
 placeholder

 	template tag

 	
 position

 	command line option

 	post_copy() (cms.models.pluginmodel.CMSPlugin method)

 	
 public

 	setting

 	publish_page() (in module cms.api)

 	publish_pages() (in module cms.api)

R

 	
 	ready for review

 	ready to be merged

 	
 redirect_on_fallback

 	setting

 	REFRESH (in module cms.constants)

 	REFRESH_PAGE (in module cms.constants)

 	render() (cms.plugin_base.CMSPluginBase method)

 	(cms.toolbar.items.BaseItem method)

 	
 render_model

 	template tag

 	
 render_model_add

 	template tag

 	
 render_model_add_block

 	template tag

 	
 render_model_block

 	template tag

 	
 	
 render_model_icon

 	template tag

 	
 render_placeholder

 	template tag

 	
 render_plugin

 	template tag

 	render_plugin (cms.plugin_base.CMSPluginBase attribute)

 	
 render_plugin_block

 	template tag

 	render_template (cms.plugin_base.CMSPluginBase attribute)

 	
 render_uncached_placeholder

 	template tag

 	require_parent (cms.plugin_base.CMSPluginBase attribute)

 	RIGHT (in module cms.constants)

S

 	
 	set_translatable_content() (cms.models.pluginmodel.CMSPlugin method)

 	
 setting

 	AUTH_USER_MODEL

 	CMS_APPHOOKS

 	CMS_CACHE_DURATIONS

 	CMS_CACHE_PREFIX

 	CMS_INTERNAL_IPS

 	CMS_LANGUAGES

 	CMS_MAX_PAGE_PUBLISH_REVERSIONS

 	CMS_MEDIA_PATH

 	CMS_MEDIA_ROOT

 	CMS_MEDIA_URL

 	CMS_PAGE_CACHE

 	CMS_PAGE_MEDIA_PATH

 	CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER

 	CMS_PAGE_WIZARD_CONTENT_PLUGIN

 	CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY

 	CMS_PAGE_WIZARD_DEFAULT_TEMPLATE

 	CMS_PERMISSION

 	CMS_PLACEHOLDER_CACHE

 	CMS_PLACEHOLDER_CONF

 	CMS_PLUGIN_CACHE

 	CMS_PLUGIN_CONTEXT_PROCESSORS

 	CMS_PLUGIN_PROCESSORS

 	CMS_PUBLIC_FOR

 	CMS_RAW_ID_USERS

 	CMS_REQUEST_IP_RESOLVER

 	CMS_TEMPLATES

 	CMS_TEMPLATES_DIR

 	CMS_TEMPLATE_INHERITANCE

 	CMS_TOOLBARS

 	CMS_UNIHANDECODE_DECODERS

 	CMS_UNIHANDECODE_DEFAULT_DECODER

 	CMS_UNIHANDECODE_HOST

 	CMS_UNIHANDECODE_VERSION

 	code

 	fallbacks

 	hide_untranslated

 	public

 	redirect_on_fallback

 	
 	
 show_breadcrumb

 	template tag

 	
 show_menu

 	template tag

 	
 show_menu_below_id

 	template tag

 	
 show_placeholder

 	template tag

 	
 show_sub_menu

 	template tag

 	
 show_uncached_placeholder

 	template tag

 	SideframeButton (class in cms.toolbar.items)

 	SideframeItem (class in cms.toolbar.items)

 	
 static_placeholder

 	template tag

 	SubMenu (class in cms.toolbar.items)

T

 	
 	template (cms.toolbar.items.BaseItem attribute)

 	
 template tag

 	cms_toolbar

 	language_chooser

 	page_attribute

 	page_language_url

 	page_lookup

 	page_url

 	placeholder

 	render_model

 	render_model_add

 	render_model_add_block

 	render_model_block

 	render_model_icon

 	render_placeholder

 	render_plugin

 	render_plugin_block

 	render_uncached_placeholder

 	show_breadcrumb

 	show_menu

 	show_menu_below_id

 	show_placeholder

 	show_sub_menu

 	show_uncached_placeholder

 	static_placeholder

 	
 	TEMPLATE_INHERITANCE_MAGIC (in module cms.constants)

 	tests

 	text_editor_button_icon() (cms.plugin_base.CMSPluginBase method)

 	text_enabled (cms.plugin_base.CMSPluginBase attribute)

 	ToolbarAPIMixin (class in cms.toolbar.items)

 	translatable_content_excluded_fields (cms.models.pluginmodel.CMSPlugin attribute)

V

 	
 	
 verbose_name

 	command line option

 	
 	VISIBILITY_ALL (in module cms.api)

 	VISIBILITY_ANONYMOUS (in module cms.api)

 	VISIBILITY_USERS (in module cms.api)

W

 	
 	watch_models() (cms.toolbar.toolbar.CMSToolbar method)

 	
 	won't fix

 	work in progress

_images/edit.png

_images/it-works-cms.png
django [

example.com

Language

django ({3

Add your first page

Welcome to django CMS version 3.4.1.

Add the first page to the system to continue.

django CMS Support Documentation

Create

_images/django-cms-logo.png
django (4%}

_images/edit-button.png
Edit

_images/newly-created.png
django example.com Page History Language Create Structure | Content

Project name Lorem ipsum dolor

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce et tellus fringilla, vehicula quam nec, laoreet magna.
Phasellus ac tincidunt ex, in sagittis tellus. Donec semper, nisl in tempor bibendum, mi massa venenatis tortor, quis
condimentum orci lacus ut lectus.

_images/page-advanced-settings.png
Advanced Settings

e DE R

OVERWRITE URL:

Kosp s fsdt empsy f tancard pat shouid s s

REDIRECT:

Starona.. =
Redract o e URL
Language independent options.

TEMPLATE:

Page i Feaure -

Tho amplte used 0 rencr th caront.

:

Aunque dentfer tht s used wit e page ur tsmpltetag o kg 0t page

© Softroot

At ancestors wil ot be dispiayedn e navigaton

ATTAGHED MENU:

Hook ppicaton o s page.

X FRAME OPTIONS:

nner rom parent page -

Wineter i pags can b ambacd o pagesor webtes

e [R ...]

_images/log-in.png
Django administration

USERNAME:

PASSWORD:

_images/new-placeholder.png
Feature EXPAND ALL

Text Welcome to django...

Content EXPAND ALL

» Multi Columns 3 columns

Splashbox

Drop a plugin here

_images/page-basic-settings.png
Change page

EN DE FR
TITLE:
Home
The defaut title
SLU

home.

‘The part of the tte that is used in the URL

MENU TITLE:

Overwrite what is displayed in the menu

PAGE TITLE:

Overwrites what s displayed at the top of your browser or in bookmarks

DESCRIPTION META TAG:

A description of the page used by search engines.

T S .. |

_images/page-list-basic.png
EN

FR

o
m

Home

Bicycle

Pen

Cheese

Photography

ournalism

(K N N AN AN BN BN BN
O/0O/0O00®e 0O e e
OO0 00| ®@ 00|00

_images/page-list-expanded.png
m
z
e
o
o
m
<
[

=1

5

Actions

B Home 000 o ADh+E
Bicycle 00O ©o KD+

Pen @ OOl e AD +

B Cheese & ® o AD+
Brie ® OO o AD +

Mozzarella ®@ OO0 o D+

B Photography ® OO0 o ADh+MH
Documentary ®@ OO e AD +
Journalism ®@ OO0 o AD +

X X X X X X X X X
- - - - A -

nav.xhtml

 Table of Contents

 		
 django CMS documentation

_images/polls-admin.png
Polls
Choices +Add / Change

Polls +Add / Change

_images/polls-integrated.png
Project name

Which browser do you prefer?

O Safari

_images/placeholder.png
Content EXPAND ALL

» Multi Columns 3 columns

_images/poll-plugin-in-menu.png
Add plugin to placeholder "Feature”
Generic

Google Map

Inherit Plugins from Page

Link

Style

Text.

Multi Columns

Multi Columns

Polls

Poll Plugin

_images/publish-page-now.png

_images/publish-page-now1.png
Publish page now

_images/polls-unintegrated.png
‘Which browser do you prefer?

O Safari

((vote)

_images/publish-changes.png

_images/save-as-draft.png
Save as draft

_images/select-application.png
APPLICATION:

Polls Application

Hook application to this page.

APPLICATION INSTANCE NAME:

polls

_images/select-page-type.png
Create Create New page

TITLE

About Us

Provide a tite for the new page.

PAGE TYPE

_images/static-placeholder.png
Footer ¥

Drop a plugin here

_images/static-placeholder1.png
Footer ¥

Drop a plugin here

_images/select_apphook_configuration.png
APPLICATION:

NewsBlog

Hook application to this page.

APPLICATION CONFIGURATIONS:

v NewsBlog / blog

_images/side-frame-controls.png

_images/structure-content.png
Structure

_images/text-plugin.png
Link

Style

Text

Multi Columns

_images/structure-board-with-two-plugins.png
Content EXPAND ALL

Text Cutters ten dam...

Text Lorem ipsum dolor...

_images/structure-board.png
Content EXPAND ALL

Text Lorem ipsum dolor...

_images/toolbar-site-menu.png
django (@3

example.com

Page

History

Language

Structure

Content

Save as draft

_images/view-published.png
View published

_images/toolbar-polls.png
django example.com Page P%olls Language

Create

_static/ajax-loader.gif

_images/welcome.png
djongo [

r—

© Installation successfull

Welcome to jango CHS Cruate

Now page
o a o pago o e cuen g

_images/welcome1.png
Welcome to django CMS Create o x

New page

reate a new page next to the curtent page.

o [0

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/screen1.png
oy S PRgerRaae
Change page «zETmD

The defaut itle “The part of the tite that is used in the url

Status: Published | ¢

Note: This page reloads if you change the selection. Save it first.

English | ¢
“The current language of the content fields.

Languag

Template: default |4
“The template used to render the conten.

Advanced Settings (Show)
No Plugin selected. Selected one on the left side

Picture [pony |

Text [Welcome toa

Link [Team |

Available Plugins | ¢ 4 Add Plugin

No Plugins present. Add a plugin to this placeholder-slot.

Available Plugins $ dAdd Plugin
Sveand dd srsvr] v and cominue i |]

2 Delete

_static/minus.png

_static/plus.png

_static/screen2.png
Bcueslleorl " Welcome to a pony powered site

Text

Text [Welcome to 2

Link [Team | O | [oty

B Finsert plugin. it selected plugin
| Available Plugins | £ Add Plugin

B Containers >
‘elcome i Paragraph
We t0 a pony powered site Farsarash
Heading 2
Heading 3
Heading 4
Heading 5
Heading &

Preformatted
Blockguote

Table Header

Classes
PARA: Date
PARA: Hidden note

No Plugins present. Add a plugin to this placeholder-slot.

*Delee Sae and addsnthr] Save and conie i]

_static/screen3.png
divio. Change passw

Home > Cms > Pages

Select page to change
tle quick actions published in navigation softroot template author

home DE|EN | examplecom ¢/ (A1 & % off o default divio
[products 0 | examplecom s A &% of o default divio
B team 0 | examplecom s A &% of o default divio

Qasx o9 o9 default divio

patrick. D | example.com

_images/change-page-dialog.png
Change page

EN DE

TITLE:

Lorem ipsum dolor

The default ttle

sLuG:

lorem-ipsum

‘The part of the tite that is used in the URL

MENU TITLE:

Overwrite what is displayed in the menu

PAGE TITLE:

Overwrites whatis displayed at the top of your browser or in bookmarks

DESCRIPTION META TA