
django cms Documentation
Release 2.2.1

Patrick Lauber

May 27, 2016

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Upgrading a django CMS installation . 4
1.3 Introductory Tutorial . 5
1.4 Using South with django CMS . 13
1.5 Configuration . 13
1.6 Navigation . 21
1.7 Plugins reference . 25

2 Advanced 31
2.1 Internationalization . 31
2.2 Sitemap Guide . 33
2.3 Template Tags . 33
2.4 Command Line Interface . 39

3 Extending the CMS 41
3.1 Extending the CMS: Examples . 41
3.2 Custom Plugins . 45
3.3 App Integration . 52
3.4 API References . 58
3.5 Placeholders outside the CMS . 62
3.6 Search and the django CMS . 63
3.7 Form and model fields . 64

4 Contributing to django CMS 65
4.1 Contributing to django CMS . 65
4.2 Indices and tables . 67

Python Module Index 69

i

ii

django cms Documentation, Release 2.2.1

This document refers to version 2.2.1

Contents 1

django cms Documentation, Release 2.2.1

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

This document assumes you are familiar with Python and Django, and should outline the steps necessary for you
to follow the Introductory Tutorial.

1.1.1 Requirements

• Python 2.5 (or a higher release of 2.x).

• Django 1.2.5 (or a 1.3.x release).

• South 0.7.2 or higher

• PIL 1.1.6 or higher

• django-classy-tags 0.3.4.1 or higher

• django-mptt 0.4.2 or higher

• django-sekizai 0.4.2 or higher

• html5lib 0.90 or higher

• An installed and working instance of one of the databases listed in the Databases section.

Note: When installing the django CMS using pip, Django, django-mptt django-classy-tags, django-sekizai, south
and html5lib will be installed automatically.

Recommended

• django-filer with its django CMS plugins, file and image management application to use instead of some
core plugins

• django-reversion 1.4, to support versions of your content

On Ubuntu

Warning: The instructions here install certain packages, such as PIL, Django, South and django CMS glob-
ally, which is not recommended. We recommend you use virtualenv to use instead. If you chose to do so,
install Django, django CMS and South inside a virtualenv.

If you’re using Ubuntu (tested with 10.10), the following should get you started:

3

http://www.python.org
http://www.djangoproject.com
http://south.aeracode.org/
http://www.pythonware.com/products/pil/
https://github.com/ojii/django-classy-tags
https://github.com/django-mptt/django-mptt
https://github.com/ojii/django-sekizai
http://code.google.com/p/html5lib/
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
https://github.com/etianen/django-reversion
http://www.virtualenv.org/

django cms Documentation, Release 2.2.1

sudo aptitude install python2.6 python-setuptools python-imaging
sudo easy_install pip
sudo pip install Django==1.3 django-cms south

Additionally, you need the python driver for your selected database:

sudo aptitude python-psycopg2

or

sudo aptitude install python-mysql

This will install PIL and your database’s driver globally.

You have now everything that is needed for you to follow the Introductory Tutorial.

Note: This will install Django version 1.3 for use with the CMS. While later versions of Django (such as 1.4) are
know to work for some people, it is NOT recommended and will not be supported until further notice (and tests)

On Mac OSX

TODO (Should setup everything up to but not including “pip install django-cms” like the above)

On Microsoft Windows

TODO.

1.1.2 Databases

We recommend using PostgreSQL or MySQL with django CMS. Installing and maintaining database systems is
outside the scope of this documentation, but is very well documented on the system’s respective websites.

To use django CMS efficiently, we recommend:

• Create a separate set of credentials for django CMS.

• Create a separate database for django CMS to use.

1.2 Upgrading a django CMS installation

1.2.1 2.2 Release

2.2 release notes (IN DEVELOPMENT)

What’s new in 2.2

django-mptt now a proper dependency django-mptt is now used as a proper dependency and is no longer
shipped with the django CMS. This solves the version conflict issues many people had when trying to use the
django CMS together with other Django apps that require django-mptt. django CMS 2.2 requires django-mptt
0.4.2 or higher.

Warning: Please remove the old mptt package from your Python site-packages directory before upgrading.
The setup.py file will install the django-mptt package as an external dependency!

4 Chapter 1. Getting Started

http://www.postgresql.org/
http://www.mysql.com
https://github.com/django-mptt/django-mptt/
https://github.com/django-mptt/django-mptt/

django cms Documentation, Release 2.2.1

Django 1.3 support The django CMS 2.2 supports both Django 1.2.5 and Django 1.3.

View permissions You can now give view permissions for django CMS pages to groups and users.

Backwards incompatible changes

django-sekizai instead of PluginMedia Due to the sorry state of the old plugin media framework, it has
been dropped in favor of the more stable and more flexible django-sekizai, which is a new dependency for the
django CMS 2.2.

The following methods and properties of cms.plugins_base.CMSPluginBase are affected:

• cms.plugins_base.CMSPluginBase.PluginMedia

• cms.plugins_base.CMSPluginBase.pluginmedia

• cms.plugins_base.CMSPluginBase.get_plugin_media()

Accessing those attribtues or methods will raise a cms.exceptions.Deprecated error.

The cms.middleware.media.PlaceholderMediaMiddleware middleware was also
removed in this process and is therefore no longer required, however you now require
to have the ’sekizai.context_processors.sekizai’ context processor in your
TEMPLATE_CONTEXT_PROCESSORS setting.

All templates in CMS_TEMPLATES must contain at least the js and css sekizai namespaces.

Please refer to the documentation on Handling media in custom CMS plugins and the django-sekizai documenta-
tion for more information.

Toolbar must be enabled explicitly in templates The toolbar no longer hacks itself into responses in the
middleware, but rather has to be enabled explictely using the {% cms_toolbar %} template tag from the
cms_tags template tag library in your templates. The template tag should be placed somewhere within the body
of the HTML (within <body>...</body>).

This solves issues people where having with the toolbar showing up in places it shouldn’t.

Static files moved to /static/ The static files (css/javascript/images) were moved to from /media/ to
/static/ to work with the new django.contrib.staticfiles app in Django 1.3. This means you
will have to make sure you serve static files as well as media files on your server.

Features deprecated in 2.2

django-dbgettext support The django-dbgettext support has been fully dropped in 2.2 in favor of the
built-in mechanisms to achieve multilinguality.

1.3 Introductory Tutorial

This guide assumes your machine meets the requirements outlined in the Installation section of this documentation.

1.3.1 Getting help

Should you run into trouble and can’t figure out how to solve it yourself, you can get help from either our mail-
inglist or IRC channel #django-cms on the irc.freenode.net network.

1.3. Introductory Tutorial 5

http://django-sekizai.readthedocs.org/
http://django-sekizai.readthedocs.org/
https://groups.google.com/forum/#!forum/django-cms
https://groups.google.com/forum/#!forum/django-cms

django cms Documentation, Release 2.2.1

1.3.2 Configuration and setup

Preparing the environment

Gathering the requirements is a good start, but we now need to give the CMS a Django project to live in, and
configure it.

Starting your Django project

The following assumes your project will be in ~/workspace/myproject/.

Set up your Django project:

cd ~/workspace
django-admin.py startproject myproject
cd myproject
python manage.py runserver

Open 127.0.0.1:8000 in your browser. You should see a nice “It Worked” message from Django.

Installing and configuring django CMS in your Django project

Open the file ~/workspace/myproject/settings.py.

To make your life easier, add the following at the top of the file:

-*- coding: utf-8 -*-
import os
gettext = lambda s: s
PROJECT_PATH = os.path.abspath(os.path.dirname(__file__))

Add the following apps to your INSTALLED_APPS which enable django CMS and required or highly recom-
mended applications/libraries):

• ’cms’, django CMS itself

• ’mptt’, utilities for implementing a modified pre-order traversal tree

• ’menus’, helper for model independent hierarchical website navigation

• ’south’, intelligent schema and data migrations

• ’sekizai’, for javascript and css management

Also add any (or all) of the following plugins, depending on your needs:

• ’cms.plugins.file’

• ’cms.plugins.flash’

• ’cms.plugins.googlemap’

6 Chapter 1. Getting Started

http://127.0.0.1:8000
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 2.2.1

• ’cms.plugins.link’

• ’cms.plugins.picture’

• ’cms.plugins.snippet’

• ’cms.plugins.teaser’

• ’cms.plugins.text’

• ’cms.plugins.video’

• ’cms.plugins.twitter’

They are described in more detail in chapter Plugins reference. There is even more plugins available on django
CMS extensions page.

Further, make sure you uncomment (enable) ’django.contrib.admin’

You might consider using django-filer with django CMS plugin and its components instead of
cms.plugins.file, cms.plugins.picture, cms.plugins.teaser and cms.plugins.video
core plugins. In this case you should not add them to INSTALLED_APPS but add those instead:

• ’filer’

• ’cmsplugin_filer_file’

• ’cmsplugin_filer_folder’

• ’cmsplugin_filer_image’

• ’cmsplugin_filer_teaser’

• ’cmsplugin_filer_video’

If you opt for core plugins you should take care that directory to which CMS_PAGE_MEDIA_PATH setting points
(by default cms_page_media/ relative to MEDIA_ROOT) is writable by the user under which Django will be
running. If you have opted for django-filer then similar requirement exists based on its configuration.

If you want versioning of your content you should also install django-reversion and add it to INSTALLED_APPS:

• ’reversion’

You need to add the django CMS middlewares to your MIDDLEWARE_CLASSES at the right position:

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'cms.middleware.multilingual.MultilingualURLMiddleware',
'cms.middleware.page.CurrentPageMiddleware',
'cms.middleware.user.CurrentUserMiddleware',
'cms.middleware.toolbar.ToolbarMiddleware',

)

You need at least the following TEMPLATE_CONTEXT_PROCESSORS:

TEMPLATE_CONTEXT_PROCESSORS = (
'django.contrib.auth.context_processors.auth',
'django.core.context_processors.i18n',
'django.core.context_processors.request',
'django.core.context_processors.media',
'django.core.context_processors.static',
'cms.context_processors.media',
'sekizai.context_processors.sekizai',

)

1.3. Introductory Tutorial 7

http://www.django-cms.org/en/extensions/
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/etianen/django-reversion
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MIDDLEWARE_CLASSES

django cms Documentation, Release 2.2.1

Note: This setting will be missing from automatically generated Django settings files, so you will have to add it.

Point your STATIC_ROOT to where the static files should live (that is, your images, CSS files, Javascript files...):

STATIC_ROOT = os.path.join(PROJECT_PATH, "static")
STATIC_URL = "/static/"
ADMIN_MEDIA_PREFIX = "/static/admin/"

For uploaded files, you will need to set up the MEDIA_ROOT setting:

MEDIA_ROOT = os.path.join(PROJECT_PATH, "media")
MEDIA_URL = "/media/"

Note: Please make sure both the static and media subfolder exist in your project and are writable.

Now add a little magic to the TEMPLATE_DIRS section of the file:

TEMPLATE_DIRS = (
The docs say it should be absolute path: PROJECT_PATH is precisely one.
Life is wonderful!
os.path.join(PROJECT_PATH, "templates"),

)

Add at least one template to CMS_TEMPLATES; for example:

CMS_TEMPLATES = (
('template_1.html', 'Template One'),
('template_2.html', 'Template Two'),

)

We will create the actual template files at a later step, don’t worry about it for now, and simply paste this code in
your settings file.

Note: The templates you define in CMS_TEMPLATES have to exist at runtime and contain at least one {%
placeholder <name> %} template tag to be useful for django CMS. For more details see Creating templates

The django CMS will allow you to edit all languages which Django has built in translations for, this is way too
many so we’ll limit it to English for now:

LANGUAGES = [
('en', 'English'),

]

Finally, setup the DATABASES part of the file to reflect your database deployment. If you just want to try out
things locally, sqlite3 is the easiest database to set up, however it should not be used in production. If you still
wish to use it for now, this is what your DATABASES setting should look like:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(PROJECT_PATH, 'database.sqlite'),

}
}

URL configuration

You need to include the ’cms.urls’ urlpatterns at the end of your urlpatterns. We suggest starting with the
following urls.py:

8 Chapter 1. Getting Started

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-STATIC_ROOT
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-DATABASES
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-DATABASES

django cms Documentation, Release 2.2.1

from django.conf.urls.defaults import *
from django.contrib import admin
from django.conf import settings

admin.autodiscover()

urlpatterns = patterns('',
(r'^admin/', include(admin.site.urls)),
url(r'^', include('cms.urls')),

)

if settings.DEBUG:
urlpatterns = patterns('',
url(r'^media/(?P<path>.*)$', 'django.views.static.serve',

{'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
url(r'', include('django.contrib.staticfiles.urls')),

) + urlpatterns

1.3.3 Creating templates

django CMS uses templates to define how a page should look and what parts of it are editable. Editable areas are
called placeholders. These templates are standard Django templates and you may use them as described in the
official documentation.

Templates you wish to use on your pages must be declared in the CMS_TEMPLATES setting:

CMS_TEMPLATES = (
('template_1.html', 'Template One'),
('template_2.html', 'Template Two'),

)

If you followed this tutorial from the beginning, we already put this code in your settings file.

Now, on with the actual template files!

Fire up your favorite editor and create a file called base.html in a folder called templates in your myproject
directory.

Here is a simple example for a base template called base.html:

{% load cms_tags sekizai_tags %}
<html>
<head>

{% render_block "css" %}
</head>
<body>

{% placeholder base_content %}
{% block base_content%}{% endblock %}
{% render_block "js" %}

</body>
</html>

Now, create a file called template_1.html in the same directory. This will use your base template, and add
extra content to it:

{% extends "base.html" %}
{% load cms_tags %}

{% block base_content %}
{% placeholder template_1_content %}

{% endblock %}

1.3. Introductory Tutorial 9

http://docs.djangoproject.com/en/1.2/topics/templates/

django cms Documentation, Release 2.2.1

When you set template_1.html as a template on a page you will get two placeholders to put plugins in. One is
template_1_content from the page template template_1.html and another is base_content from
the extended base.html.

When working with a lot of placeholders, make sure to give descriptive names for your placeholders, to more
easily identify them in the admin panel.

Now, feel free to experiment and make a template_2.html file! If you don’t feel creative, just copy tem-
plate_1 and name the second placeholder something like “template_2_content”.

Static files handling with sekizai

The django CMS handles media files (css stylesheets and javascript files) required by CMS plugins using django-
sekizai. This requires you to define at least two sekizai namespaces in your templates: js and css. You can do so
using the render_block template tag from the sekizai_tags template tag libary. It is highly recommended
to put the {% render_block "css" %} tag as last thing before the closing </head> HTML tag and the
{% render_block "js" %} tag as the last thing before the closing </body> HTML tag.

Initial database setup

This command depends on whether you upgrade your installation or do a fresh install. We recommend that you
get familiar with the way South works, as it is a very powerful, easy and convenient tool. django CMS uses it
extensively.

Fresh install

Run:

python manage.py syncdb --all
python manage.py migrate --fake

The first command will prompt you to create a super user; choose ‘yes’ and enter appropriate values.

Upgrade

Run:

python manage.py syncdb
python manage.py migrate

Up and running!

That should be it. Restart your development server using python manage.py runserver and point a web
browser to 127.0.0.1:8000 :you should get the django CMS “It Worked” screen.

10 Chapter 1. Getting Started

https://github.com/ojii/django-sekizai
https://github.com/ojii/django-sekizai
http://south.aeracode.org/
http://127.0.0.1:8000

django cms Documentation, Release 2.2.1

Head over to the admin panel <http://127.0.0.1:8000/admin/> and log in with the user you created during the
database setup.

To deploy your django CMS project on a production webserver, please refer to the Django documentation.

1.3.4 Creating your first CMS Page!

That’s it, now the best part: you can start using the CMS! Run your server with python manage.py
runserver, then point a web browser to 127.0.0.1:8000/admin/ , and log in using the super user credentials
you defined when you ran syncdb earlier.

Once in the admin part of your site, you should see something like the following:

Adding a page

Adding a page is as simple as clicking “Pages” in the admin view, then the “add page” button on the top right-hand
corner of the screen.

This is where you select which template to use (remember, we created two), as well as pretty obvious things like
which language the page is in (used for internationalisation), the page’s title, and the url slug it will use.

Hitting the “Save” button, well, saves the page. It will now display in the list of pages.

1.3. Introductory Tutorial 11

http://docs.djangoproject.com/en/1.2/howto/deployment/
http://127.0.0.1:8000/admin/

django cms Documentation, Release 2.2.1

Congratulations! You now have a fully functional django CMS installation!

Publishing a page

The list of pages available is a handy way to change a few parameters about your pages:

Visibility

By default, pages are “invisible”. To let people access them you should mark them as “published”.

Menus

Another option this view lets you tweak is whether or not the page should appear in your site’s navigation (that is,
whether there should be a menu entry to reach it or not)

Adding content to a page

So far, our page doesn’t do much. Make sure it’s marked as “published”, then click on the page’s “edit” button.

Ignore most of the interface for now, and click the “view on site” button on the top right-hand corner of the screen.
As expected, your page is blank for the time being, since our template is really a minimal one.

Let’s get to it now then!

Press your browser’s back button, so as to see the page’s admin interface. If you followed the tutorial so far, your
template (template_1.html) defines two placeholders. The admin interfaces shows you theses placeholders
as sub menus:

Scroll down the “Available plugins” drop-down list. This displays the plugins you added to your
INSTALLED_APPS settings. Choose the “text” plugin in the drop-down, then press the “Add” button.

The right part of the plugin area displays a rich text editor (TinyMCE).

Type in whatever you please there, then press the “Save” button.

Go back to your website using the top right-hand “View on site” button. That’s it!

12 Chapter 1. Getting Started

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://tinymce.moxiecode.com/

django cms Documentation, Release 2.2.1

Where to go from here

Congratulations, you now have a fully functional CMS! Feel free to play around with the different plugins provided
out of the box, and build great websites!

1.4 Using South with django CMS

South is an incredible piece of software that lets you handle database migrations. This document is by no means
meant to replace the excellent documentation available online, but rather to give a quick primer on how and why
to get started quickly with South.

1.4.1 Installation

Using Django and Python is, as usual, a joy. Installing South should mostly be as easy as typing:

pip install South

Then, simply add south to the list of INSTALLED_APPS in your settings.py file.

1.4.2 Basic usage

For a very short crash course:

1. Instead of the initial manage.py syncdb command, simply run manage.py schemamigration
--initial <app name>. This will create a new migrations package, along with a new migration file
(in the form of a python script).

2. Run the migration using manage.py migrate. Your tables have now been created in the database,
Django will work as usual.

3. Whenever you make changes to your models.py file, run manage.py schemamigration --auto
<app name> to create a new migration file, then manage.py migrate to apply the newly created
migration.

1.4.3 More information about South

Obviously, South is a very powerful tool and this simple crash course is only the very tip of the iceberg. Readers
are highly encouraged to have a quick glance at the excellent official South documentation.

1.5 Configuration

The django CMS has a lot of settings you can use to customize your installation of the CMS to be exactly like you
want it to be.

1.4. Using South with django CMS 13

http://south.aeracode.org/docs/index.html
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://south.aeracode.org/docs/index.html

django cms Documentation, Release 2.2.1

1.5.1 Required Settings

CMS_TEMPLATES

Default: () (Not a valid setting!)

A list of templates you can select for a page.

Example:

CMS_TEMPLATES = (
('base.html', gettext('default')),
('2col.html', gettext('2 Column')),
('3col.html', gettext('3 Column')),
('extra.html', gettext('Some extra fancy template')),

)

Note: All templates defined in CMS_TEMPLATES must contain at least the js and css sekizai namespaces, for
more information, see Static files handling with sekizai.

1.5.2 Basic Customization

CMS_TEMPLATE_INHERITANCE

Default: True

Optional Enables the inheritance of templates from parent pages.

If this is enabled, pages have the additional template option to inherit their template from the nearest ancestor.
New pages default to this setting if the new page is not a root page.

CMS_PLACEHOLDER_CONF

Default: {} Optional

Used to configure placeholders. If not given, all plugins are available in all placeholders.

Example:

CMS_PLACEHOLDER_CONF = {
'content': {

'plugins': ('TextPlugin', 'PicturePlugin'),
'text_only_plugins': ('LinkPlugin',)
'extra_context': {"width":640},
'name':gettext("Content"),

},
'right-column': {

"plugins": ('TeaserPlugin', 'LinkPlugin'),
"extra_context": {"width":280},
'name':gettext("Right Column"),
'limits': {

'global': 2,
'TeaserPlugin': 1,
'LinkPlugin': 1,

},
},
'base.html content': {

"plugins": {'TextPlugin', 'PicturePlugin', 'TeaserPlugin'}
},

}

14 Chapter 1. Getting Started

django cms Documentation, Release 2.2.1

You can combine template names and placeholder names to granually define plugins, as shown above with
‘’base.html content’‘.

plugins

A list of plugins that can be added to this placeholder. If not supplied, all plugins can be selected.

text_only_plugins

A list of additional plugins available only in the TextPlugin, these plugins can’t be added directly to this place-
holder.

extra_context

Extra context that plugins in this placeholder receive.

name

The name displayed in the Django admin. With the gettext stub, the name can be internationalized.

limits

Limit the number of plugins that can be placed inside this placeholder. Dictionary keys are plugin names; values
are their respective limits. Special case: “global” - Limit the absolute number of plugins in this placeholder
regardless of type (takes precedence over the type-specific limits).

CMS_PLUGIN_CONTEXT_PROCESSORS

Default: []

A list of plugin context processors. Plugin context processors are callables that modify all plugin’s context before
rendering. See Custom Plugins for more information.

CMS_PLUGIN_PROCESSORS

Default: []

A list of plugin processors. Plugin processors are callables that modify all plugin’s output after rendering. See
Custom Plugins for more information.

CMS_APPHOOKS

Default: ()

A list of import paths for cms.app_base.CMSApp subclasses.

Defaults to an empty list which means CMS applications are auto-discovered in all INSTALLED_APPS by trying
to import their cms_app module.

If this setting is set, the auto-discovery is disabled.

Example:

CMS_APPHOOKS = (
'myapp.cms_app.MyApp',
'otherapp.cms_app.MyFancyApp',
'sampleapp.cms_app.SampleApp',

)

PLACEHOLDER_FRONTEND_EDITING

Default: True

If set to False, frontend editing is not available for models using
cms.models.fields.PlaceholderField.

1.5. Configuration 15

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 2.2.1

1.5.3 Editor configuration

The Wymeditor from cms.plugins.text plugin can take the same configuration as vanilla Wymeditor. There-
fore you will need to learn how to configure that. The best way to understand this is to head over to Wymeditor
examples page After understand how Wymeditor works.

The cms.plugins.text plugin exposes several variables named WYM_* that correspond to the wym config-
uration. The simplest way to get started with this is to go to cms/plugins/text/settings.py and copy
over the WYM_* variables and you will realize they match one to one to Wymeditor’s.

Currently the following variables are available:

• WYM_TOOLS

• WYM_CONTAINERS

• WYM_CLASSES

• WYM_STYLES

• WYM_STYLESHEET

1.5.4 I18N and L10N

CMS_HIDE_UNTRANSLATED

Default: True

By default django CMS hides menu items that are not yet translated into the current language. With this setting
set to False they will show up anyway.

CMS_LANGUAGES

Default: Value of LANGUAGES

Defines the languages available in django CMS.

Example:

CMS_LANGUAGES = (
('fr', gettext('French')),
('de', gettext('German')),
('en', gettext('English')),

)

Note: Make sure you only define languages which are also in LANGUAGES.

CMS_LANGUAGE_FALLBACK

Default: True

This will redirect the browser to the same page in another language if the page is not available in the current
language.

CMS_LANGUAGE_CONF

Default: {}

Language fallback ordering for each language.

16 Chapter 1. Getting Started

http://files.wymeditor.org/wymeditor/trunk/src/examples/
http://files.wymeditor.org/wymeditor/trunk/src/examples/
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES

django cms Documentation, Release 2.2.1

Example:

CMS_LANGUAGE_CONF = {
'de': ['en', 'fr'],
'en': ['de'],

}

CMS_SITE_LANGUAGES

Default: {}

If you have more than one site and CMS_LANGUAGES differs between the sites, you may want to fill this out so
if you switch between the sites in the admin you only get the languages available on this site.

Example:

CMS_SITE_LANGUAGES = {
1:['en','de'],
2:['en','fr'],
3:['en'],

}

CMS_FRONTEND_LANGUAGES

Default: Value of CMS_LANGUAGES

A list of languages django CMS uses in the frontend. For example, if you decide you want to add a new language
to your page but don’t want to show it to the world yet.

Example:

CMS_FRONTEND_LANGUAGES = ("de", "en", "pt-BR")

1.5.5 Media Settings

CMS_MEDIA_PATH

default: cms/

The path from MEDIA_ROOT to the media files located in cms/media/

CMS_MEDIA_ROOT

Default: MEDIA_ROOT + CMS_MEDIA_PATH

The path to the media root of the cms media files.

CMS_MEDIA_URL

default: MEDIA_URL + CMS_MEDIA_PATH

The location of the media files that are located in cms/media/cms/

1.5. Configuration 17

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_URL

django cms Documentation, Release 2.2.1

CMS_PAGE_MEDIA_PATH

Default: ’cms_page_media/’

By default, django CMS creates a folder called cms_page_media in your static files folder where all uploaded
media files are stored. The media files are stored in subfolders numbered with the id of the page.

You should take care that the directory to which it points is writable by the user under which Django will be
running.

1.5.6 URLs

CMS_URL_OVERWRITE

Default: True

This adds a new field “url overwrite” to the “advanced settings” tab of your page. With this field you can overwrite
the whole relative url of the page.

CMS_MENU_TITLE_OVERWRITE

Default: False

This adds a new “menu title” field beside the title field.

With this field you can overwrite the title that is displayed in the menu.

To access the menu title in the template, use:

{{ page.get_menu_title }}

CMS_REDIRECTS

Default: False

This adds a new “redirect” field to the “advanced settings” tab of the page

You can set a url here, which a visitor will be redirected to when the page is accessed.

Note: Don’t use this too much. django.contrib.redirects is much more flexible, handy, and is designed
exactly for this purpose.

CMS_FLAT_URLS

Default: False

If this is enabled the slugs are not nested in the urls.

So a page with a “world” slug will have a “/world” url, even it is a child of the “hello” page. If disabled the page
would have the url: “/hello/world/”

CMS_SOFTROOT

Default: False

This adds a new “softroot” field to the “advanced settings” tab of the page. If a page is marked as softroot the
menu will only display items until it finds the softroot.

If you have a huge site you can easily partition the menu with this.

18 Chapter 1. Getting Started

http://readthedocs.org/docs/django/en/latest/ref/contrib/redirects.html#module-django.contrib.redirects

django cms Documentation, Release 2.2.1

1.5.7 Advanced Settings

CMS_PERMISSION

Default: False

If this is enabled you get 3 new models in Admin:

• Pages global permissions

• User groups - page

• Users - page

In the edit-view of the pages you can now assign users to pages and grant them permissions. In the global
permissions you can set the permissions for users globally.

If a user has the right to create new users he can now do so in the “Users - page”. But he will only see the users
he created. The users he created can also only inherit the rights he has. So if he only has been granted the right
to edit a certain page all users he creates can, in turn, only edit this page. Naturally he can limit the rights of the
users he creates even further, allowing them to see only a subset of the pages he’s allowed access to, for example.

CMS_PUBLIC_FOR

Default: all

Decides if pages without any view restrictions are public by default, or staff only. Possible values are all and
staff.

CMS_MODERATOR

Default: False

If set to true, gives you a new “moderation” column in the tree view.

You can select to moderate pages or whole trees. If a page is under moderation you will receive an email if
somebody changes a page and you will be asked to approve the changes. Only after you approved the changes
will they be updated on the “live” site. If you make changes to a page you moderate yourself, you will need to
approve it anyway. This allows you to change a lot of pages for a new version of the site, for example, and go live
with all the changes at the same time.

Note: When switching this value to True on an existing site, you have to run the cms moderator on
command to make the required database changes.

CMS_SHOW_START_DATE & CMS_SHOW_END_DATE

Default: False for both

This adds two new DateTimeField fields in the “advanced settings” tab of the page. With this option you can
limit the time a page is published.

CMS_SEO_FIELDS

Default: False

This adds a new “SEO Fields” fieldset to the page admin. You can set the Page Title, Meta Keywords and Meta
Description in there.

To access these fields in the template use:

1.5. Configuration 19

http://readthedocs.org/docs/django/en/latest/ref/models/fields.html#django.db.models.DateTimeField

django cms Documentation, Release 2.2.1

{% load cms_tags %}
<head>

<title>{% page_attribute page_title %}</title>
<meta name="description" content="{% page_attribute meta_description %}"/>
<meta name="keywords" content="{% page_attribute meta_keywords %}"/>
...
...

</head>

CMS_CACHE_DURATIONS

This dictionary carries the various cache duration settings.

’content’

Default: 60

Cache expiration (in seconds) for show_placeholder and page_url template tags.

Note: This settings was previously called CMS_CONTENT_CACHE_DURATION

’menus’

Default: 3600

Cache expiration (in seconds) for the menu tree.

Note: This settings was previously called MENU_CACHE_DURATION

’permissions’

Default: 3600

Cache expiration (in seconds) for view and other permissions.

CMS_CACHE_PREFIX

Default: cms-

The CMS will prepend the value associated with this key to every cache access (set and get). This is useful when
you have several django CMS installations, and you don’t want them to share cache objects.

Example:

CMS_CACHE_PREFIX = 'mysite-live'

Note: Django 1.3 introduced a site-wide cache key prefix. See Django’s own docs on cache key prefixing

20 Chapter 1. Getting Started

http://readthedocs.org/docs/django/en/latest/topics/cache.html#cache-key-prefixing

django cms Documentation, Release 2.2.1

1.6 Navigation

There are four template tags for use in the templates that are connected to the menu:

• show_menu

• show_menu_below_id

• show_sub_menu

• show_breadcrumb

To use any of these templatetags, you need to have {% load menu_tags %} in your template before the line
on which you call the templatetag.

Note: Please note that menus were originally implemented to be application-independent and as such, live in the
menus application instead of the cms application.

1.6.1 show_menu

{% show_menu %} renders the navigation of the current page. You can overwrite the appearance and the
HTML if you add a menu/menu.html template to your project or edit the one provided with django-
cms. show_menu takes four optional parameters: start_level, end_level, extra_inactive, and
extra_active.

The first two parameters, start_level (default=0) and end_level (default=100) specify from what level to
which level should the navigation be rendered. If you have a home as a root node and don’t want to display home
you can render the navigation only after level 1.

The third parameter, extra_inactive (default=0), specifies how many levels of navigation should be dis-
played if a node is not a direct ancestor or descendant of the current active node.

The fourth parameter, extra_active (default=100), specifies how many levels of descendants of the currently
active node should be displayed.

You can supply a template parameter to the tag.

Some Examples

Complete navigation (as a nested list):

{% load menu_tags %}

{% show_menu 0 100 100 100 %}

Navigation with active tree (as a nested list):

{% show_menu 0 100 0 100 %}

Navigation with only one active extra level:

{% show_menu 0 100 0 1 %}

Level 1 navigation (as a nested list):

1.6. Navigation 21

django cms Documentation, Release 2.2.1

{% show_menu 1 %}

Navigation with a custom template:

{% show_menu 0 100 100 100 "myapp/menu.html" %}

1.6.2 show_menu_below_id

If you have set an id in the advanced settings of a page, you can display the submenu of this page with a template
tag. For example, we have a page called meta that is not displayed in the navigation and that has the id “meta”:

{% show_menu_below_id "meta" %}

You can give it the same optional parameters as show_menu:

{% show_menu_below_id "meta" 0 100 100 100 "myapp/menu.html" %}

1.6.3 show_sub_menu

Display the sub menu of the current page (as a nested list). Takes one argument that specifies how many levels
deep should the submenu be displayed. The template can be found at menu/sub_menu.html:

{% show_sub_menu 1 %}

Or with a custom template:

{% show_sub_menu 1 "myapp/submenu.html" %}

1.6.4 show_breadcrumb

Show the breadcrumb navigation of the current page. The template for the HTML can be found at
menu/breadcrumb.html.:

{% show_breadcrumb %}

Or with a custom template and only display level 2 or higher:

{% show_breadcrumb 2 "myapp/breadcrumb.html" %}

If the current URL is not handled by the CMS or you are working in a navigation extender, you may need to
provide your own breadcrumb via the template. This is mostly needed for pages like login, logout and third-party
apps.

1.6.5 Properties of Navigation Nodes in templates

{{ node.is_leaf_node }}

Is it the last in the tree? If true it doesn’t have any children. (This normally comes from mptt.)

22 Chapter 1. Getting Started

django cms Documentation, Release 2.2.1

{{ node.level }}

The level of the node. Starts at 0.

{{ node.menu_level }}

The level of the node from the root node of the menu. Starts at 0. If your menu starts at level 1 or you have a “soft
root” (described in the next section) the first node still would have 0 as its menu_level.

{{ node.get_absolute_url }}

The absolute URL of the node, without any protocol, domain or port.

{{ node.get_title }}

The title in the current language of the node.

{{ node.selected }}

If true this node is the current one selected/active at this URL.

{{ node.ancestor }}

If true this node is an ancestor of the current selected node.

{{ node.sibling }}

If true this node is a sibling of the current selected node.

{{ node.descendant }}

If true this node is a descendant of the current selected node.

{{ node.soft_root }}

If true this node is a “soft root”.

1.6.6 Soft Roots

What Soft Roots do

A soft root is a page that acts as the root for a menu navigation tree.

Typically, this will be a page that is the root of a significant new section on your site.

When the soft root feature is enabled, the navigation menu for any page will start at the nearest soft root, rather
than at the real root of the site’s page hierarchy.

This feature is useful when your site has deep page hierarchies (and therefore multiple levels in its navigation
trees). In such a case, you usually don’t want to present site visitors with deep menus of nested items.

For example, you’re on the page “Introduction to Bleeding”, so the menu might look like this:

• School of Medicine

– Medical Education

– Departments

* Department of Lorem Ipsum

* Department of Donec Imperdiet

* Department of Cras Eros

* Department of Mediaeval Surgery

· Theory

1.6. Navigation 23

django cms Documentation, Release 2.2.1

· Cures

Bleeding

Introduction to Bleeding <this is the current page>

Bleeding - the scientific evidence

Cleaning up the mess

Cupping

Leaches

Maggots

· Techniques

· Instruments

* Department of Curabitur a Purus

* Department of Sed Accumsan

* Department of Etiam

– Research

– Administration

– Contact us

– Impressum

which is frankly overwhelming.

By making “Department of Mediaeval Surgery” a soft root, the menu becomes much more manageable:

• Department of Mediaeval Surgery

– Theory

– Cures

* Bleeding

· Introduction to Bleeding <current page>

· Bleeding - the scientific evidence

· Cleaning up the mess

* Cupping

* Leaches

* Maggots

– Techniques

– Instruments

Using Soft Roots

To enable the feature, settings.py requires:

CMS_SOFTROOT = True

Mark a page as soft root in the ‘Advanced’ tab of the its settings in the admin interface.

1.6.7 Modifying & Extending the menu

Please refer to the App Integration documentation

24 Chapter 1. Getting Started

django cms Documentation, Release 2.2.1

1.7 Plugins reference

1.7.1 File

Allows you to upload a file. A filetype icon will be assigned based on the file extension.

For installation be sure you have the following in the INSTALLED_APPS setting in your project’s
settings.py file:

INSTALLED_APPS = (
...
'cms.plugins.file',
...

)

You should take care that the directory defined by the configuration setting CMS_PAGE_MEDIA_PATH (by de-
fault cms_page_media/ relative to MEDIA_ROOT) is writable by the user under which django will be running.

You might consider using django-filer with django CMS plugin and its cmsplugin_filer_file component
instead.

Warning: The builtin file plugin does only work with local storages. If you need more advanced solutions,
please look at alternative file plugins for the django CMS, such as django-filer.

1.7.2 Flash

Allows you to upload and display a Flash SWF file on your page.

For installation be sure you have the following in the INSTALLED_APPS setting in your project’s
settings.py file:

INSTALLED_APPS = (
...
'cms.plugins.flash',
...

)

1.7.3 GoogleMap

Displays a map of an address on your page.

For installation be sure you have the following in the INSTALLED_APPS setting in your project’s
settings.py file:

INSTALLED_APPS = (
...
'cms.plugins.googlemap',
...

)

1.7.4 Link

Displays a link to an arbitrary URL or to a page. If a page is moved the URL will still be correct.

For installation be sure to have the following in the INSTALLED_APPS setting in your project’s settings.py
file:

1.7. Plugins reference 25

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
https://github.com/stefanfoulis/django-filer
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 2.2.1

INSTALLED_APPS = (
...
'cms.plugins.link',
...

)

Note: As of version 2.2, the link plugin no longer verifies the existance of link targets.

1.7.5 Picture

Displays a picture in a page.

For installation be sure you have the following in the INSTALLED_APPS setting in your project’s
settings.py file:

INSTALLED_APPS = (
...
'cms.plugins.picture',
...

)

If you want to resize the picture you can get a thumbnail library. We recommend sorl.thumbnail.

In your project template directory create a folder called cms/plugins and create a file called picture.html
in there. Here is an example picture.html template:

{% load i18n thumbnail %}
{% spaceless %}

{% if picture.url %}{% endif %}
{% ifequal placeholder "content" %}

{% endifequal %}
{% ifequal placeholder "teaser" %}

{% endifequal %}
{% if picture.url %}{% endif %}

{% endspaceless %}

In this template the picture is scaled differently based on which placeholder it was placed in.

You should take care that the directory defined by the configuration setting CMS_PAGE_MEDIA_PATH (by de-
fault cms_page_media/ relative to MEDIA_ROOT) is writable by the user under which django will be running.

Note: For more advanced use cases where you would like to upload your media to a central location, consider
using django-filer with django CMS plugin and its cmsplugin_filer_video component instead.

1.7.6 Snippet

Renders a HTML snippet from a HTML file in your templates directories or a snippet given via direct input.

For installation be sure you have the following in the INSTALLED_APPS setting in your project’s
settings.py file:

26 Chapter 1. Getting Started

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://code.google.com/p/sorl-thumbnail/
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 2.2.1

INSTALLED_APPS = (
...
'cms.plugins.snippet',
...

)

Note: This plugin should mainly be used during development to quickly test HTML snippets.

1.7.7 Teaser

Displays a teaser box for another page or a URL. A picture and a description can be added.

For installation be sure you have the following in the INSTALLED_APPS settings in your project’s
settings.py file:

INSTALLED_APPS = (
...
'cms.plugins.teaser',
...

)

You should take care that the directory defined by the configuration setting CMS_PAGE_MEDIA_PATH (by de-
fault cms_page_media/ relative to MEDIA_ROOT) is writable by the user under which django will be running.

Note: For more advanced use cases where you would like to upload your media to a central location, consider
using django-filer with django CMS plugin and its cmsplugin_filer_video component instead.

1.7.8 Text

Displays text. If plugins are text-enabled they can be placed inside the text-flow. At this moment the following
core plugins are text-enabled:

• cms.plugins.link

• cms.plugins.picture

• cms.plugins.file

• cms.plugins.snippet

The current editor is Wymeditor. If you want to use TinyMce you need to install django-tinymce. If tinymce is
in your INSTALLED_APPS it will be automatically enabled. If you have tinymce installed but don’t want to use
it in the cms put the following in your settings.py:

CMS_USE_TINYMCE = False

Note: When using django-tinymce, you also need to configure it. See the django-tinymce docs for more infor-
mation.

For installation be sure you have the following in your project’s INSTALLED_APPS setting:

INSTALLED_APPS = (
...
'cms.plugins.text',

1.7. Plugins reference 27

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
http://www.wymeditor.org/
http://code.google.com/p/django-tinymce/
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://django-tinymce.googlecode.com/svn/tags/release-1.5/docs/.build/html/installation.html#id2
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 2.2.1

...
)

1.7.9 Video

Plays Video Files or Youtube / Vimeo Videos. Uses the OSFlashVideoPlayer. If you upload a file use .flv files or
h264 encoded video files.

For installation be sure you have the following in your project’s INSTALLED_APPS setting:

INSTALLED_APPS = (
...
'cms.plugins.video',
...

)

There are some settings you can set in your settings.py to overwrite some default behavior:

• VIDEO_AUTOPLAY ((default: False)

• VIDEO_AUTOHIDE (default: False)

• VIDEO_FULLSCREEN (default: True)

• VIDEO_LOOP (default: False)

• VIDEO_AUTOPLAY (default: False)

• VIDEO_BG_COLOR (default: "000000")

• VIDEO_TEXT_COLOR (default: "FFFFFF")

• VIDEO_SEEKBAR_COLOR (default: "13ABEC")

• VIDEO_SEEKBARBG_COLOR (default: "333333")

• VIDEO_LOADINGBAR_COLOR (default: "828282")

• VIDEO_BUTTON_OUT_COLOR (default: "333333")

• VIDEO_BUTTON_OVER_COLOR (default: "000000")

• VIDEO_BUTTON_HIGHLIGHT_COLOR (default: "FFFFFF")

You should take care that the directory defined by the configuration setting CMS_PAGE_MEDIA_PATH (by de-
fault cms_page_media/ relative to MEDIA_ROOT) is writable by the user under which django will be running.

Note: For more advanced use cases where you would like to upload your media to a central location, consider
using django-filer with django CMS plugin and its cmsplugin_filer_video component instead.

1.7.10 Twitter

Displays the last number of post of a twitter user.

For installation be sure you have the following in your project’s INSTALLED_APPS setting:

INSTALLED_APPS = (
...
'cms.plugins.twitter',
...

)

28 Chapter 1. Getting Started

http://github.com/FlashJunior/OSFlashVideoPlayer
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 2.2.1

Note: Since avatars are not guaranteed to be available over SSL (HTTPS), by default the Twitter plugin does not
use avatars on secure sites.

1.7.11 Inherit

Displays all plugins of another page or another language. Great if you need always the same plugins on a lot of
pages.

For installation be sure you have the following in your project’s INSTALLED_APPS setting:

INSTALLED_APPS = (
...
'cms.plugins.inherit',
...

)

Warning: The inherit plugin is currently the only core-plugin which can not be used in non-cms placehold-
ers.

1.7. Plugins reference 29

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 2.2.1

30 Chapter 1. Getting Started

CHAPTER 2

Advanced

2.1 Internationalization

2.1.1 Multilingual URL Middleware

The multilingual URL middleware adds a language prefix to every URL.

Example:

/de/account/login/
/fr/account/login/

It also adds this prefix automatically to every href and form tag. To install it, include
’cms.middleware.multilingual.MultilingualURLMiddleware’ in your project’s
MIDDLEWARE_CLASSES setting.

Note: This middleware must be put before cms.middleware.page.CurrentPageMiddleware

Example:

MIDDLEWARE_CLASSES = (
...
'cms.middleware.multilingual.MultilingualURLMiddleware',
'cms.middleware.user.CurrentUserMiddleware',
'cms.middleware.page.CurrentPageMiddleware',
'cms.middleware.toolbar.ToolbarMiddleware'
...

)

2.1.2 Language Chooser

The language_chooser template tag will display a language chooser for the current page. You can modify
the template in menu/language_chooser.html or provide your own template if necessary.

Example:

{% load menu_tags %}
{% language_chooser "myapp/language_chooser.html" %}

If the current URL is not handled by the CMS and you have some i18n slugs in the URL you may use the
set_language_changer function in the view that handles the current URL.

In the models of the current object add an optional language parameter to the get_absolute_url() method:

31

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MIDDLEWARE_CLASSES
http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.get_absolute_url

django cms Documentation, Release 2.2.1

from django.utils.translation import get_language

def get_absolute_url(self, language=None):
if not language:

language = get_language()
return reverse("product_view", args=[self.get_slug(language=language)])

In the view pass the get_absolute_url() method to the set_language_chooser function:

from menus.utils import set_language_changer

def get_product(request, slug):
item = get_object_or_404(Product, slug=slug, published=True)
set_language_changer(request, item.get_absolute_url)
...

This allows the language chooser to have another URL then the current one. If the current URL is not handled by
the CMS and no set_language_changer function is provided it will take the exact same URL as the current
one and will only change the language prefix.

For the language chooser to work the cms.middleware.multilingual.MultilingualURLMiddleware
must be enabled.

simple_language_changer

If the URLs of your views don’t actually change besides the language prefix, you can use
the menus.utils.simple_language_changer() view decorator, instead of manually using
set_language_changer:

from menus.utils import simple_language_changer

@simple_language_changer
def get_prodcut(request, slug):

...

2.1.3 page_language_url

This template tag returns the URL of the current page in another language.

Example:

{% page_language_url "de" %}

2.1.4 CMS_HIDE_UNTRANSLATED

If you put CMS_HIDE_UNTRANSLATED to False in your settings.py all pages will be displayed in all
languages even if they are not translated yet.

If CMS_HIDE_UNTRANSLATED is True is in your settings.py and you are on a page that hasn’t got a
english translation yet and you view the german version then the language chooser will redirect to /. The same
goes for urls that are not handled by the cms and display a language chooser.

32 Chapter 2. Advanced

django cms Documentation, Release 2.2.1

2.2 Sitemap Guide

2.2.1 Sitemap

Sitemaps are XML files used by Google to index your website by using their Webmaster Tools and telling them
the location of your sitemap.

The CMSSitemap will create a sitemap with all the published pages of your CMS

2.2.2 Configuration

• Add django.contrib.sitemaps to your project’s INSTALLED_APPS setting.

• Add from cms.sitemaps import CMSSitemap to the top of your main urls.py.

• Add url(r’^sitemap.xml$’, ’django.contrib.sitemaps.views.sitemap’,
{’sitemaps’: {’cmspages’: CMSSitemap}}), to your urlpatterns.

2.2.3 django.contrib.sitemaps

More information about django.contrib.sitemaps can be found in the official Django documentation.

2.3 Template Tags

To use any of the following templatetags you need to load them first at the top of your template:

{% load cms_tags menu_tags %}

2.3.1 placeholder

The placeholder templatetag defines a placeholder on a page. All placeholders in a template will be auto-
detected and can be filled with plugins when editing a page that is using said template. When rendering, the
content of these plugins will appear where the placeholder tag was.

Example:

{% placeholder "content" %}

If you want additional content to be displayed in case the placeholder is empty, use the or argument and an
additional {% endplaceholder %} closing tag. Everything between {% placeholder "..." or %}
and {% endplaceholder %} is rendered instead if the placeholder has no plugins or the plugins do not
generate any output.

Example:

{% placeholder "content" or %}There is no content.{% endplaceholder %}

If you want to add extra variables to the context of the placeholder, you should use Django’s with tag. For
instance, if you want to resize images from your templates according to a context variable called width, you can
pass it as follows:

{% with 320 as width %}{% placeholder "content" %}{% endwith %}

If you want the placeholder to inherit the content of a placeholder with the same name on parent pages, simply
pass the inherit argument:

2.2. Sitemap Guide 33

http://readthedocs.org/docs/django/en/latest/ref/contrib/sitemaps.html#module-django.contrib.sitemaps
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/contrib/sitemaps.html#module-django.contrib.sitemaps
http://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/
http://readthedocs.org/docs/django/en/latest/ref/templates/builtins.html#std:templatetag-with

django cms Documentation, Release 2.2.1

{% placeholder "content" inherit %}

This will walk the page tree up till the root page and will show the first placeholder it can find with content.

It’s also possible to combine this with the or argument to show an ultimate fallback if the placeholder and none
of the placeholders on parent pages have plugins that generate content:

{% placeholder "content" inherit or %}There is no spoon.{% endplaceholder %}

See also the CMS_PLACEHOLDER_CONF setting where you can also add extra context variables and change
some other placeholder behavior.

2.3.2 show_placeholder

Displays a specific placeholder from a given page. This is useful if you want to have some more or less static
content that is shared among many pages, such as a footer.

Arguments:

• placeholder_name

• page_lookup (see Page Lookup for more information)

• language (optional)

• site (optional)

Examples:

{% show_placeholder "footer" "footer_container_page" %}
{% show_placeholder "content" request.current_page.parent_id %}
{% show_placeholder "teaser" request.current_page.get_root %}

Page Lookup

The page_lookup argument, passed to several templatetags to retrieve a page, can be of any of the following
types:

• str: interpreted as the reverse_id field of the desired page, which can be set in the “Advanced” section
when editing a page.

• int: interpreted as the primary key (pk field) of the desired page

• dict: a dictionary containing keyword arguments to find the desired page (for instance: {’pk’: 1})

• Page: you can also pass a page object directly, in which case there will be no database lookup.

If you know the exact page you are referring to, it is a good idea to use a reverse_id (a string used to uniquely
name a page) rather than a hard-coded numeric ID in your template. For example, you might have a help page
that you want to link to or display parts of on all pages. To do this, you would first open the help page in the
admin interface and enter an ID (such as help) under the ‘Advanced’ tab of the form. Then you could use that
reverse_id with the appropriate templatetags:

{% show_placeholder "right-column" "help" %}
Help page

If you are referring to a page relative to the current page, you’ll probably have to use a numeric page ID or a page
object. For instance, if you want the content of the parent page display on the current page, you can use:

{% show_placeholder "content" request.current_page.parent_id %}

34 Chapter 2. Advanced

http://docs.python.org/2.6/library/stdtypes.html#dict

django cms Documentation, Release 2.2.1

Or, suppose you have a placeholder called teaser on a page that, unless a content editor has filled it with content
specific to the current page, should inherit the content of its root-level ancestor:

{% placeholder "teaser" or %}
{% show_placeholder "teaser" request.current_page.get_root %}

{% endplaceholder %}

2.3.3 show_uncached_placeholder

The same as show_placeholder, but the placeholder contents will not be cached.

Arguments:

• placeholder_name

• page_lookup (see Page Lookup for more information)

• language (optional)

• site (optional)

Example:

{% show_uncached_placeholder "footer" "footer_container_page" %}

2.3.4 page_url

Displays the URL of a page in the current language.

Arguments:

• page_lookup (see Page Lookup for more information)

Example:

Help page
Parent page

2.3.5 page_attribute

This templatetag is used to display an attribute of the current page in the current language.

Arguments:

• attribute_name

• page_lookup (optional; see Page Lookup for more information)

Possible values for attribute_name are: "title", "menu_title", "page_title", "slug",
"meta_description", "meta_keywords" (note that you can also supply that argument without quotes,
but this is deprecated because the argument might also be a template variable).

Example:

{% page_attribute "page_title" %}

If you supply the optional page_lookup argument, you will get the page attribute from the page found by that
argument.

Example:

2.3. Template Tags 35

django cms Documentation, Release 2.2.1

{% page_attribute "page_title" "my_page_reverse_id" %}
{% page_attribute "page_title" request.current_page.parent_id %}
{% page_attribute "slug" request.current_page.get_root %}

2.3.6 show_menu

The show_menu tag renders the navigation of the current page. You can overwrite the appearance and the HTML
if you add a cms/menu.html template to your project or edit the one provided with django-cms. show_menu
takes four optional parameters: start_level, end_level, extra_inactive, and extra_active.

The first two parameters, start_level (default=0) and end_level (default=100) specify from what level to
which level should the navigation be rendered. If you have a home as a root node and don’t want to display home
you can render the navigation only after level 1.

The third parameter, extra_inactive (default=0), specifies how many levels of navigation should be dis-
played if a node is not a direct ancestor or descendant of the current active node.

Finally, the fourth parameter, extra_active (default=100), specifies how many levels of descendants of the
currently active node should be displayed.

Some Examples

Complete navigation (as a nested list):

{% show_menu 0 100 100 100 %}

Navigation with active tree (as a nested list):

{% show_menu 0 100 0 100 %}

Navigation with only one active extra level:

{% show_menu 0 100 0 1 %}

Level 1 navigation (as a nested list):

{% show_menu 1 %}

Navigation with a custom template:

{% show_menu 0 100 100 100 "myapp/menu.html" %}

2.3.7 show_menu_below_id

If you have set an id in the advanced settings of a page, you can display the submenu of this page with a template
tag. For example, we have a page called meta that is not displayed in the navigation and that has the id “meta”:

36 Chapter 2. Advanced

django cms Documentation, Release 2.2.1

{% show_menu_below_id "meta" %}

You can give it the same optional parameters as show_menu:

{% show_menu_below_id "meta" 0 100 100 100 "myapp/menu.html" %}

2.3.8 show_sub_menu

Displays the sub menu of the current page (as a nested list). Takes one argument that specifies how many levels
deep should the submenu be displayed. The template can be found at cms/sub_menu.html:

{% show_sub_menu 1 %}

Or with a custom template:

{% show_sub_menu 1 "myapp/submenu.html" %}

2.3.9 show_breadcrumb

Renders the breadcrumb navigation of the current page. The template for the HTML can be found at
cms/breadcrumb.html:

{% show_breadcrumb %}

Or with a custom template and only display level 2 or higher:

{% show_breadcrumb 2 "myapp/breadcrumb.html" %}

Usually, only pages visible in the navigation are shown in the breadcrumb. To include all pages in the breadcrumb,
write:

{% show_breadcrumb 0 "cms/breadcrumb.html" 0 %}

If the current URL is not handled by the CMS or by a navigation extender, the current menu node can not be
determined. In this case you may need to provide your own breadcrumb via the template. This is mostly needed
for pages like login, logout and third-party apps. This can easily be accomplished by a block you overwrite in
your templates.

For example in your base.html:

{% block breadcrumb %}
{% show_breadcrumb %}
{% endblock %}

And then in your app template:

2.3. Template Tags 37

django cms Documentation, Release 2.2.1

{% block breadcrumb %}
home
My current page
{% endblock %}

2.3.10 page_language_url

Returns the url of the current page in an other language:

{% page_language_url de %}
{% page_language_url fr %}
{% page_language_url en %}

If the current url has no cms-page and is handled by a navigation extender and the url changes based on the
language: You will need to set a language_changer function with the set_language_changer function in cms.utils.

For more information, see Internationalization.

2.3.11 language_chooser

The language_chooser template tag will display a language chooser for the current page. You can modify
the template in menu/language_chooser.html or provide your own template if necessary.

Example:

{% language_chooser %}

or with custom template:

{% language_chooser "myapp/language_chooser.html" %}

The language_chooser has three different modes in which it will display the languages you can choose from:
“raw” (default), “native”, “current” and “short”. It can be passed as last argument to the language_chooser
tag as a string. In “raw” mode, the language will be displayed like it’s verbose name in the settings. In “native”
mode the languages are displayed in their actual language (eg. German will be displayed “Deutsch”, Japanese as
“” etc). In “current” mode the languages are translated into the current language the user is seeing the site in (eg.
if the site is displayed in German, Japanese will be displayed as “Japanisch”). “Short” mode takes the language
code (eg. “en”) to display.

If the current url has no cms-page and is handled by a navigation extender and the url changes based on the
language: You will need to set a language_changer function with the set_language_changer function in cms.utils.

For more information, see Internationalization.

2.3.12 cms_toolbar

The cms_toolbar templatetag will add the needed css and javascript to the sekizai blocks in the base template.
The templatetag should be placed somewhere within the body of the HTML (within <body>...</body>).

Example:

<body>
{% cms_toolbar %}
...

38 Chapter 2. Advanced

django cms Documentation, Release 2.2.1

2.4 Command Line Interface

You can invoke the django CMS command line interface using the cms Django command:

python manage.py cms

2.4.1 Informational commands

cms list

The list command is used to display information about your installation.

It has two subcommands:

• cms list plugins lists all plugins that are used in your project.

• cms list apphooks lists all apphooks that are used in your project.

2.4.2 Plugin and apphook management commands

cms uninstall

The uninstall subcommand can be used to make an uninstallation of a CMS Plugin or an apphook easier.

It has two subcommands:

• cms uninstall plugins <plugin name> [<plugin name 2> [...]] uninstalls one or
several plugins by removing them from all pages where they are used. Note that the plugin name should be
the name of the class that is registered to the django CMS. If you are unsure about the plugin name, use the
cms list to see a list of installed plugins.

• cms uninstall apphooks <apphook name> [<apphook name 2> [...]] uninstalls
one or several apphooks by removing them from all pages where they are used. Note that the apphook
name should be the name of the class that is registered to the django CMS. If you are unsure about the
apphook name, use the cms list to see a list of installed apphook.

Warning: The uninstall command permanently deletes data from your database. You should make a backup
of your database before using them!

2.4.3 Moderator commands

cms moderator

If you turn CMS_MODERATOR to True on an existing project, you should use the cms moderator on com-
mand to make the required changes in the database, otherwise you will have problems with invisible pages.

Warning: This command alters data in your database. You should make a backup of your database before
using it!

2.4. Command Line Interface 39

django cms Documentation, Release 2.2.1

40 Chapter 2. Advanced

CHAPTER 3

Extending the CMS

3.1 Extending the CMS: Examples

From this part onwards, this tutorial assumes you have done the Django Tutorial and we will show you how to
integrate that poll app into the django CMS. If a poll app is mentioned here, we mean the one you get when
finishing the Django Tutorial. Also, make sure the poll app is in your INSTALLED_APPS.

We assume your main urls.py looks somewhat like this:

from django.conf.urls.defaults import *

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
(r'^admin/', include(admin.site.urls)),
(r'^polls/', include('polls.urls')),
(r'^', include('cms.urls')),

)

3.1.1 My First Plugin

A Plugin is a small bit of content you can place on your pages.

The Model

For our polling app we would like to have a small poll plugin, that shows one poll and let’s the user vote.

In your poll application’s models.py add the following model:

from cms.models import CMSPlugin

class PollPlugin(CMSPlugin):
poll = models.ForeignKey('polls.Poll', related_name='plugins')

def __unicode__(self):
return self.poll.question

Note: django CMS plugins must inherit from cms.models.CMSPlugin (or a subclass thereof) and not
models.Model.

Run manage.py syncdb to create the database tables for this model or see Using South with django CMS to
see how to do it using South

41

http://docs.djangoproject.com/en/1.2/intro/tutorial01/
http://docs.djangoproject.com/en/1.2/intro/tutorial01/
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model
http://south.aeracode.org/

django cms Documentation, Release 2.2.1

The Plugin Class

Now create a file cms_plugins.py in the same folder your models.py is in, so following the Django Tuto-
rial, your polls app folder should look like this now:

polls/
__init__.py
cms_plugins.py
models.py
tests.py
views.py

The plugin class is responsible to provide the django CMS with the necessary information to render your Plugin.

For our poll plugin, write following plugin class:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from polls.models import PollPlugin as PollPluginModel
from django.utils.translation import ugettext as _

class PollPlugin(CMSPluginBase):
model = PollPluginModel # Model where data about this plugin is saved
name = _("Poll Plugin") # Name of the plugin
render_template = "polls/plugin.html" # template to render the plugin with

def render(self, context, instance, placeholder):
context.update({'instance':instance})
return context

plugin_pool.register_plugin(PollPlugin) # register the plugin

Note: All plugin classes must inherit from cms.plugin_base.CMSPluginBase and must register them-
selves with the cms.plugin_pool.plugin_pool.

The Template

You probably noticed the render_template attribute on that plugin class, for our plugin to work, that template
must exist and is responsible for rendering the plugin.

The template could look like this:

<h1>{{ instance.poll.question }}</h1>

<form action="{% url polls.views.vote poll.id %}" method="post">
{% csrf_token %}
{% for choice in instance.poll.choice_set.all %}

<input type="radio" name="choice" id="choice{{ forloop.counter }}" value="{{ choice.id }}" />
<label for="choice{{ forloop.counter }}">{{ choice.choice }}</label>

{% endfor %}
<input type="submit" value="Vote" />
</form>

Note: We don’t show the errors here, because when submitting the form you’re taken off this page to the actual
voting page.

42 Chapter 3. Extending the CMS

http://docs.djangoproject.com/en/1.2/intro/tutorial01/
http://docs.djangoproject.com/en/1.2/intro/tutorial01/

django cms Documentation, Release 2.2.1

3.1.2 My First App (apphook)

Right now, external apps are statically hooked into the main urls.py, that is not the preferred way in the django
CMS. Ideally you attach your apps to CMS pages.

For that purpose you write a CMSApp. That is just a small class telling the CMS how to include that app.

CMS Apps live in a file called cms_app.py, so go ahead and create that to make your polls app look like this:

polls/
__init__.py
cms_app.py
cms_plugins.py
models.py
tests.py
views.py

In this file, write:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import ugettext_lazy as _

class PollsApp(CMSApp):
name = _("Poll App") # give your app a name, this is required
urls = ["polls.urls"] # link your app to url configuration(s)

apphook_pool.register(PollsApp) # register your app

Now remove the inclusion of the polls urls in your main urls.py so it looks like this:

from django.conf.urls.defaults import *

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
(r'^admin/', include(admin.site.urls)),
(r'^', include('cms.urls')),

)

Now open your admin in your browser and edit a CMS Page. Open the ‘Advanced Settings’ tab and choose ‘Polls
App’ for your ‘Application’.

3.1. Extending the CMS: Examples 43

django cms Documentation, Release 2.2.1

Now for those changes to take effect, unfortunately you will have to restart your server. So do that and now if you
navigate to that CMS Page, you will see your polls application.

3.1.3 My First Menu

Now you might have noticed that the menu tree stops at the CMS Page you created in the last step, so let’s create
a menu that shows a node for each poll you have active.

For this we need a file called menu.py, create it and check your polls app looks like this:

polls/
__init__.py
cms_app.py
cms_plugins.py
menu.py
models.py
tests.py
views.py

In your menu.py write:

from cms.menu_bases import CMSAttachMenu
from menus.base import Menu, NavigationNode
from menus.menu_pool import menu_pool
from django.core.urlresolvers import reverse

44 Chapter 3. Extending the CMS

django cms Documentation, Release 2.2.1

from django.utils.translation import ugettext_lazy as _
from polls.models import Poll

class PollsMenu(CMSAttachMenu):
name = _("Polls Menu") # give the menu a name, this is required.

def get_nodes(self, request):
"""
This method is used to build the menu tree.
"""
nodes = []
for poll in Poll.objects.all():

the menu tree consists of NavigationNode instances
Each NavigationNode takes a label as first argument, a URL as
second argument and a (for this tree) unique id as third
argument.
node = NavigationNode(

poll.question,
reverse('polls.views.detail', args=(poll.pk,)),
poll.pk

)
nodes.append(node)

return nodes
menu_pool.register_menu(PollsMenu) # register the menu.

Now this menu alone doesn’t do a whole lot yet, we have to attach it to the Apphook first.

So open your cms_apps.py and write:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from polls.menu import PollsMenu
from django.utils.translation import ugettext_lazy as _

class PollsApp(CMSApp):
name = _("Poll App")
urls = ["polls.urls"]
menus = [PollsMenu] # attach a CMSAttachMenu to this apphook.

apphook_pool.register(PollsApp)

3.2 Custom Plugins

CMS Plugins are reusable content publishers, that can be inserted into django CMS pages (or indeed into any
content that uses django CMS placeholders) in order to publish information automatically, without further inter-
vention.

This means that your published web content, whatever it is, can be kept instantly up-to-date at all times.

It’s like magic, but quicker.

Unless you’re lucky enough to discover that your needs can be met by the built-in plugins, or by the many available
3rd-party plugins, you’ll have to write your own custom CMS Plugin.

Don’t worry though, since writing a CMS Plugin is rather simple.

3.2.1 Why would you need to write a plugin?

A plugin is the most convenient way to integrate content from another Django app into a django CMS page.

3.2. Custom Plugins 45

django cms Documentation, Release 2.2.1

For example, suppose you’re developing a site for a record company in django CMS. You might like to have on
your site’s home page a “Latest releases” box.

Of course, you could every so often edit that page and update the information. However, a sensible record company
will manage its catalogue in Django too, which means Django already knows what this week’s new releases are.

This is an excellent opportunity to make use of that information to make your life easier - all you need to do is
create a django CMS plugin that you can insert into your home page, and leave it to do the work of publishing
information about the latest releases for you.

Plugins are reusable. Perhaps your record company is producing a series of reissues of seminal Swiss punk
records; on your site’s page about the series, you could insert the same plugin, configured a little differently, that
will publish information about recent new releases in that series.

3.2.2 Overview

A django CMS plugin is fundamentally composed of three things.

• a plugin editor, to configure a plugin each time it is deployed

• a plugin publisher, to do the automated work of deciding what to publish

• a plugin template, to render the information into a web page

These correspond to the familiar with the Model-View-Template scheme:

• the plugin model to store its configuration

• the plugin view that works out what needs to be displayed

• the plugin template to render the information

And so to build your plugin, you’ll make it out of:

• a subclass of cms.models.pluginmodel.CMSPlugin to store the configuration for your plugin
instances

• a subclass of cms.plugin_base.CMSPluginBase that defines the operating logic of your plugin

• a template that renders your plugin

A note about cms.plugin_base.CMSPluginBase

cms.plugin_base.CMSPluginBase is actually a subclass of django.contrib.admin.options.ModelAdmin.

It is its render() method that is the plugin’s view function.

An aside on models and configuration

The plugin model, the subclass of cms.models.pluginmodel.CMSPlugin, is actually optional.

You could have a plugin that didn’t need to be configured, because it only ever did one thing.

For example, you could have a plugin that always and only publishes information about the top-selling record of
the past seven days. Obviously, this wouldn’t be very flexible - you wouldn’t be able to use the same plugin to for
the best-selling release of the last month instead.

Usually, you find that it is useful to be able to configure your plugin, and it will require a model.

46 Chapter 3. Extending the CMS

django cms Documentation, Release 2.2.1

3.2.3 The simplest plugin

You may use python manage.py startapp to set up the basic layout for you plugin app, alternatively, just
add a file called cms_plugins.py to an existing Django application.

In there, you place your plugins, in our example the following code:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from cms.models.pluginmodel import CMSPlugin
from django.utils.translation import ugettext_lazy as _

class HelloPlugin(CMSPluginBase):
model = CMSPlugin
name = _("Hello Plugin")
render_template = "hello_plugin.html"

def render(self, context, instance, placeholder):
return context

plugin_pool.register_plugin(HelloPlugin)

Now we’re almost done, all that’s left is adding the template. Add the following into the root template directory
in a file called hello_plugin.html:

<h1>Hello {% if request.user.is_authenticated %}{{ request.user.first_name }} {{ request.user.last_name}}{% else %}Guest{% endif %}</h1>

This plugin will now greet the users on your website either by their name if they’re logged in, or as Guest if they’re
not.

Now let’s take a closer look at what we did there. The cms_plugins.py files are where you should define your
subclasses of cms.plugin_base.CMSPluginBase, these classes define the different plugins.

There are three required attributes on those classes:

• model: The model you wish to use to store information about this plugin, if you do not require
any special information, for example configuration, to be stored for your plugins, you may just use
cms.models.pluginmodel.CMSPlugin. We’ll look at that model more closely in a bit.

• name: The name of your plugin as displayed in the admin. It is generally good practice to mark this string
as translatable using django.utils.translation.ugettext_lazy(), however this is optional.

• render_template: The template to render this plugin with.

In addition to those three attributes, you must also define a render() method on your subclasses. It is specifi-
cally this render method that is the view for your plugin.

That render method takes three arguments:

• context: The context with which the page is rendered.

• instance: The instance of your plugin that is rendered.

• placeholder: The name of the placeholder that is rendered.

This method must return a dictionary or an instance of django.template.Context, which will be used as
context to render the plugin template.

3.2.4 Storing configuration

In many cases, you want to store configuration for your plugin instances, for example if you have a plugin that
shows the latest blog posts, you might want to be able to choose the amount of entries shown. Another example
would be a gallery plugin, where you want to choose the pictures to show for the plugin.

3.2. Custom Plugins 47

http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy
http://readthedocs.org/docs/django/en/latest/ref/templates/api.html#django.template.Context

django cms Documentation, Release 2.2.1

To do so, you create a Django model by subclassing cms.models.pluginmodel.CMSPlugin in the
models.py of an installed application.

Let’s improve our HelloPlugin from above by making it configurable what the fallback name for non-
authenticated users should be.

In our models.py we add following model:

from cms.models.pluginmodel import CMSPlugin

from django.db import models

class Hello(CMSPlugin):
guest_name = models.CharField(max_length=50, default='Guest')

If you followed the Django tutorial, this shouldn’t look too new to you. The only differ-
ence to normal models is that you subclass cms.models.pluginmodel.CMSPlugin rather than
django.db.models.base.Model.

Now we need to change our plugin definition to use this model, so our new cms_plugins.py looks like this:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from django.utils.translation import ugettext_lazy as _

from models import Hello

class HelloPlugin(CMSPluginBase):
model = Hello
name = _("Hello Plugin")
render_template = "hello_plugin.html"

def render(self, context, instance, placeholder):
context['instance'] = instance
return context

plugin_pool.register_plugin(HelloPlugin)

We changed the model attribute to point to our newly created Hello model and pass the model instance to the
context.

As a last step, we have to update our template to make use of this new configuration:

<h1>Hello {% if request.user.is_authenticated %}{{ request.user.first_name }} {{ request.user.last_name}}{% else %}{{ instance.guest_name }}{% endif %}</h1>

The only thing we changed there is that we use the template variable {{ instance.guest_name }} instead
of the hardcoded Guest string in the else clause.

Warning: cms.models.pluginmodel.CMSPlugin subclasses cannot be further subclassed at the
moment. In order to make your plugin models reusable, please use abstract base models.

Warning: You cannot name your model fields the same as any installed plugins lower-cased model name,
due to the implicit one-to-one relation Django uses for subclassed models. If you use all core plugins, this
includes: file, flash, googlemap, link, picture, snippetptr, teaser, twittersearch,
twitterrecententries and video.
Additionally, it is recommended that you avoid using page as a model field, as it is declared as a property of
cms.models.pluginmodel.CMSPlugin, and your plugin will not work as intended in the administra-
tion without further work.

48 Chapter 3. Extending the CMS

django cms Documentation, Release 2.2.1

Handling Relations

If your custom plugin has foreign key or many-to-many relations you are responsible for copying those if necessary
whenever the CMS copies the plugin.

To do this you can implement a method called cms.models.pluginmodel.CMSPlugin.copy_relations()
on your plugin model which gets the old instance of the plugin as argument.

Lets assume this is your plugin:

class ArticlePluginModel(CMSPlugin):
title = models.CharField(max_length=50)
sections = models.ManyToManyField(Section)

def __unicode__(self):
return self.title

Now when the plugin gets copied, you want to make sure the sections stay:

def copy_relations(self, oldinstance):
self.sections = oldinstance.sections.all()

Your full model now:

class ArticlePluginModel(CMSPlugin):
title = models.CharField(max_length=50)
sections = models.ManyToManyField(Section)

def __unicode__(self):
return self.title

def copy_relations(self, oldinstance):
self.sections = oldinstance.sections.all()

3.2.5 Advanced

Plugin form

Since cms.plugin_base.CMSPluginBase extends django.contrib.admin.options.ModelAdmin,
you can customize the form for your plugins just as you would customize your admin interfaces.

Note: If you want to overwrite the form be sure to extend from
admin/cms/page/plugin_change_form.html to have a unified look across the plugins and to
have the preview functionality automatically installed.

Handling media

If your plugin depends on certain media files, javascript or stylesheets, you can include them from your plugin
template using django-sekizai. Your CMS templates are always enforced to have the css and js sekizai names-
paces, therefore those should be used to include the respective files. For more information about django-sekizai,
please refer to the django-sekizai documentation.

Sekizai style

To fully harness the power of django-sekizai, it is helpful to have a consistent style on how to use it. Here is a set
of conventions that should, but don’t necessarily need to, be followed:

3.2. Custom Plugins 49

https://github.com/ojii/django-sekizai
http://django-sekizai.readthedocs.org

django cms Documentation, Release 2.2.1

• One bit per addtoblock. Always include one external CSS or JS file per addtoblock or one snippet
per addtoblock. This is needed so django-sekizai properly detects duplicate files.

• External files should be on one line, with no spaces or newlines between the addtoblock tag and the
HTML tags.

• When using embedded javascript or CSS, the HTML tags should be on a newline.

A good example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myjsfile.js"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}<link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.css"></script>{% endaddtoblock %}
{% addtoblock "js" %}
<script type="text/javascript">

$(document).ready(function(){
doSomething();

});
</script>
{% endaddtoblock %}

A bad example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myjsfile.js"></script>
<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}

<link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.css"></script>
{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript">

$(document).ready(function(){
doSomething();

});
</script>{% endaddtoblock %}

Plugin Context Processors

Plugin context processors are callables that modify all plugins’ context before rendering. They are enabled using
the CMS_PLUGIN_CONTEXT_PROCESSORS setting.

A plugin context processor takes 2 arguments:

• instance: The instance of the plugin model

• placeholder: The instance of the placeholder this plugin appears in.

The return value should be a dictionary containing any variables to be added to the context.

Example:

def add_verbose_name(instance, placeholder):
'''
This plugin context processor adds the plugin model's verbose_name to context.
'''
return {'verbose_name': instance._meta.verbose_name}

50 Chapter 3. Extending the CMS

django cms Documentation, Release 2.2.1

Plugin Processors

Plugin processors are callables that modify all plugins’ output after rendering. They are enabled using the
CMS_PLUGIN_PROCESSORS setting.

A plugin processor takes 4 arguments:

• instance: The instance of the plugin model

• placeholder: The instance of the placeholder this plugin appears in.

• rendered_content: A string containing the rendered content of the plugin.

• original_context: The original context for the template used to render the plugin.

Note: Plugin processors are also applied to plugins embedded in Text plugins (and any custom plugin
allowing nested plugins). Depending on what your processor does, this might break the output. For ex-
ample, if your processor wraps the output in a div tag, you might end up having div tags inside of
p tags, which is invalid. You can prevent such cases by returning rendered_content unchanged if
instance._render_meta.text_enabled is True, which is the case when rendering an embedded plu-
gin.

Example

Suppose you want to put wrap each plugin in the main placeholder in a colored box, but it would be too compli-
cated to edit each individual plugin’s template:

In your settings.py:

CMS_PLUGIN_PROCESSORS = (
'yourapp.cms_plugin_processors.wrap_in_colored_box',

)

In your yourapp.cms_plugin_processors.py:

def wrap_in_colored_box(instance, placeholder, rendered_content, original_context):
'''
This plugin processor wraps each plugin's output in a colored box if it is in the "main" placeholder.
'''
Plugins not in the main placeholder should remain unchanged
Plugins embedded in Text should remain unchanged in order not to break output
if placeholder.slot != 'main' or (instance._render_meta.text_enabled and instance.parent):

return rendered_content
else:

from django.template import Context, Template
For simplicity's sake, construct the template from a string:
t = Template('<div style="border: 10px {{ border_color }} solid; background: {{ background_color }};">{{ content|safe }}</div>')
Prepare that template's context:
c = Context({

'content': rendered_content,
Some plugin models might allow you to customize the colors,
for others, use default colors:
'background_color': instance.background_color if hasattr(instance, 'background_color') else 'lightyellow',
'border_color': instance.border_color if hasattr(instance, 'border_color') else 'lightblue',

})
Finally, render the content through that template, and return the output
return t.render(c)

3.2. Custom Plugins 51

django cms Documentation, Release 2.2.1

3.3 App Integration

It is pretty easy to integrate your own Django applications with django CMS. You have 5 ways of integrating your
app:

1. Menus

Static extend the menu entries

2. AttachMenus

Attach your menu to a page.

3. App-Hooks

Attach whole apps with optional menu to a page.

4. Navigation Modifiers

Modify the whole menu tree

5. Custom Plugins

Display your models / content in cms pages

3.3.1 Menus

Create a menu.py in your application and write the following inside:

from menus.base import Menu, NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _

class TestMenu(Menu):

def get_nodes(self, request):
nodes = []
n = NavigationNode(_('sample root page'), "/", 1)
n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
n3 = NavigationNode(_('sample account page'), "/hello/", 3)
n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
nodes.append(n)
nodes.append(n2)
nodes.append(n3)
nodes.append(n4)
return nodes

menu_pool.register_menu(TestMenu)

If you refresh a page you should now see the menu entries from above. The get_nodes function should return a
list of NavigationNode instances. A NavigationNode takes the following arguments:

• title

What should the menu entry read?

• url,

Link if menu entry is clicked.

• id

A unique id for this menu.

• parent_id=None

If this is a child of another node give here the id of the parent.

52 Chapter 3. Extending the CMS

django cms Documentation, Release 2.2.1

• parent_namespace=None

If the parent node is not from this menu you can give it the parent namespace. The namespace is the name
of the class. In the above example that would be: “TestMenu”

• attr=None

A dictionary of additional attributes you may want to use in a modifier or in the template.

• visible=True

Whether or not this menu item should be visible.

Additionally, each NavigationNode provides a number of methods, which are detailed in the
NavigationNode API references.

3.3.2 Attach Menus

Classes that extend from menus.base.Menu always get attached to the root. But if you want the menu be
attached to a CMS Page you can do that as well.

Instead of extending from Menu you need to extend from cms.menu_bases.CMSAttachMenu and you need
to define a name. We will do that with the example from above:

from menus.base import NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu

class TestMenu(CMSAttachMenu):

name = _("test menu")

def get_nodes(self, request):
nodes = []
n = NavigationNode(_('sample root page'), "/", 1)
n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
n3 = NavigationNode(_('sample account page'), "/hello/", 3)
n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
nodes.append(n)
nodes.append(n2)
nodes.append(n3)
nodes.append(n4)
return nodes

menu_pool.register_menu(TestMenu)

Now you can link this Menu to a page in the ‘Advanced’ tab of the page settings under attached menu.

Each must have a get_menu_title() method, a get_absolute_url() method, and a childrens list
with all of its children inside (the ‘s’ at the end of childrens is done on purpose because children is already
taken by django-mptt).

Be sure that get_menu_title() and get_absolute_url() don’t trigger any queries when called in a
template or you may have some serious performance and database problems with a lot of queries.

It may be wise to cache the output of get_nodes(). For this you may need to write a wrapper class because of
dynamic content that the pickle module can’t handle.

If you want to display some static pages in the navigation (“login”, for example) you can write your own “dummy”
class that adheres to the conventions described above.

A base class for this purpose can be found in cms/utils/navigation.py

3.3. App Integration 53

http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.get_absolute_url

django cms Documentation, Release 2.2.1

3.3.3 App-Hooks

With App-Hooks you can attach whole Django applications to pages. For example you have a news app and you
want it attached to your news page.

To create an apphook create a cms_app.py in your application. And in there write the following:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import ugettext_lazy as _

class MyApphook(CMSApp):
name = _("My Apphook")
urls = ["myapp.urls"]

apphook_pool.register(MyApphook)

Replace myapp.urls with the path to your applications urls.py.

Now edit a page and open the advanced settings tab. Select your new apphook under “Application”. Save the
page.

Warning: If you are on a multi-threaded server (mostly all webservers, except the dev-server): Restart the
server because the URLs are cached by Django and in a multi-threaded environment we don’t know which
caches are cleared yet.

Note: If at some point you want to remove this apphook after deleting the cms_app.py there is a cms man-
agement command called uninstall apphooks that removes the specified apphook(s) from all pages by name.
eg. manage.py cms uninstall apphooks MyApphook. To find all names for uninstallable apphooks
there is a command for this aswell manage.py cms list apphooks.

If you attached the app to a page with the url /hello/world/ and the app has a urls.py that looks like this:

from django.conf.urls.defaults import *

urlpatterns = patterns('sampleapp.views',
url(r'^$', 'main_view', name='app_main'),
url(r'^sublevel/$', 'sample_view', name='app_sublevel'),

)

The main_view should now be available at /hello/world/ and the sample_view has the url
/hello/world/sublevel/.

Note: All views that are attached like this must return a RequestContext instance instead of the default
Context instance.

Language Namespaces

An additional feature of apphooks is that if you use the cms.middleware.multilingual.MultilingualURLMiddleware
all apphook urls are language namespaced.

What this means:

To reverse the first url from above you would use something like this in your template:

{% url app_main %}

54 Chapter 3. Extending the CMS

http://readthedocs.org/docs/django/en/latest/ref/templates/api.html#django.template.RequestContext
http://readthedocs.org/docs/django/en/latest/ref/templates/api.html#django.template.Context

django cms Documentation, Release 2.2.1

If you want to access the same url but in a different language use a langauge namespace:

{% url de:app_main %}
{% url en:app_main %}
{% url fr:app_main %}

If you want to add a menu to that page as well that may represent some views in your app add it to your apphook
like this:

from myapp.menu import MyAppMenu

class MyApphook(CMSApp):
name = _("My Apphook")
urls = ["myapp.urls"]
menus = [MyAppMenu]

apphook_pool.register(MyApphook)

For an example if your app has a Category model and you want this category model to be displayed in the menu
when you attach the app to a page. We assume the following model:

from django.db import models
from django.core.urlresolvers import reverse
import mptt

class Category(models.Model):
parent = models.ForeignKey('self', blank=True, null=True)
name = models.CharField(max_length=20)

def __unicode__(self):
return self.name

def get_absolute_url(self):
return reverse('category_view', args=[self.pk])

try:
mptt.register(Category)

except mptt.AlreadyRegistered:
pass

We would now create a menu out of these categories:

from menus.base import NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu
from myapp.models import Category

class CategoryMenu(CMSAttachMenu):

name = _("test menu")

def get_nodes(self, request):
nodes = []
for category in Category.objects.all().order_by("tree_id", "lft"):

node = NavigationNode(
category.name,
category.get_absolute_url(),
category.pk,
category.parent_id

)
nodes.append(node)

3.3. App Integration 55

django cms Documentation, Release 2.2.1

return nodes

menu_pool.register_menu(CategoryMenu)

If you add this menu now to your app-hook:

from myapp.menus import CategoryMenu

class MyApphook(CMSApp):
name = _("My Apphook")
urls = ["myapp.urls"]
menus = [MyAppMenu, CategoryMenu]

You get the static entries of MyAppMenu and the dynamic entries of CategoryMenu both attached to the same
page.

3.3.4 Navigation Modifiers

Navigation Modifiers give your application access to navigation menus.

A modifier can change the properties of existing nodes or rearrange entire menus.

An example use-case

A simple example: you have a news application that publishes pages independently of django CMS. However, you
would like to integrate the application into the menu structure of your site, so that at appropriate places a News
node appears in the navigation menu.

In such a case, a Navigation Modifier is the solution.

How it works

Normally, you’d want to place modifiers in your application’s menu.py.

To make your modifier available, it then needs to be registered with menus.menu_pool.menu_pool.

Now, when a page is loaded and the menu generated, your modifier will be able to inspect and modify its nodes.

A simple modifier looks something like this:

from menus.base import Modifier
from menus.menu_pool import menu_pool

class MyMode(Modifier):
"""

"""
def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):

if post_cut:
return nodes

count = 0
for node in nodes:

node.counter = count
count += 1

return nodes

menu_pool.register_modifier(MyMode)

It has a method modify() that should return a list of NavigationNode instances. modify() should take
the following arguments:

56 Chapter 3. Extending the CMS

django cms Documentation, Release 2.2.1

• request

A Django request instance. Maybe you want to modify based on sessions, or user or permissions?

• nodes

All the nodes. Normally you want to return them again.

• namespace

A Menu Namespace. Only given if somebody requested a menu with only nodes from this namespace.

• root_id

Was a menu request based on an ID?

• post_cut

Every modifier is called two times. First on the whole tree. After that the tree gets cut. To only show the
nodes that are shown in the current menu. After the cut the modifiers are called again with the final tree. If
this is the case post_cut is True.

• breadcrumb

Is this not a menu call but a breadcrumb call?

Here is an example of a built-in modifier that marks all node levels:

class Level(Modifier):
"""
marks all node levels
"""
post_cut = True

def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):
if breadcrumb:

return nodes
for node in nodes:

if not node.parent:
if post_cut:

node.menu_level = 0
else:

node.level = 0
self.mark_levels(node, post_cut)

return nodes

def mark_levels(self, node, post_cut):
for child in node.children:

if post_cut:
child.menu_level = node.menu_level + 1

else:
child.level = node.level + 1

self.mark_levels(child, post_cut)

menu_pool.register_modifier(Level)

3.3.5 Custom Plugins

If you want to display content of your apps on other pages custom plugins are a great way to accomplish that. For
example, if you have a news app and you want to display the top 10 news entries on your homepage, a custom
plugin is the way to go.

For a detailed explanation on how to write custom plugins please head over to the Custom Plugins section.

3.3. App Integration 57

django cms Documentation, Release 2.2.1

3.4 API References

3.4.1 cms.api

Python APIs for creating CMS contents. This is done in cms.api and not on the models and managers, because
the direct API via models and managers is slightly counterintuitive for developers. Also the functions defined in
this module do sanity checks on arguments.

Warning: None of the functions in this modules do any security or permission checks. They verify their
input values to be sane wherever possible, however permission checks should be implemented manually before
calling any of these functions.

Functions and constants

cms.api.VISIBILITY_ALL
Used for the limit_menu_visibility keyword argument to create_page(). Does not limit menu
visibility.

cms.api.VISIBILITY_USERS
Used for the limit_menu_visibility keyword argument to create_page(). Limits menu visi-
bility to authenticated users.

cms.api.VISIBILITY_STAFF
Used for the limit_menu_visibility keyword argument to create_page(). Limits menu visi-
bility to staff users.

cms.api.create_page(title, template, language, menu_title=None, slug=None, apphook=None,
redirect=None, meta_description=None, meta_keywords=None,
created_by=’python-api’, parent=None, publication_date=None, pub-
lication_end_date=None, in_navigation=False, soft_root=False, re-
verse_id=None, navigation_extenders=None, published=False, site=None,
login_required=False, limit_visibility_in_menu=VISIBILITY_ALL,
position=”last-child”)

Creates a cms.models.pagemodel.Page instance and returns it. Also creates a
cms.models.titlemodel.Title instance for the specified language.

Parameters
• title (string) – Title of the page
• template (string) – Template to use for this page. Must be in
CMS_TEMPLATES

• language (string) – Language code for this page. Must be in LANGUAGES
• menu_title (string) – Menu title for this page
• slug (string) – Slug for the page, by default uses a slugified version of title
• apphook (string or cms.app_base.CMSApp subclass) – Application to hook

on this page, must be a valid apphook
• redirect (string) – URL redirect (only applicable if CMS_REDIRECTS is
True)

• meta_description (string) – Description of this page for SEO
• meta_keywords (string) – Keywords for this page for SEO
• created_by (string of django.contrib.auth.models.User instance)

– User that creates this page
• parent (cms.models.pagemodel.Page instance) – Parent page of this

page
• publication_date (datetime) – Date to publish this page
• publication_end_date (datetime) – Date to unpublish this page
• in_navigation (boolean) – Whether this page should be in the navigation

or not
• soft_root (boolean) – Whether this page is a softroot or not

58 Chapter 3. Extending the CMS

http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User
http://docs.python.org/2.6/library/datetime.html#module-datetime
http://docs.python.org/2.6/library/datetime.html#module-datetime

django cms Documentation, Release 2.2.1

• reverse_id (string) – Reverse ID of this page (for template tags)
• navigation_extenders (string) – Menu to attach to this page, must be a

valid menu
• published (boolean) – Whether this page should be published or not
• site (django.contrib.sites.models.Site instance) – Site to put this

page on
• login_required (boolean) – Whether users must be logged in or not to

view this page
• limit_menu_visibility (VISIBILITY_ALL or VISIBILITY_USERS

or VISIBILITY_STAFF) – Limits visibility of this page in the menu
• position (string) – Where to insert this node if parent is given, must be
’first-child’ or ’last-child’

• overwrite_url (string) – Overwritten path for this page

cms.api.create_title(language, title, page, menu_title=None, slug=None, apphook=None,
redirect=None, meta_description=None, meta_keywords=None, par-
ent=None)

Creates a cms.models.titlemodel.Title instance and returns it.
Parameters

• language (string) – Language code for this page. Must be in LANGUAGES
• title (string) – Title of the page
• page (cms.models.pagemodel.Page instance) – The page for which to

create this title
• menu_title (string) – Menu title for this page
• slug (string) – Slug for the page, by default uses a slugified version of title
• apphook (string or cms.app_base.CMSApp subclass) – Application to hook

on this page, must be a valid apphook
• redirect (string) – URL redirect (only applicable if CMS_REDIRECTS is
True)

• meta_description (string) – Description of this page for SEO
• meta_keywords (string) – Keywords for this page for SEO
• parent (cms.models.pagemodel.Page instance) – Used for automated

slug generation
• overwrite_url (string) – Overwritten path for this page

cms.api.add_plugin(placeholder, plugin_type, language, position=’last-child’, **data)
Adds a plugin to a placeholder and returns it.

Parameters
• placeholder (cms.models.placeholdermodel.Placeholder in-

stance) – Placeholder to add the plugin to
• plugin_type (string or cms.plugin_base.CMSPluginBase subclass,

must be a valid plugin) – What type of plugin to add
• language (string) – Language code for this plugin, must be in LANGUAGES
• position (string) – Position to add this plugin to the placeholder, must be a

valid django-mptt position
• data (kwargs) – Data for the plugin type instance

cms.api.create_page_user(created_by, user, can_add_page=True,
can_change_page=True, can_delete_page=True,
can_recover_page=True, can_add_pageuser=True,
can_change_pageuser=True, can_delete_pageuser=True,
can_add_pagepermission=True, can_change_pagepermission=True,
can_delete_pagepermission=True, grant_all=False)

Creates a page user for the user provided and returns that page user.
Parameters

• created_by (django.contrib.auth.models.User instance) – The
user that creates the page user

• user (django.contrib.auth.models.User instance) – The user to cre-
ate the page user from

• can_* (boolean) – Permissions to give the user

3.4. API References 59

http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://readthedocs.org/docs/django/en/latest/ref/contrib/sites.html#django.contrib.sites.models.Site
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES
http://docs.python.org/2.6/library/string.html#module-string
http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User
http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User

django cms Documentation, Release 2.2.1

• grant_all (boolean) – Grant all permissions to the user

cms.api.assign_user_to_page(page, user, grant_on=ACCESS_PAGE_AND_DESCENDANTS,
can_add=False, can_change=False, can_delete=False,
can_change_advanced_settings=False, can_publish=False,
can_change_permissions=False, can_move_page=False,
can_moderate=False, grant_all=False)

Assigns a user to a page and gives them some permissions. Returns the
cms.models.permissionmodels.PagePermission object that gets created.

Parameters
• page (cms.models.pagemodel.Page instance) – The page to assign the

user to
• user (django.contrib.auth.models.User instance) – The user to as-

sign to the page
• grant_on (cms.models.moderatormodels.ACCESS_PAGE,
cms.models.moderatormodels.ACCESS_CHILDREN,
cms.models.moderatormodels.ACCESS_DESCENDANTS or
cms.models.moderatormodels.ACCESS_PAGE_AND_DESCENDANTS)
– Controls which pages are affected

• can_* – Permissions to grant
• grant_all (boolean) – Grant all permissions to the user

cms.api.publish_page(page, user, approve=False)
Publishes a page and optionally approves that publication.

Parameters
• page (cms.models.pagemodel.Page instance) – The page to publish
• user (django.contrib.auth.models.User instance) – The user that

performs this action
• approve (boolean) – Whether to approve the publication or not

cms.api.approve_page(page, user)
Approves a page.

Parameters
• page (cms.models.pagemodel.Page instance) – The page to approve
• user (django.contrib.auth.models.User instance) – The user that

performs this action

Example workflows

Create a page called ’My Page using the template ’my_template.html’ and add a text plugin with the
content ’hello world’. This is done in English:

from cms.api import create_page, add_plugin

page = create_page('My Page', 'my_template.html', 'en')
placeholder = page.placeholders.get(slot='body')
add_plugin(placeholder, 'TextPlugin', 'en', body='hello world')

3.4.2 cms.plugin_base

class cms.plugin_base.CMSPluginBase
Inherits django.contrib.admin.options.ModelAdmin.

admin_preview
Defaults to True, if False no preview is done in the admin.

change_form_template
Custom template to use to render the form to edit this plugin.

60 Chapter 3. Extending the CMS

http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User
http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User
http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User

django cms Documentation, Release 2.2.1

form
Custom form class to be used to edit this plugin.

model
Is the CMSPlugin model we created earlier. If you don’t need model because you just want to
display some template logic, use CMSPlugin from cms.models as the model instead.

module
Will be group the plugin in the plugin editor. If module is None, plugin is grouped “Generic” group.

name
Will be displayed in the plugin editor.

render_plugin
If set to False, this plugin will not be rendered at all.

render_template
Will be rendered with the context returned by the render function.

text_enabled
Whether this plugin can be used in text plugins or not.

icon_alt(instance)
Returns the alt text for the icon used in text plugins, see icon_src().

icon_src(instance)
Returns the url to the icon to be used for the given instance when that instance is used inside a text
plugin.

render(context, instance, placeholder)
This method returns the context to be used to render the template specified in render_template.

Parameters
• context – Current template context.
• instance – Plugin instance that is being rendered.
• placeholder – Name of the placeholder the plugin is in.

Return type dict

3.4.3 menus.base

class menus.base.NavigationNode(title, url, id[, parent_id=None][, parent_namespace=None][,
attr=None][, visible=True])

A navigation node in a menu tree.
Parameters

• title (string) – The title to display this menu item with.
• url (string) – The URL associated with this menu item.
• id – Unique (for the current tree) ID of this item.
• parent_id – Optional, ID of the parent item.
• parent_namespace – Optional, namespace of the parent.
• attr (dict) – Optional, dictionary of additional information to store on this

node.
• visible (bool) – Optional, defaults to True, whether this item is visible or

not.
get_descendants()

Returns a list of all children beneath the current menu item.

get_ancestors()
Returns a list of all parent items, excluding the current menu item.

get_absolute_url()
Utility method to return the URL associated with this menu item, primarily to follow naming conven-
tion asserted by Django.

3.4. API References 61

http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/string.html#module-string
http://docs.python.org/2.6/library/stdtypes.html#dict
http://docs.python.org/2.6/library/functions.html#bool

django cms Documentation, Release 2.2.1

get_menu_title()
Utility method to return the associated title, using the same naming convention used by
cms.models.pagemodel.Page.

3.5 Placeholders outside the CMS

Placeholders are special model fields that django CMS uses to render user-editable content (plugins) in templates.
That is, it’s the place where a user can add text, video or any other plugin to a webpage, using either the normal
Django admin interface or the so called frontend editing.

Placeholders can be viewed as containers for CMSPlugin instances, and can be used outside the CMS in custom
applications using the PlaceholderField.

By defining one (or several) PlaceholderField on a custom model you can take advantage of the full power
of CMSPlugin, including frontend editing.

3.5.1 Quickstart

You need to define a PlaceholderField on the model you would like to use:

from django.db import models
from cms.models.fields import PlaceholderField

class MyModel(models.Model):
your fields
my_placeholder = PlaceholderField('placeholder_name')
your methods

The PlaceholderField takes a string as first argument which will be used to configure which plugins can be
used in this placeholder. The configuration is the same as for placeholders in the CMS.

If you install this model in the admin application, you have to use PlaceholderAdmin instead of
ModelAdmin so the interface renders correctly:

from django.contrib import admin
from cms.admin.placeholderadmin import PlaceholderAdmin
from myapp import MyModel

admin.site.register(MyModel, PlaceholderAdmin)

Now to render the placeholder in a template you use the render_placeholder tag from the
placeholder_tags template tag library:

{% load placeholder_tags %}

{% render_placeholder mymodel_instance.my_placeholder "640" %}

The render_placeholder tag takes a PlaceholderField instance as first argument and optionally ac-
cepts a width parameter as second argument for context sensitive plugins.

3.5.2 Adding content to a placeholder

There are two ways to add or edit content to a placeholder, the front-end admin view and the back-end view.

62 Chapter 3. Extending the CMS

http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin

django cms Documentation, Release 2.2.1

Using the front-end editor

Probably the most simple way to add content to a placeholder, simply visit the page displaying your model (where
you put the render_placeholder tag), then append ?edit to the page’s URL. This will make a top banner
appear, and after switching the “Edit mode” button to “on”, the banner will prompt you for your username and
password (the user should be allowed to edit the page, obviously).

You are now using the so-called front-end edit mode:

Once in Front-end editing mode, your placeholders should display a menu, allowing you to add plugins to them:
the following screen shot shows a default selection of plugins in an empty placeholder.

Plugins are rendered at once, so you can have an idea what it will look like in fine, but to view the final look of a
plugin simply leave edit mode by clicking the “Edit mode” button in the banner again.

3.5.3 Fieldsets

There are some hard restrictions if you want to add custom fieldsets to an admin page with at least one
PlaceholderField:

1. Every PlaceholderField must be in it’s own fieldset, one PlaceholderField per fieldset.

2. You must include the following two classes: ’plugin-holder’ and ’plugin-holder-nopage’

3.6 Search and the django CMS

For powerful full-text search in with the django CMS, we suggest using Haystack together with django-cms-
search.

3.6. Search and the django CMS 63

http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.fieldsets
http://haystacksearch.org/
https://github.com/piquadrat/django-cms-search
https://github.com/piquadrat/django-cms-search

django cms Documentation, Release 2.2.1

3.7 Form and model fields

3.7.1 Model fields

class cms.models.fields.PageField
This is a foreign key field to the cms.models.pagemodel.Page model that defaults to the
cms.forms.fields.PageSelectFormField form field when rendered in forms. It has the
same API as the django.db.models.fields.related.ForeignKey but does not require the
othermodel argument.

3.7.2 Form fields

class cms.forms.fields.PageSelectFormField
Behaves like a django.forms.models.ModelChoiceField field for the
cms.models.pagemodel.Page model, but displays itself as a split field with a select drop-
down for the site and one for the page. It also indents the page names based on what level
they’re on, so that the page select dropdown is easier to use. This takes the same arguments as
django.forms.models.ModelChoiceField.

64 Chapter 3. Extending the CMS

CHAPTER 4

Contributing to django CMS

4.1 Contributing to django CMS

Like every open-source project, django CMS is always looking for motivated individuals to contribute to it’s
source code. However, to ensure the highest code quality and keep the repository nice and tidy, everybody has to
follow a few rules (nothing major, I promise :))

4.1.1 Community

People interested in developing for the django CMS should join the django-cms-developers mailing list as well as
heading over to #django-cms on the freenode IRC network for help and to discuss the development.

You may also be interested in following @djangocmsstatus on twitter to get the GitHub commits as well as the
hudson build reports. There is also a @djangocms account for less technical announcements.

4.1.2 In a nutshell

Here’s what the contribution process looks like, in a bullet-points fashion, and only for the stuff we host on GitHub:

1. django CMS is hosted on GitHub, at https://github.com/divio/django-cms

2. The best method to contribute back is to create an account there, then fork the project. You can use this fork
as if it was your own project, and should push your changes to it.

3. When you feel your code is good enough for inclusion, “send us a pull request”, by using the nice GitHub
web interface.

4.1.3 Contributing Code

Getting the source code

If you’re interested in developing a new feature for the CMS, it is recommended that you first discuss it on the
django-cms-developers mailing list so as not to do any work that will not get merged in anyway.

• Code will be reviewed and tested by at least one core developer, preferably by several. Other community
members are welcome to give feedback.

• Code must be tested. Your pull request should include unit-tests (that cover the piece of code you’re sub-
mitting, obviously)

• Documentation should reflect your changes if relevant. There is nothing worse than invalid documentation.

• Usually, if unit tests are written, pass, and your change is relevant, then it’ll be merged.

65

http://groups.google.com/group/django-cms-developers
http://freenode.net/
https://twitter.com/djangocmsstatus
https://twitter.com/djangocms
http://www.github.com
https://github.com/divio/django-cms
http://help.github.com/send-pull-requests/
http://groups.google.com/group/django-cms-developers

django cms Documentation, Release 2.2.1

Since we’re hosted on GitHub, django CMS uses git as a version control system.

The GitHub help is very well written and will get you started on using git and GitHub in a jiffy. It is an invaluable
resource for newbies and old timers alike.

Syntax and conventions

We try to conform to PEP8 as much as possible. A few highlights:

• Indentation should be exactly 4 spaces. Not 2, not 6, not 8. 4. Also, tabs are evil.

• We try (loosely) to keep the line length at 79 characters. Generally the rule is “it should look good in a
terminal-base editor” (eg vim), but we try not be [Godwin’s law] about it.

Process

This is how you fix a bug or add a feature:

1. fork us on GitHub.

2. Checkout your fork.

3. Hack hack hack, test test test, commit commit commit, test again.

4. Push to your fork.

5. Open a pull request.

Tests

Having a wide and comprehensive library of unit-tests and integration tests is of exceeding importance. Con-
tributing tests is widely regarded as a very prestigious contribution (you’re making everybody’s future work much
easier by doing so). Good karma for you. Cookie points. Maybe even a beer if we meet in person :)

Generally tests should be:

• Unitary (as much as possible). I.E. should test as much as possible only one function/method/class. That’s
the very definition of unit tests. Integration tests are interesting too obviously, but require more time to
maintain since they have a higher probability of breaking.

• Short running. No hard numbers here, but if your one test doubles the time it takes for everybody to run
them, it’s probably an indication that you’re doing it wrong.

In a similar way to code, pull requests will be reviewed before pulling (obviously), and we encourage discussion
via code review (everybody learns something this way) or IRC discussions.

Running the tests

To run the tests simply execute runtests.sh from your shell. To make sure you have the correct environment
you should also provide the --rebuild-env flag, but since that makes running the test suite slower, it’s disabled
by default. You can also see all flags using --help.

4.1.4 Contributing Documentation

Perhaps considered “boring” by hard-core coders, documentation is sometimes even more important than code!
This is what brings fresh blood to a project, and serves as a reference for old timers. On top of this, documentation
is the one area where less technical people can help most - you just need to write a semi-decent English. People
need to understand you. We don’t care about style or correctness.

Documentation should be:

66 Chapter 4. Contributing to django CMS

http://git-scm.com/
http://help.github.com
http://www.python.org/dev/peps/pep-0008/
http://github.com/divio/django-cms

django cms Documentation, Release 2.2.1

• We use Sphinx/restructuredText. So obviously this is the format you should use :) File extensions should
be .rst.

• Written in English. We can discuss how it would bring more people to the project to have a Klingon trans-
lation or anything, but that’s a problem we will ask ourselves when we already have a good documentation
in English.

• Accessible. You should assume the reader to be moderately familiar with Python and Django, but not
anything else. Link to documentation of libraries you use, for example, even if they are “obvious” to you
(South is the first example that comes to mind - it’s obvious to any Django programmer, but not to any
newbie at all). A brief description of what it does is also welcome.

Pulling of documentation is pretty fast and painless. Usually somebody goes over your text and merges it, since
there are no “breaks” and that GitHub parses rst files automagically it’s really convenient to work with.

Also, contributing to the documentation will earn you great respect from the core developers. You get good karma
just like a test contributor, but you get double cookie points. Seriously. You rock.

Section style

We use Python documentation conventions fo section marking:

• # with overline, for parts

• * with overline, for chapters

• =, for sections

• -, for subsections

• ^, for subsubsections

• ", for paragraphs

4.1.5 Translations

For translators we have a Transifex account where you can translate the .po files and don’t need to install git or
mercurial to be able to contribute. All changes there will be automatically sent to the project.

4.2 Indices and tables

• genindex

• modindex

• search

4.2. Indices and tables 67

http://sphinx.pocoo.org/
http://docutils.sourceforge.net/docs/ref/rst/introduction.html
http://www.transifex.net/projects/p/django-cms/

django cms Documentation, Release 2.2.1

68 Chapter 4. Contributing to django CMS

Python Module Index

c
cms.api, 58
cms.plugin_base, 60

m
menus.base, 61

69

django cms Documentation, Release 2.2.1

70 Python Module Index

Index

A
add_plugin() (in module cms.api), 59
admin_preview (cms.plugin_base.CMSPluginBase at-

tribute), 60
approve_page() (in module cms.api), 60
assign_user_to_page() (in module cms.api), 60

C
change_form_template

(cms.plugin_base.CMSPluginBase attribute),
60

cms.api (module), 58
cms.forms.fields.PageSelectFormField (built-in class),

64
cms.models.fields.PageField (built-in class), 64
cms.plugin_base (module), 60
CMS_APPHOOKS

setting, 15
CMS_CACHE_DURATIONS

setting, 20
CMS_CACHE_PREFIX

setting, 20
CMS_FLAT_URLS

setting, 18
CMS_FRONTEND_LANGUAGES

setting, 17
CMS_HIDE_UNTRANSLATED

setting, 16
CMS_LANGUAGE_CONF

setting, 16
CMS_LANGUAGE_FALLBACK

setting, 16
CMS_LANGUAGES

setting, 16
CMS_MEDIA_PATH

setting, 17
CMS_MEDIA_ROOT

setting, 17
CMS_MEDIA_URL

setting, 17
CMS_MENU_TITLE_OVERWRITE

setting, 18
CMS_MODERATOR

setting, 19

CMS_PAGE_MEDIA_PATH
setting, 17

CMS_PERMISSION
setting, 19

CMS_PLACEHOLDER_CONF
setting, 14

CMS_PLUGIN_CONTEXT_PROCESSORS
setting, 15

CMS_PLUGIN_PROCESSORS
setting, 15

CMS_PUBLIC_FOR
setting, 19

CMS_REDIRECTS
setting, 18

CMS_SEO_FIELDS
setting, 19

CMS_SHOW_END_DATE
setting, 19

CMS_SHOW_START_DATE
setting, 19

CMS_SITE_LANGUAGES
setting, 17

CMS_SOFTROOT
setting, 18

CMS_TEMPLATE_INHERITANCE
setting, 14

CMS_TEMPLATES
setting, 14

cms_toolbar
template tag, 38

CMS_URL_OVERWRITE
setting, 18

CMSPluginBase (class in cms.plugin_base), 60
create_page() (in module cms.api), 58
create_page_user() (in module cms.api), 59
create_title() (in module cms.api), 59

F
form (cms.plugin_base.CMSPluginBase attribute), 60

G
get_absolute_url() (menus.base.NavigationNode

method), 61
get_ancestors() (menus.base.NavigationNode method),

61

71

django cms Documentation, Release 2.2.1

get_descendants() (menus.base.NavigationNode
method), 61

get_menu_title() (menus.base.NavigationNode
method), 61

I
icon_alt() (cms.plugin_base.CMSPluginBase method),

61
icon_src() (cms.plugin_base.CMSPluginBase method),

61

L
language_chooser

template tag, 38

M
menus.base (module), 61
model (cms.plugin_base.CMSPluginBase attribute), 61
module (cms.plugin_base.CMSPluginBase attribute),

61

N
name (cms.plugin_base.CMSPluginBase attribute), 61
NavigationNode (class in menus.base), 61

P
page_attribute

template tag, 35
page_language_url

template tag, 38
page_url

template tag, 35
placeholder

template tag, 33
PLACEHOLDER_FRONTEND_EDITING

setting, 15
publish_page() (in module cms.api), 60

R
render() (cms.plugin_base.CMSPluginBase method),

61
render_plugin (cms.plugin_base.CMSPluginBase at-

tribute), 61
render_template (cms.plugin_base.CMSPluginBase at-

tribute), 61

S
setting

CMS_APPHOOKS, 15
CMS_CACHE_DURATIONS, 20
CMS_CACHE_PREFIX, 20
CMS_FLAT_URLS, 18
CMS_FRONTEND_LANGUAGES, 17
CMS_HIDE_UNTRANSLATED, 16
CMS_LANGUAGE_CONF, 16
CMS_LANGUAGE_FALLBACK, 16
CMS_LANGUAGES, 16

CMS_MEDIA_PATH, 17
CMS_MEDIA_ROOT, 17
CMS_MEDIA_URL, 17
CMS_MENU_TITLE_OVERWRITE, 18
CMS_MODERATOR, 19
CMS_PAGE_MEDIA_PATH, 17
CMS_PERMISSION, 19
CMS_PLACEHOLDER_CONF, 14
CMS_PLUGIN_CONTEXT_PROCESSORS, 15
CMS_PLUGIN_PROCESSORS, 15
CMS_PUBLIC_FOR, 19
CMS_REDIRECTS, 18
CMS_SEO_FIELDS, 19
CMS_SHOW_END_DATE, 19
CMS_SHOW_START_DATE, 19
CMS_SITE_LANGUAGES, 17
CMS_SOFTROOT, 18
CMS_TEMPLATE_INHERITANCE, 14
CMS_TEMPLATES, 14
CMS_URL_OVERWRITE, 18
PLACEHOLDER_FRONTEND_EDITING, 15

show_breadcrumb
template tag, 37

show_menu
template tag, 36

show_menu_below_id
template tag, 36

show_placeholder
template tag, 34

show_sub_menu
template tag, 37

show_uncached_placeholder
template tag, 35

T
template tag

cms_toolbar, 38
language_chooser, 38
page_attribute, 35
page_language_url, 38
page_url, 35
placeholder, 33
show_breadcrumb, 37
show_menu, 36
show_menu_below_id, 36
show_placeholder, 34
show_sub_menu, 37
show_uncached_placeholder, 35

text_enabled (cms.plugin_base.CMSPluginBase
attribute), 61

V
VISIBILITY_ALL (in module cms.api), 58
VISIBILITY_STAFF (in module cms.api), 58
VISIBILITY_USERS (in module cms.api), 58

72 Index

	Getting Started
	Installation
	Upgrading a django CMS installation
	Introductory Tutorial
	Using South with django CMS
	Configuration
	Navigation
	Plugins reference

	Advanced
	Internationalization
	Sitemap Guide
	Template Tags
	Command Line Interface

	Extending the CMS
	Extending the CMS: Examples
	Custom Plugins
	App Integration
	API References
	Placeholders outside the CMS
	Search and the django CMS
	Form and model fields

	Contributing to django CMS
	Contributing to django CMS
	Indices and tables

	Python Module Index

