

django CMS documentation

[image: django CMS logo]

Philosophy

The design philosophy of django CMS is to solve something complex with many simple
things.

The core of django CMS is designed to be simple and integrate with simple packages to
create complex applications. For example, you may add djangocms-versioning to manage
versions of your content, djangocms-moderation to define workflows for how content
moves from authoring to being published.

Overview

django CMS is a modern web publishing platform built with Django [https://www.djangoproject.com], the web application
framework “for perfectionists with deadlines”.

django CMS offers out-of-the-box support for the common features you’d expect from a
CMS, but can also be easily customised and extended by developers to create a site that
is tailored to their precise needs.

This is the developer documentation. To get an overview on how to use django CMS, see
the django CMS User Guide [https://user-guide.django-cms.org/].

Tutorials

Start here as a new django CMS developer:

	installation

	using additional packages

	creating your own addon applications.

How-to guides

Practical step-by-step guides for the more experienced developer, covering several
important topics.

Explanation

Explanation and analysis of some key concepts in django CMS.

Reference

Technical reference material, for

	classes,

	methods,

	APIs,

	commands.

Join us online

The django CMS Association [https://www.django-cms.org/en/about-us/] is a non-profit
organisation that exists to support the development of django CMS and its community.

Slack

Join our friendly Slack group [https://www.django-cms.org/slack] for support and
to share ideas and discuss technical questions with other members of the
community.

StackOverflow

StackOverflow [https://stackoverflow.com/questions/tagged/django-cms] is also a good
place for questions around django CMS and its plugin ecosystem.

Why django CMS?

django CMS is a well-tested CMS platform that powers sites both large and small. Here
are a few of the key features:

	robust internationalisation (i18n) support for creating multilingual sites

	front-end editing, providing rapid access to the content management interface

	support for a variety of editors with advanced text editing features.

	a flexible plugin system that lets developers put powerful tools at the fingertips of
editors, without overwhelming them with a difficult interface

	…and much more

There are other capable Django-based CMS platforms, but here’s why you should consider
django CMS:

	thorough documentation

	easy and comprehensive integration into existing projects - django CMS isn’t a
monolithic application

	a healthy, active and supportive developer community

	a strong culture of good code, including an emphasis on automated testing

Software version requirements and release notes

This document refers to version 4.1.0.

Long-term support (LTS)

Django has a long-term support (LTS) [https://www.djangoproject.com/download/#supported-versions] policy which django CMS
adapts.

Designated django CMS versions receive support for use with official Django LTS
versions:

Current LTS table

	django CMS

	Feature freeze

	Django

	End of long-term support

	4.1 x

	tbd

	4.2

	April 2026

	

	

	3.2

	April 2024

	3.11.x

	September 2023

	4.2

	April 2026

	

	

	3.2

	April 2024

After feature freeze, new features go into the next major version of django CMS.

Unsupported LTS versions

The following LTS versions do not receive any support any more:

	django CMS

	Feature freeze

	Django

	End of long-term support

	3.8 x

	June 2020

	2.2

	April 2022

	3.7.x

	October 2020

	2.2

	March 2022

	

	

	1.11

	March 2020

Django/Python compatibility table

LTS in the table indicates a combination of Django and django CMS both covered by a
long-term support policy.

✓ indicates that the version has been tested and works. × indicates that it has not
been tested, or is known to be incompatible.

	django CMS

	Python

	Django

	

	3.12

	3.11

	3.10

	3.9

	3.8

	3.7

	3.6

	5.0

	4.2

	4.1

	4.0

	3.2

	3.1

	3.0

	2.2

	4.1.x

	✓

	✓

	✓

	✓

	×

	×

	×

	✓

	LTS

	✓

	✓

	LTS

	×

	×

	×

	3.11.3+

	×

	✓

	✓

	✓

	✓

	✓

	×

	×

	LTS

	✓

	✓

	LTS

	×

	×

	×

	3.11.1

	×

	✓

	✓

	✓

	✓

	✓

	×

	×

	✓

	✓

	✓

	×

	×

	×

	×

	3.11.0

	×

	✓

	✓

	✓

	✓

	✓

	×

	×

	×

	×

	✓

	✓

	×

	×

	×

	3.10.x

	×

	×

	✓

	✓

	✓

	✓

	×

	×

	×

	×

	×

	✓

	✓

	✓

	✓

	3.9.x

	×

	×

	×

	✓

	✓

	✓

	✓

	×

	×

	×

	×

	✓

	✓

	✓

	✓

	3.8.x

	×

	×

	×

	✓

	✓

	✓

	✓

	×

	×

	×

	×

	×

	✓

	✓

	LTS

	3.7.x

	×

	×

	×

	✓

	✓

	✓

	✓

	×

	×

	×

	×

	×

	×

	✓

	LTS

See the repository’s setup.cfg for details of dependencies, or the
Release notes & upgrade information for information about what is required or has changed in particular
versions of the CMS.

The Commonly Used Plugin section provides an overview of
other packages required in a django CMS project.

Tutorials

The pages in this section of the documentation are aimed at the newcomer to django CMS.
They’re designed to help you get started quickly, and show how easy it is to work with
django CMS as a developer who wants to customise it and get it working according to
their own requirements.

These tutorials take you step-by-step through some key aspects of this work. They’re not
intended to explain the topics in depth, or provide
reference material, but they will leave you with a good idea
of what is possible to achieve in just a few steps, and how to go about it.

Once you’re familiar with the basics presented in these tutorials, you’ll find the more
in-depth coverage of the same topics in the How-to section.

The tutorials follow a logical progression, starting from installation of django CMS and
the creation of a brand new project, and build on each other, so it’s recommended to
work through them in the order presented here.

	Installing django CMS

	Templates & Placeholders

	Integrating applications

	Plugins

	Apphooks

	Extending the toolbar

	Extending the navigation menu

	Content creation wizards

If you want to install django CMS into an existing project, or prefer to configure
django CMS by hand, rather than using the django CMS quistart project, see
Installing django CMS and then follow the rest of the tutorials.

Either way, you’ll be able to find support and help from the numerous friendly members
of the django CMS community on our Slack group [https://www.django-cms.org/slack].

Installing django CMS

The setup is incredibly simple, and in this django CMS tutorial, we’ll take you through
the first five steps to help get you started.

What you need to get started

First of all, you don’t need to be a senior developer or have prior experience as a
developer with Django or Python to create your first django CMS demo website. In fact,
one of the added benefits of django CMS is that it offers a powerful yet easy to use
interface for most common tasks of setting up a web site. You can focus on any specific
needs of your project.

Before we begin the django CMS tutorial, you will need to know that there are several
ways to install django CMS for free.

	You can either set up a project on Divio Cloud [https://www.divio.com], which is
fast and useful for people without a technical background and a good starting point
to experience the CMS User Interface.

	As another option, you can set up the project using docker [https://www.django-cms.org/en/blog/2021/01/19/how-you-spin-up-a-django-cms-project-in-less-than-5-minutes/].
It is a good way for a developer locally without an external vendor and we use this
option in this django CMS demo.

	The last option is to install is creating a django CMS project manually into a local
virtual environment by running the djangocms command. This will create a new
Django project set up for running django CMS based on a django CMS-specific project
template. See Installing django CMS by hand for
details. This option is a good way for developers that want to install everything by
hand to understand better, have full control, or want to add to an existing Django
project.

In this tutorial we will cover both options 2 and 3, including the explanation what
exactly needs to happen when you add django CMS to a Django project.

Production-ready: django CMS quickstart

The django CMS quickstart project is a template for a Docker-based production-ready
setup. Especially if you know your way around Docker, you will be able to quickly set up
a project that is ready for deployment.

If you just want to test a project locally without Docker, you can install django
CMS by hand in a few steps.

Setup Docker (Step 1)

Install docker from here [https://docs.docker.com/get-docker/]. If you have not used
docker in the past, please read this introduction on docker [https://docs.docker.com/get-started/].

Run the demo project in docker (Step 2)

Info: The demo project [https://github.com/django-cms/django-cms-quickstart/tree/support/cms-4.1.x] is a
minimal Django project with some additional requirements in the requirements.txt.

For more details see its Open the terminal application on your computer and go to a safe
folder (i.e. cd ~/Projects), then

git clone git@github.com:django-cms/django-cms-quickstart.git

cd django-cms-quickstart
docker compose build web
docker compose up -d database_default
docker compose run web python manage.py migrate
docker compose run web python manage.py createsuperuser
docker compose up -d

During the installation process, you will be prompted to enter your email address and
set a username and password. Open your browser and insert
http://localhost:8000/admin there you should be invited to login and continue with
Step 3: create your first page

Create your first page (Step 3)

	Once you login you can press Create on the top right.

	Then you will see a pop-up window where the “New page” is marked blue.

	Press New Page and select Next.

[image: create a page with django cms]
After selecting Next, you will add in your title and some basic text content for the new
page, click Create.

[image: create a page with django cms]
Here is your newly created page.

Publish your first page (Step 4)

The page we just created is just a draft and needs to be published once you finish. As
an editor, only you can see and edit your drafts, other visitors to your site will only
see your published pages.

Press “Publish”

[image: publish a page with django cms]
To edit the page, you can switch back into editing mode using the “Edit” button, and
return to the published version of the page using the “view published” button.

In the editing mode, you can double-click on the paragraph of the text to change it, add
formatting, and save it again. Any changes that are made after publishing are saved to a
draft and will not be visible until you re-publish.

Congratulations, you now have installed django CMS and created your first page.

If you need to log in at any time, append ?toolbar_on to the URL and hit Return.
This will enable the toolbar, from where you can log in and manage your website.

Installing django CMS by hand

If you are looking for a typical installation using Docker look at the
quickstarter section of this documentation.

If you prefer to do things manually, this how-to guide will take you through the
process. It is simple, quick, and transparent. If you know Django, you will recognize
how django CMS is set up like a typical Django project.

Note

You can also use this guide to help you install django CMS as part of an existing
project. However, the guide assumes that you are starting with a blank project, so
you will need to adapt the steps below appropriately as required. You

This document assumes you have some basic familiarity with Python and Django. After
you’ve integrated django CMS into your project, you should be able to follow the
Tutorials for an introduction to developing with django CMS.

Install the django CMS package (Step 1)

Check the Python/Django requirements for this version of django
CMS.

django CMS also has other requirements, which it lists as dependencies in its
setup.py.

Important

We strongly recommend doing all of the following steps in a virtual environment [https://docs.python.org/3/library/venv.html]. You ought to know how to create,
activate and dispose of virtual environments. If you don’t, you can use the steps
below to get started, but you are advised to take a few minutes to learn the basics
of using virtual environments before proceeding further.

python3 -m venv .venv # create a virtualenv
source .venv/bin/activate # activate it
pip install --upgrade pip # Upgrade pip

Then:

pip install django-cms

to install the release candidate version of django CMS. It will also install its
dependencies including Django.

Create a new django CMS project (Step 2)

Create a new django CMS project:

djangocms myproject

This is a shortcut command for creating a new Django project with the right project
template. It performs the following five steps in one simple go:

	It creates a new Django project:

django-admin startproject myproject --template https://github.com/django-cms/cms-template/archive/4.1.tar.gz

If django-admin startproject is new to you, you ought to read the official
Django tutorial [https://docs.djangoproject.com/en/dev/intro/tutorial01/], which
covers starting a new project.

	It installs additional optional packages which are used in the template project.
Those are

	djangocms-text-ckeditor [https://github.com/django-cms/djangocms-text-ckeditor]
for rich text input.

	djangocms-frontend [https://github.com/django-cms/djangocms-frontend] for
Bootstrap5 [https://getbootstrap.com] support.

	django-filer [https://github.com/django-cms/django-filer] for managing media
files like images.

	djangocms-versioning [https://github.com/django-cms/djangocms-versioning] for
publishing and version management,

	djangocms-alias [https://github.com/django-cms/djangocms-alias] for managing
common content parts such as footers.

	djangocms_admin_style [https://github.com/django-cms/djangocms-admin-style] for
a consistent user experience with django CMS and Django admin.

	It changes into the project directory and runs the migrate command to create the
database:

python -m manage migrate

	It prompts for crating a superuser by invoking:

python -m manage createsuperuser

	It runs the django CMS check command to verify the installation is consistent:

python -m manage cms check

Your new project will look like this:

myproject/
 LICENSE
 README.md
 db.sqlite3
 myproject/
 static/
 templates/
 base.html
 __init__.py
 asgi.py
 settings.py
 urls.py
 wsgi.py
 manage.py
 requirements.in

The LICENSE and README.md files are not needed and can be deleted or replaced by
appropriate files for your project.

requirements.in contains dependencies for the project. Add your dependencies here.
We suggest to use pip-compile to freeze your requirements as, for example, discussed in
this blog post [https://blog.typodrive.com/2020/02/04/always-freeze-requirements-with-pip-compile-to-avoid-unpleasant-surprises/].

Spin up your Django development server (Step 3)

Now you are ready to spin up Django’s development server by first changing directory into
the project folder and then spinning up the development server:

cd myproject
python -m manage runserver

You can visit your project’s web site by pointing your browser to localhost:8000.

Use the newly created superuser’s credentials to authenticate and create your first
page!

Adding django CMS to an existing Django project

django CMS is nothing more than a powerful set of Django apps. Hence you can add django
CMS to any Django project. It will require some settings to be modified, however.

Minimally-required applications and settings

To run djanog CMS you will only need to modify the settings.py and urls.py
files.

Open the new project’s settings.py file in your text editor.

INSTALLED_APPS

You will need to add the following to its list of INSTALLED_APPS:

"django.contrib.sites",
"cms",
"menus",
"treebeard",

	django CMS needs to use Django’s django.contrib.sites [https://docs.djangoproject.com/en/4.2/ref/contrib/sites/#module-django.contrib.sites] framework. You’ll
need to set a SITE_ID in the settings - SITE_ID = 1 will suffice.

	cms and menus are the core django CMS modules.

	django-treebeard [http://django-treebeard.readthedocs.io] is used to manage django
CMS’s page tree structures.

django CMS also installs django CMS admin style [https://github.com/django-cms/djangocms-admin-style]. This provides some styling that
helps make django CMS administration components easier to work with. Technically it’s an
optional component and does not need to be enabled in your project, but it’s strongly
recommended for a more consistent user experience.

In the INSTALLED_APPS, before django.contrib.admin, add:

"djangocms_admin_style",

Language settings

django CMS requires you to set the LANGUAGES [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGES] setting. This should list all
the languages you want your project to serve, and must include the language in
LANGUAGE_CODE [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-LANGUAGE_CODE].

For example:

LANGUAGES = [
 ("en", "English"),
 ("de", "German"),
 ("it", "Italian"),
]
LANGUAGE_CODE = "en"

(For simplicity’s sake, at this stage it is worth changing the default en-us in that
you’ll find in the LANGUAGE_CODE setting to en.)

Database

django CMS like most Django projects requires a relational database backend. Each django
CMS installation should have its own database.

You can use SQLite, which is included in Python and doesn’t need to be installed
separately or configured further. You are unlikely to be using that for a project in
production, but it’s ideal for development and exploration, especially as it is
configured by default in a new Django project’s DATABASES [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-DATABASES].

Note

For deployment, you’ll need to use a production-ready database with Django [https://docs.djangoproject.com/en/4.2/ref/databases/]. We recommend using PostgreSQL [http://www.postgresql.org/] or MySQL [http://www.mysql.com].

Installing and maintaining database systems is far beyond the scope of this
documentation, but is very well documented on the systems’ respective websites.

Whichever database you use, it will also require the appropriate Python adaptor to
be installed:

pip install psycopg2 # for Postgres
pip install mysqlclient # for MySQL

Refer to Django's DATABASES setting documentation [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-DATABASES] for the
appropriate configuration for your chosen database backend.

Confirming that you are not migrating a version 3 project

Add to settings.py:

CMS_CONFIRM_VERSION4 = True

This is to ensure that you do not accidentally run migrations on a django CMS version 3
database. This can lead to corruption since the data structures for the CMSPlugin
models are different.

Warning

Do not add CMS_CONFIRM_VERSION4 = True to your django CMS version 3 project
unless you know what you are doing. Just running migrations can lead to data loss.

Warning

To migrate a django CMS version 3 project to version 4 you can have a look at
django CMS 4 migration [https://github.com/Aiky30/djangocms-4-migration]. This is
a third party project supposed to assist the migration from v3 to v4. It is not
(yet) officially supported.

Database tables

Now run migrations to create database tables for the new applications:

python manage.py migrate

Sekizai

Django Sekizai [https://github.com/ojii/django-sekizai] is required by the CMS for
static files management. You need to have:

"sekizai"

listed in INSTALLED_APPS, and:

"sekizai.context_processors.sekizai"

in the TEMPLATES['OPTIONS']['context_processors']:

TEMPLATES = [
 {
 ...
 "OPTIONS": {
 "context_processors": [
 ...
 "django.template.context_processors.i18n",
 "sekizai.context_processors.sekizai",
],
 },
 },
]

Middleware

in your MIDDLEWARE [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MIDDLEWARE] you’ll need
django.middleware.locale.LocaleMiddleware [https://docs.djangoproject.com/en/4.2/ref/middleware/#django.middleware.locale.LocaleMiddleware] - it’s not installed in
Django projects by default.

Also add:

"django:django.middleware.locale.LocaleMiddleware", # not installed by default

"cms.middleware.user.CurrentUserMiddleware",
"cms.middleware.page.CurrentPageMiddleware",
"cms.middleware.toolbar.ToolbarMiddleware",
"cms.middleware.language.LanguageCookieMiddleware",

to the list.

You can also add 'cms.middleware.utils.ApphookReloadMiddleware'. It’s not absolutely
necessary, but it’s useful. If included, should be at the
start of the list.

add the following configuration to your settings.py:

X_FRAME_OPTIONS = "SAMEORIGIN"

Context processors

Add "cms.context_processors.cms_settings" to
TEMPLATES['OPTIONS']['context_processors'].

Also add 'django.template.context_processors.i18n' if it’s not already present.

cms check should now be unable to identify any further issues with your project.
Some additional configuration is required however.

Further required configuration

URLs

In the project’s urls.py, add path("", include("cms.urls")) to the
urlpatterns list, preferably as i18patterns. It should come after other
patterns, so that specific URLs for other applications can be detected first.

You’ll also need to have an import for django.urls.include. For example:

from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path

urlpatterns = i18patterns(
 path("admin/", admin.site.urls),
 path("", include("cms.urls")),
)

The django CMS project will now run, as you’ll see if you launch it with python
manage.py runserver. You’ll be able to reach it at http://localhost:8000/, and the
admin at http://localhost:8000/admin/. You won’t yet actually be able to do anything
very useful with it though.

Versioning and Aliases

Compared to previous versions of django CMS, the core django CMS since version 4 has
been stripped of some functionality to allow for better implementations. The two most
important examples are the now separate apps django CMS versioning and django CMS alias.
We highly recommend installing them both:

pip install djangocms-versioning
pip install djangocms-alias

Also add them to INSTALLED_APPS:

"djangocms_versioning",
"djangocms_alias",

Templates

django CMS requires at least one template for its pages, so you’ll need to add
CMS_TEMPLATES to your settings. The first template in the CMS_TEMPLATES
list will be the project’s default template.

CMS_TEMPLATES = [
 ('home.html', 'Home page template'),
]

In the root of the project, create a templates directory, and in that,
home.html, a minimal django CMS template:

{% load cms_tags sekizai_tags %}
<html>
 <head>
 <title>{% page_attribute "page_title" %}</title>
 {% render_block "css" %}
 </head>
 <body>
 {% cms_toolbar %}
 {% placeholder "content" %}
 {% render_block "js" %}
 </body>
</html>

This is worth explaining in a little detail:

	{% load cms_tags sekizai_tags %} loads the template tag libraries we use in the
template.

	{% page_attribute "page_title" %} extracts the page’s page_title
attribute.

	{% render_block "css" %} and {% render_block "js" %} are Sekizai template tags
that load blocks of HTML defined by Django applications. django CMS defines blocks for
CSS and JavaScript, and requires these two tags. We recommended placing {%
render_block "css" %} just before the </head> tag, and and {% render_block
"js" %} tag just before the </body>.

	{% cms_toolbar %} renders the django CMS toolbar.

	{% placeholder "content" %} defines a placeholder, where plugins can be
inserted. A template needs at least one {% placeholder %} template tag to be
useful for django CMS. The name of the placeholder is simply a descriptive one, for
your reference.

Django needs to be know where to look for its templates, so add templates to the
TEMPLATES['DIRS'] list:

TEMPLATES = [
 {
 ...
 'DIRS': ['templates'],
 ...
 },
]

Note

The way we have set up the template here is just for illustration. In a real
project, we’d recommend creating a base.html template, shared by all the
applications in the project, that your django CMS templates can extend.

See Django’s template language documentation [https://docs.djangoproject.com/en/4.2/ref/templates/language/#template-inheritance]
for more on how template inheritance works.

Media and static file handling

A django CMS site will need to handle:

	static files, that are a core part of an application or project, such as its
necessary images, CSS or JavaScript

	media files, that are uploaded by the site’s users or applications.

STATIC_URL [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-STATIC_URL] is defined (as "/static/") in a new project’s settings by
default. STATIC_ROOT [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-STATIC_ROOT], the location that static files will be copied to and
served from, is not required for development - only for production [https://docs.djangoproject.com/en/4.2/howto/deployment/checklist/].

For now, using the runserver and with DEBUG = True in your settings, you don’t need
to worry about either of these.

However, MEDIA_URL [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MEDIA_URL] (where media files will be served) and
MEDIA_ROOT [https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-MEDIA_ROOT] (where they will be stored) need to be added to your settings:

MEDIA_URL = "/media/"
MEDIA_ROOT = os.path.join(BASE_DIR, "media")

For deployment, you need to configure suitable media file serving. For development
purposes only, the following will work in your urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [...] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

(See the Django documentation for guidance on serving media files in production [https://docs.djangoproject.com/en/4.2/howto/static-files/].)

Using cms check for configuration

Once you have completed the minimum required set-up described above, you can use django
CMS’s built-in cms check command to help you identify and install other components.
Run:

python manage.py cms check

This will check your configuration, your applications and your database, and report on
any problems.

Note

If key components are be missing, django CMS will be unable to run the cms check
command and will simply raise an error instead.

After each of the steps below run cms check to verify that you have resolved that
item in its checklist.

Adding content-handling functionality

You now have the basics set up for a django CMS site, which is able to manage and serve
up pages. However the project so far has no plugins installed, which means it has no way
of handling content in those pages. All content in django CMS is managed via plugins.
So, we now need to install some additional addon applications to provide plugins and
other functionality.

You don’t actually need to install any of these. django CMS doesn’t commit you to
any particular applications for content handling. The ones listed here however provide
key functionality and are strongly recommended.

Django Filer

Django Filer [https://github.com/django-cms/django-filer] provides file and image management. Many other applications also rely on
Django Filer - it’s very unusual to have a django CMS site that does not run Django
Filer. The configuration in this section will get you started, but you should refer to
the Django Filer documentation [https://django-filer.readthedocs.io] for more
comprehensive configuration information.

To install:

pip install django-filer\>=3.0

A number of applications will be installed as dependencies. Easy Thumbnails [https://github.com/SmileyChris/easy-thumbnails] is required to create new versions of
images in different sizes; Django MPTT [https://github.com/django-mptt/django-mptt/]
manages the tree structure of the folders in Django Filer.

Pillow, the Python imaging library, will be installed. Pillow [https://github.com/python-pillow/Pillow] needs some system-level libraries - the
Pillow documentation [https://pillow.readthedocs.io] describes in detail what is
required to get this running on various operating systems.

Add:

'filer',
'easy_thumbnails',

to INSTALLED_APPS.

You also need to add:

THUMBNAIL_HIGH_RESOLUTION = True

THUMBNAIL_PROCESSORS = (
 'easy_thumbnails.processors.colorspace',
 'easy_thumbnails.processors.autocrop',
 'filer.thumbnail_processors.scale_and_crop_with_subject_location',
 'easy_thumbnails.processors.filters'
)

New database tables will need to be created for Django Filer and Easy Thumbnails, so run
migrations:

python manage.py migrate filer
python manage.py migrate easy_thumbnails

(or simply, python manage.py migrate).

Django CMS CKEditor

Django CMS CKEditor [https://github.com/django-cms/djangocms-text-ckeditor] is the default rich text editor for django CMS.

Install: pip install djangocms-text-ckeditor.

Add djangocms_text_ckeditor to your INSTALLED_APPS.

Run migrations:

python manage.py migrate djangocms_text_ckeditor

Django CMS Frontend

Djangto CMS Frontend [https://github.com/django-cms/djangocms-frontend] adds support for css frameworks to django CMS. By default, it
comes with support of the Bootstrap 5 framework. However, you can use it to create your
own theme using your own framework.

Install: pip install djangocms-frontend and it and its subpackages to
INSTALLED_APPS:

INSTALLED_APPS = [
 ...,
 "easy_thumbnails',
 "djangocms_frontend',
 "djangocms_frontend.contrib.accordion",
 "djangocms_frontend.contrib.alert",
 "djangocms_frontend.contrib.badge",
 "djangocms_frontend.contrib.card",
 "djangocms_frontend.contrib.carousel",
 "djangocms_frontend.contrib.collapse",
 "djangocms_frontend.contrib.content",
 "djangocms_frontend.contrib.grid",
 "djangocms_frontend.contrib.image",
 "djangocms_frontend.contrib.jumbotron",
 "djangocms_frontend.contrib.link",
 "djangocms_frontend.contrib.listgroup",
 "djangocms_frontend.contrib.media",
 "djangocms_frontend.contrib.tabs",
 "djangocms_frontend.contrib.utilities",
 ...,
]

Miscellaneous plugins

There are plugins for django CMS that cover a vast range of functionality. To get
started, it’s useful to be able to rely on a set of well-maintained plugins that cover
some general content management needs.

	djangocms-file [https://github.com/django-cms/djangocms-file]

	djangocms-picture [https://github.com/django-cms/djangocms-picture]

	djangocms-video [https://github.com/django-cms/djangocms-video]

	djangocms-googlemap [https://github.com/django-cms/djangocms-googlemap]

	djangocms-snippet [https://github.com/django-cms/djangocms-snippet]

	djangocms-style [https://github.com/django-cms/djangocms-style]

To install:

pip install djangocms-file djangocms-picture djangocms-video djangocms-googlemap djangocms-snippet djangocms-style

and add:

"djangocms_file",
"djangocms_picture",
"djangocms_video",
"djangocms_googlemap",
"djangocms_snippet",
"djangocms_style",

to INSTALLED_APPS.

Then run migrations:

python manage.py migrate

These and other plugins are described in more detail in Some commonly-used plugins.

[image: ../_images/it-works-cms.jpg]

Next steps

If this is your first django CMS project, read through the
user guide [https://user-guide.django-cms.org] for a walk-through of some basics.

The tutorials for developers will help you understand how to approach
django CMS as a developer. Note that the tutorials assume you have installed the CMS
using the django CMS quickstart project, but with a little adaptation you’ll be able to
use it as a basis.

To deploy your django CMS project on a production web server, please refer to the
Django deployment documentation [https://docs.djangoproject.com/en/4.2/howto/deployment/].

 _images/polls-admin.png
Polls
Choices +Add / Change

Polls +Add / Change

_images/polls-integrated.png
Project name

Which browser do you prefer?

O Safari

_images/placeholder.png
Content EXPAND ALL

» Multi Columns 3 columns

_images/poll-plugin-in-menu.png
Add plugin to placeholder "Feature”
Generic

Google Map

Inherit Plugins from Page

Link

Style

Text.

Multi Columns

Multi Columns

Polls

Poll Plugin

_images/select_apphook_configuration.png
APPLICATION:

NewsBlog

Hook application to this page.

APPLICATION CONFIGURATIONS:

v NewsBlog / blog

_images/toolbar-polls.png
django example.com Page P%olls Language

Create

_images/polls-unintegrated.png
‘Which browser do you prefer?

O Safari

((vote)

_images/select-application.png
APPLICATION:

Polls Application

Hook application to this page.

APPLICATION INSTANCE NAME:

polls

_images/version-states.png
Version states and transitions
—
edit l publish l archive
— revert

l unpublish

nav.xhtml

 Table of Contents

 		
 django CMS documentation

_static/file.png

_static/screen1.png
oy S PRgerRaae
Change page «zETmD

The defaut itle “The part of the tite that is used in the url

Status: Published | ¢

Note: This page reloads if you change the selection. Save it first.

English | ¢
“The current language of the content fields.

Languag

Template: default |4
“The template used to render the conten.

Advanced Settings (Show)
No Plugin selected. Selected one on the left side

Picture [pony |

Text [Welcome toa

Link [Team |

Available Plugins | ¢ 4 Add Plugin

No Plugins present. Add a plugin to this placeholder-slot.

Available Plugins $ dAdd Plugin
Sveand dd srsvr] v and cominue i |]

2 Delete

_static/minus.png

_static/plus.png

_static/screen2.png
Bcueslleorl " Welcome to a pony powered site

Text

Text [Welcome to 2

Link [Team | O | [oty

B Finsert plugin. it selected plugin
| Available Plugins | £ Add Plugin

B Containers >
‘elcome i Paragraph
We t0 a pony powered site Farsarash
Heading 2
Heading 3
Heading 4
Heading 5
Heading &

Preformatted
Blockguote

Table Header

Classes
PARA: Date
PARA: Hidden note

No Plugins present. Add a plugin to this placeholder-slot.

*Delee Sae and addsnthr] Save and conie i]

_static/screen3.png
divio. Change passw

Home > Cms > Pages

Select page to change
tle quick actions published in navigation softroot template author

home DE|EN | examplecom ¢/ (A1 & % off o default divio
[products 0 | examplecom s A &% of o default divio
B team 0 | examplecom s A &% of o default divio

Qasx o9 o9 default divio

patrick. D | example.com

_images/django_cms_demo_page.png
django (@8

Brand

@ Howtostatwith dango OMS X+

C & how-to-start-ith-django-stage.us.adyn.io

Home ~

cxnplozan Fue Liwuge oo | [RGB

H

to start with django CMS How to start with django CMS

Lorem ipsum dolor sit amet, consectetur adipiscing eli, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Scelerisque viverra mauris in
aliquam sem. Donec ultrices tincidunt arcu non sodales neque. Non nisi est sit amet facilisis. At consectetur lorem donec massa sapien faucibus et
molestie ac. Dictumst vestibulum rhoncus est pellentesque elit ullamcorper. Pellentesque massa placerat dus ultricies lacus sed turpis tincidunt. Integer
feugiat scelerisque varius morbi. Dictum sit amet justo donec. Mi proin sed libero enim sed faucibus turpis. Vitae sapien pellentesque habitant morbi.
Feugiat sl pretium fusce id

Justo laoreet sit amet cursus sit. Mauris pellentesque pulvinar pellentesque habitant morbi tristique. Netus et malesuada fames ac turpis egestas.
Pharetra pharetra massa massa ultricies. Mi proin sed libero enim sed. Mattis rhoncus urna neque viverra justo nec ultrices dui sapien. Congue mauris
thoncus aenean vel elit. Leo integer malesuada nunc vel risus commodo viverra maecenas accumsan. Pharetra diam sit amet nis suscipit adipiscing.
Vestibulum rhoncus est pellentesque elit ullamcorper. Arcu bibendum at varius vel pharetra vel. Adipiscing commodo elit at imperdiet dui accumsan.
Nullam non nisi est sit amet facilisis.

Vestibulum mattis ullamcorper velit sed. Dictumst quisque sagittis purus sit amet. Sit amet volutpat consequat mauris nunc congue. Pharetra vel turpis
nunc eget lorem. At varius vel pharetra vel turpis nunc eget lorem dolor. Sem et tortor consequat id porta nibh. Arcu bibendum at varius vel pharetra vel
turpis. Scelerisque eleifend donec pretium vulputate. Pellentesque adipiscing commodo elit at imperdiet dui accumsan sit amet. Tortor aliquam nulla
facilisi cras fermentum odio eu. Tempus ura et pharetra pharetra massa. Condimentum vitae sapien pellentesque habitant. Nascetur ridiculus mus
mauris vitae. Morbi tristique senectus et netus et malesuada fames ac. Justo nec ultrices dui sapien eget mi proin. Fringilla ut morbi tincidunt augue
interdum velit euismod. Eget gravida cum sociis natoque penatibus. Vel fringilla est ullamcorper eget nulla facilisi etiam. Sit amet volutpat consequat
mauris nunc. Congue eu consequat ac felis donec et odio pellentesque diam,

Venenatis a condimentum vitae sapien pellentesque habitant. Id semper risus in hendrerit gravida rutrum quisque. Quis hendrerit dolor magna eget est
lorem ipsum. Massa eget egestas purus viverra accumsan in nis! nisi. Facilisi nullam vehicula ipsum a arcu cursus vitae congue mauris. Risus in hendrerit
‘gravida rutrum quisque. Et tortor consequat id porta nibh. A erat nam at lectus. Ultrices tincidunt arcu non sodales neque sodales. Volutpat commodo
sed egestas egestas fringilla phasellus faucibus. Adipiscing elit duis tristique sollcitudin nibh. Elementum pulvinar etiam non quam lacus suspendisse
faucibus interdum. Eget gravida c